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The majority of currently established public-key cryptosystems, e.g.,
RSA, ECC, requires modular multiplication in finite fields as their
core operation. As a result, the throughput rate of such cryptosys-
tem depends upon the speed of modular multiplication and upon
the number of performed modular multiplications. Montgomery al-
gorithm is one method that allows efficient implementation of mul-
tiplication modulo large number, as required by the RSA cryptosys-
tem. In the recent years, renewed interest has been payed to Residue
Number Systems (RNS), due to their ability to enable parallel and
fast modular arithmetic. Within RNS any integer is represented with
a set of its residues with respect to a given base that comprises a set of
relatively prime integers. In this way RNS distributes large dynamic
range computations over small modular rings. Thus the computa-
tions are carried out independently in each of the small wordwidth
RNS channels. Since the RNS is particularly suited for performing
efficient long integer modular arithmetic, the Montgomery algorithm
was adapted such that it can be utilized in conjunction with RNS.
RNS Montgomery modular multiplication makes use of two repre-

sentation bases B and B’, and during the calculations requires two base extension operations. Such a base
extension involve the calculation of the residue digits with respect to B′/B, when the digits relative to B/B′

are known, and dominates the RNS Montgomery modular multiplication computational complexity. This
thesis evaluates existing base extensions methods and proposes a new improved approach, which makes use
of the linear Diophantine equations theory. Assuming that B and B′ are k-moduli sets, to derive the value
of k new residues, our method requires k2 regular multiplications and k modular multiplications, while
equivalent state-of-the-art methods require, depending on the extension sense, B to B′ or B′ to B, k2 + k
and k2+2k modular multiplications, respectively. When utilized in the RSA context, our method provides a
speedup of O(µ) relative to the stateof-the art, where µ is the ratio between the computation time required
by a modular multiplication and by a regular one. To better asses the practical implications of the proposed
method we implemented RSA based on state of the art and on the Diophantine theory and compared their
performance. For the evaluations we assumed various RSA keysizes, e = 216 + 1 = 65537, different RNS
moduli sets with varying cardinality (k=4, 5, and 6), bitlength and Hamming weight, and various messages
to encrypt. Our experimental results indicate that for sets of 4, 5, and 6 moduli with bitlength of 512-bits,
our method provides a speedup per Montgomery kernel of 1.93, 2.42, and 3.17, respectively.
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e = 216+1 = 65537, different RNS moduli sets with varying cardinality (k=4, 5, and 6), bitlength

and Hamming weight, and various messages to encrypt. Our experimental results indicate that

for sets of 4, 5, and 6 moduli with bitlength of 512-bits, our method provides a speedup per

Montgomery kernel of 1.93, 2.42, and 3.17, respectively.

Laboratory : Computer Engineering
Codenumber : CE-MS-2010-23

Committee Members :

Advisor: Sorin Cotofana, CE, TU Delft

i



Chairperson: Koen Bertels, CE, TU Delft

Member: Koen Bertels, CE, TU Delft

Member: Fernando Kuipers, NAS, TU Delft

Member: Stephan Wong, CE, TU Delft

ii



To my mentor

iii



iv



Contents

List of Figures vii

List of Tables ix

Acknowledgements xi

1 Introduction 1

1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Thesis Contribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.3 Thesis Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2 RNS Preliminaries 5

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.2 RNS Representation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.3 The Algebra of Residues . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.4 Chinese Remainder Theorem . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

3 Modular Arithmetic in RSA Cryptography 13

3.1 The RSA cryptosystem . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3.1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3.1.2 RSA algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3.1.3 RSA proof . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3.1.4 RSA key sizes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.2 Modular Exponentiation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3.2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.2.2 Binary Exponentiation Method . . . . . . . . . . . . . . . . . . . . 17

3.3 Modular Multiplication . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.4 Montgomery Multiplication . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.4.1 Montgomery Exponentiation . . . . . . . . . . . . . . . . . . . . . 21

3.5 RNS Modular Multiplication . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.6 RNS Moduli Choice . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

4 Base Extension 27

4.1 Previous Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

4.1.1 Base extension based on the CRT . . . . . . . . . . . . . . . . . . 27

4.1.2 Base extension via MRS . . . . . . . . . . . . . . . . . . . . . . . . 32

4.2 Diophantine Base Extension . . . . . . . . . . . . . . . . . . . . . . . . . . 37

4.2.1 Diophantine Equations Basics . . . . . . . . . . . . . . . . . . . . . 37

v



4.2.2 Proposed Diophantine Base Extension Method . . . . . . . . . . . 38
4.2.3 Numerical Example . . . . . . . . . . . . . . . . . . . . . . . . . . 41
4.2.4 Performance Evaluation . . . . . . . . . . . . . . . . . . . . . . . . 41

4.3 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

5 Performance Evaluation 45
5.1 Simulation Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
5.2 Performance Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
5.3 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

6 Conclusions 49
6.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
6.2 Main Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
6.3 Proposed Future Research . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

A Auxiliary Algorithms 53
A.1 Computing the greatest common divisor using the Euclidian algorithm . . 53
A.2 Expressing gcd(a,b) as a linear combination of a and b . . . . . . . . . . . 54
A.3 Computing the multiplicative inverse using the Extended Euclidian algo-

rithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

Appendices 53

Bibliography 59

vi



List of Figures

4.1 Theoretical speedup per Montgomery multiplication for k = 6 moduli and
variable µ. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

5.1 Measured vs. estimated (using µestimatedfromthetwoMontgomerykernels)speedupfor512−
bitRSAkeyn, andfor512− bitRNSmoduli. . . . . . . . . . . . . . . . . . . 47

5.2 Measured speedup for 1024-bit RSA key N, and for k = 4. . . . . . . . . . 47
5.3 Measured speedup for 512-bit multiplication operands. . . . . . . . . . . . 47

vii



viii



List of Tables

4.1 CRT-based base extension algorithms. . . . . . . . . . . . . . . . . . . . . 33
4.2 Number of arithmetic operations (multiplications) of three RNS Mont-

gomery multiplication algorithms. . . . . . . . . . . . . . . . . . . . . . . . 43

5.1 Example of 3 RNS moduli sets utilized for simulation . . . . . . . . . . . 46

ix



x



Acknowledgements

I would like to thank my supervisor, prof. Sorin Cotofana, for his continuous guid-
ance and support throughout the thesis. I was lucky and honoured to work under his
coordination.

Nicoleta CUCU-LAURENCIU
Delft, The Netherlands
November 22, 2010

xi



xii



Introduction 1
1.1 Motivation

In this age of universal electronic connectivity, of electronic eavesdropping and fraud, it
is of utmost importance to store information securely. This led to a heightened awareness
to protect the data from disclosure, to guarantee the authenticity of data and messages,
and to protect systems from network-based attacks. Cryptography plays a major role in
mobile phone communications, e-commerce, pay-tv, sending private emails, transmitting
financial information, security of ATM cards, computer passwords, electronic commerce
digital signature and so on. Modular exponentiation ab mod m, and implicitly modular
multiplication a · c mod m are the operations intensively used, underlying many crypto-
graphic schemes. In this thesis, we focus only on the Rivest Shamir and Adleman (RSA)
[26] cryptosytem requirements: the execution of multiplications modulo a large number,
chosen in the order of 512-2048 bits to safeguard the information, at high throughput
rates.

One possible way to speed up multiplications modulo a large number is to rely on
Residue Number Systems (RNS) to represent the operands. RNS has been an important
field of research in computer arithmetic, due to its great potential for accelerating arith-
metic computations, by breaking the arithmetic on large numbers to arithmetic on a set
of smaller numbers. Thus, the carry-free and parallel nature of residue arithmetic makes
RNS a powerful candidate for fast solutions to long integer arithmetic. However, apply-
ing the RNS to the long integer modular multiplication problem is not straightforward.
The main difficulty is induced by the fact that the modulus used in RSA cryptosystem
is a product of two prime numbers, which precludes coincidence with the dynamic range
of a many moduli RNS base.

Montgomery algorithm [18] is an effective way to perform modular multiplication,
while avoiding division by the large modulus. The majority of existing RSA algorithms
use Montgomery method and high radix number systems. Montgomery algorithm has
been also combined with RNS, which proves to be a promising alternative. The first
attempts were made in 1995 by Posch et al. [25].

For reducing an integer a ·b modulo m, the Montgomery method computes a multiple
qm of m that need to be added to a ·b such that the least significant part of u = a ·b+qm
is 0. This value can now be safely divided by r = 2n, which reduces to a simple shift
for binary numbers. The obtained result is equivalent to a · b · r−1 mod m. Since the
division step is exact, in RNS the division is equivalent to multiplication by the divisor
multiplicative inverse. However this multiplicative inverse does not exist in the first RNS
base and thus a second RNS base has to be introduced. Therefore, at the begining one
has to compute the product a ·b in the first RNS base, then extend the result to a second
RNS base and compute the value of u, and afterwards convert the result back to the

1



2 CHAPTER 1. INTRODUCTION

first RNS base. Most of the computational effort of the RNS Montgomery multiplication
algorithm is required by the two necessary base extensions.

The aim of this thesis is to investigate alternative base extension methods that have
lower computational demands such that the Montgomery modular multiplication can be
executed faster and the overall RSA performance (throughput) is improved. One could
reformulate this as follows: given the RNS representation of an integer X in a base B,
it is required to compute the RNS representation of that integer with respect to another
RNS base B′ while minimizing the number of operations necessary to be performed.

1.2 Thesis Contribution

This section presents the main contributions of the thesis, which consist of:

1. We performed a thorough study of existing base extension methods. The methods
are presented and explained and their performances are compared in the context
of RNS Montgomery multiplication.

2. We proposed a novel base extension method based on the theory of linear Dio-
phantine equations. To perform a base extension with respect to k new moduli,
our method requires k2 regular multiplications and k modular multiplications. The
state-of-the-art methods [7] and [28] (Bajard and Shenoy) need k2+ k and k2+2k
modular multiplications, respectively. Thus our method improves the overall per-
formance by reducing the number of multiplications in general and by replacing
most of the required modular multiplications with normal multiplications, which
are faster than the modular ones. For the entire RNS Montgomery multiplication,
our method requires 7k modular multiplications and 2k2 regular multiplications,
while the state of the art method requires 2k2 + 8k + 3 modular multiplications.

3. We evaluated the practical implications of the prosed method by implementing the
RSA encryption-decryption protocol in C++, for different RSA key sizes (512-bit,
1024-bit). Two versions of the Montgomey algorithm were considered: the former
using the proposed Diophantine base extension method, and the latter using the
state-of-the-art method (Bajard and Shenoy). The performance was assesed for
various RNS base moduli (several sets with cardinality 4, 5, 6; RNS moduli with
different bitlength and varying Hamming weight). The public exponent e was
chosen 65537, which is usually a common choice for RSA implementations. Our
experimental results indicate that for sets of 4, 5, and 6, 512-bit moduli, our method
provides a speedup per Montgomery kernel of 1.93, 2.42, and 3.17, respectively.

1.3 Thesis Outline

This thesis is organized in 6 chapters and one appendix, as follows:

Chapter 2 introduces the fundamental mathematical results necessary for RNS. First,
the basic principles of the RNS representation, with a numerical example, are explained.
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Next, a basic algebra of residues is presented and the chapter concludes with the presen-
tation of one of the most important results in the theory of RNS, the Chinese Remainder
Theorem (CRT).

Chapter 3 starts by giving an overview of the RSA cryptosystem. Next, modular
exponentiation and modular multiplication are briefly debated. Montgomery modular
multiplication technique as a fast alternative to classical modular multiplication is in-
troduced and its adaptation to the RNS system is discussed. The final of the chaper is
dedicated to considerations regarding the selection of the moduli set, with its impact on
the overall system performance.

Chapter 4 gives a survey of the previous existing base extension methods, and pro-
poses a new approach for performing base extension. The methods are put in the context
of the RNS Montgomery multiplication algorithm and their performance is analyzed.

Chapter 5, reports the simulation results. The simulation setup is presented, followed
by a comparison analysis of the execution time of our work and of previous state-of-the-
art implementation.

Finally, the thesis is concluded in Chapter 6.
The Appendix comprises the description of 3 auxiliary algorithms, referenced

throughout the thesis.
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RNS Preliminaries 2
This chapter introduces the basic notions and several important properties of Residue
Number Systems (RNS) that are foundational for the succeeding chapters.

2.1 Introduction

The binary 2’s complement is the conventional number system used for contemporary
computer arithmetic. It is a weighted number system, with the major advantage that
addition and subtraction can be easily performed (−x = x̄ + 1), allowing the use of
the same circuitry for both operations. However, traditional binary 2’s complement
arithmetic suffer from long carry propagation delay, which imposes a limitation on the
achievable performance. There exist two major approaches for dealing with the carry
problem: (i) speedup the carry propagation via fast algorithms and (ii) use different
number representations to limit the carry propagation to within a smaller number of
bits or completely eliminate it. Specific to the first approach, a variety of adders such
as carry-lookahead, conditional-sum, or multilevel carry select have been developed, ex-
hibiting a time complexity of O(log n) at best, for n-bit numbers. Alternatively, different
representations were explored, such as redundant representations or RNS.

The ancient study of RNS, begins 1700 years ago with a verse, Suan-ching, by Sun
Tzu: ”We have things of which we do not know the number, If we count them by threes,
the remainder is 2, If we count them by fives, the remainder is 3, If we count them
by sevens, the remainder is 2, How many things are there? The answer, 23.”. The
theory of residue numbers was first adapted to computer arithmetic in 1967 by Szabo
and Tanaka, in [30]. RNS is a nonweighted number system, in which each number is
represented as a tuple of residues relative to a set of relatively prime moduli. RNS aims to
increase the speed of computations using a divide-et-impera approach: it distributes large
dynamic range modular computations over smaller but independent channels without
inter-channel carry dependencies, over which computations can be performed in parallel.
However, since it is a nonweighted number system, the magnitude related operations (i.e.,
division, sign detection, magnitude comparison, etc.) are more difficult to perform. In
RNS, additions can be peformed in O(log log n) with unrestricted moduli and in O(log n)
with restricted moduli. For addition and multiplication dominated applications and for
arithmetic on long operands, as it is the case in RSA, RNS can be of interest.

2.2 RNS Representation

A residue number system is completely specified by stating its base, B = (m1,m2, ...,mk),
which is a set of positive integers called moduli. In what follows, we shall assume that

5



6 CHAPTER 2. RNS PRELIMINARIES

we are dealing with RNS bases comprising moduli that are pairwise relatively prime to
each other, i.e., gcd(mi,mj) = 1, ∀i 6= j.

For a given base B, the residue representation of an integer X is denoted by a k-tuple
of integers

〈X〉B = (x1, x2, ..., xk) xi = |X|mi
,

where xi represents the remainder of the division of X by the modulus mi and is desig-
nated as ”the residue of X modulo mi”.

Example 2.1

〈5〉B = (5, 5, 0, 2), where B = (8, 7, 5, 3)

The dynamic range of the RNS system is represented by the product of all k relatively
prime moduli. It reflects the number of different representable values in the defined RNS
system.

M = m1 ·m2 · ... ·mk

We note that if the moduli are not pairwise relatively prime, then representations in
such a system are not unique, such that two or more numbers may have the same
representation.
The dynamic range M can be used to represent numbers in the [0,M − 1] set, or any
other interval of M consecutive integers. For instance if a symmetric RNS is desired,
the dynamic range of the system is chosen as [−(M − 1)/2, (M − 1)/2] for M odd, and
[−M/2, (M/2) − 1] for M even. Thus, residues of negative numbers are evaluated by
complementing each of the digits xi with respect to its correspondent modulus mi (0
digits are left unchaged)

|−X|mi
= |M −X|mi

.

Example 2.2 Given that 〈21〉B = (5, 0, 1, 0) with respect to the moduli (8, 7, 5, 3), we
obtain:

〈−21〉B = (8− 5, 0, 5− 1, 0) = (3, 0, 4, 0)

Unless otherwise stated, in this thesis we will assume nominal ranges of [0,M − 1].

2.3 The Algebra of Residues

The following relations form the basis for addition, subtraction or multiplication modulo
m:

|a± b|m = ||a|m ± |b|m|m = ||a|m ± b|m
|a · b|m = ||a|m · |b|m|m = ||a|m · b|m

(2.1)



2.3. THE ALGEBRA OF RESIDUES 7

The additive inverse of a residue |a|m, denoted by |−a|m is defined as:

|a+ (−a)|m = 0.

Every number has a unique additive inverse with respect to a modulus m and can be
obtained through the following operation:

|−a|m = |m− a|m .

The additive inverse can be applied to individual residues or to the RNS number as an
entire.

The multiplicative inverse of a mod m, denoted by
∣

∣a−1
∣

∣

m
, is a number ∈ [0,m) such

that the following relation holds true:

∣

∣a · a−1
∣

∣

m
= 1. (2.2)

While every residue has an additive inverse, this is not the case for multiplication. Some
residues may not have multiplicative inverses. However, if and only if gcd(a,m) = 1 and
|a|m 6= 0, then the multiplicative inverse exists and it is unique.

Example 2.3 Given a = 7, we want to compute the multiplicative inverse of a with
respect to the modulus 11.

∣

∣7 · a−1
∣

∣

11
= 1 ⇒

∣

∣a−1
∣

∣

11
= 8.

There exists no general rule for finding the multiplicative inverse of a certain number;
a brute-force search is about the best possible approach. Nevertheless, if the modulus m
is a prime number then Fermat’s Theorem can be applied for finding the multiplicative
inverse.

Theorem 2.1 (Fermat’s Theorem) Provided m is a prime modulus and gcd(a,m) = 1,
we have

|am|m = |a|m .

From this theorem, it may be deduced that

∣

∣a−1
∣

∣

m
=
∣

∣am−2
∣

∣

m
.

All the above relations were defined for individual moduli. In what follows addition,
subtraction, and multiplication will be derived for RNS numbers. We denote by Z

the ring of integers; ZM is the residue ring Z/MZ and its complete residue class is
{0, 1, ...,M − 1}. Addition, subtraction, and multiplication are closed operations in RNS
over Z/MZ. Let ⊗ represent the binary operations of {+,−,×}. Therefore, we obtain
that

X ⊗ Y = (|x1 ⊗ y1|m1
, ..., |xk ⊗ yk|mk

) (2.3)
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The isomorphism between the ring Z/MZ and the direct sum ring Z/mkZ implies that
the computations can be carried out over small finite fields, instead of the original ring.
There exists no intermodular carries, each residue digit of the result being a function
of only the corresponding residue digits of the operands, which gives an inherent speed
advantage to the RNS.

Example 2.4 For the moduli B = (3, 4, 5, 11) we want to add X=102 and Y=211.

〈102〉B = (0, 2, 2, 3)+

〈211〉B = (1, 3, 1, 2)

|313|660 = (|1|4 , |5|3 , |3|5 , |5|11) = (1, 1, 3, 5).

The ability of performing fast, independent, and parallel computations within each
small wordwidth RNS channel represents the main advantage of using RNS over other
conventional weighted number system, e.g., binary. However, additional conversions
of the inputs and the result, between standard binary format and RNS are required.
Eventhough their performance have a great impact on hardware complexity, latency,
and power consumption, for data-intensive calculations the savings achieved with the
internal RNS computations can easily counterbalance the conversions overhead.

Unfortunately, what is gained in terms of speed and simplicity for addition, subtrac-
tion or multiplication, might be nullified by the complexity of division, and the difficulty
of certain auxiliary operations, such as sign test, magnitude comparison, and overflow
detection. Nevertheless, there are special cases of the division that make possible the
use of simpler algorithms. One of these cases is when the dividend is known to be a mul-
tiple of the divisor. Then, the residue division and the normal division will correspond.
Conventional division can be represented by the equation:

x

y
= q ⇔ y · q = x.

Expressed in RNS the previous relation becomes:

|y · q|m = |x|m .

Provided y and the modulus m are relatively prime, if we multiply both sides by the
multiplicative inverse of y with respect to m we obtain:

|q|m =
∣

∣x · y−1
∣

∣

m
.

Therefore, contrary to the corresponding situation in conventional arithmetic, in RNS
multiplication by the multiplicative inverse is not always equivalent to division: this
equivalence holds true only when the quotient is an integer value.
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Example 2.5 Assuming m = 5, we compute the following quotients:

q =
4

2
|2q|5 = |4|5

|q|5 =
∣

∣4 · 2−1
∣

∣

5

|q|5 = |4 · 3|5
|q|5 = 2.

Now we consider the case when the remainder of the division is not 0 anymore:

q =
4

3
|3q|5 = |4|5

|q|5 =
∣

∣4 · 3−1
∣

∣

5

|q|5 = |4 · 2|5
|q|5 = 3.

One method extensively used in cryptography, that exploits the integer division case is
the Montgomery multiplication technique and it is studied in detail in Chapter 3.

2.4 Chinese Remainder Theorem

One of the most important results in the theory of residue number systems is the Chinese
Remainder Theorem, which allows the computation of the equivalent binary/decimal
number of an RNS representation.

Theorem 2.2 (Chinese Remainder Theorem) Under the assumption that (m1, ...,mk)
are pairwise relatively prime moduli, then there exists exactly one integer that satisfies
the conditions:

c ≤ X < c+M

xi = |X|mi
i = 1, .., k,

where M =
k
∏

i=1

mi and c is an integer.

It assures us that for relatively prime moduli, each number in the dynamic range has a
unique representation in the RNS, and that we can recover the number represented from
such a representation.

An alternate way of stating the CRT, that allows us to recover the represented integer
from its residues, is as follows:
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Given the residues xi and the pairwise prime moduli mi, where i = 1, ..., k, the
magnitude of the represented integer X can be obtained by using the subsequent relation:

|X|M =

∣

∣

∣

∣

∣

k
∑

i=1

Mi · xi ·
∣

∣M−1
i

∣

∣

mi

∣

∣

∣

∣

∣

M

, (2.4)

where M =
k
∏

i=1

mi, Mi =
M

mi
and

∣

∣M−1
i

∣

∣

mi
is the multiplicative inverse of Mi with respect

to the modulus mi as defined in Equation (2.2).

Since the sum may exceed M , a reduction modulo M is applied in order to yield the
result within the dynamic range of the given residue number system. If it is known that
X lies in the interval [0,M − 1], then the modular reduction on the left-hand side of the
equation may be ommited.

In some cases, for instance when the storage or multiplier requirements need to be
reduced, the CRT is reformulated as:

X =

∣

∣

∣

∣

∣

k
∑

i=1

Mi · xi ·
∣

∣M−1
i

∣

∣

mi

∣

∣

∣

∣

∣

M

=

∣

∣

∣

∣

∣

k
∑

i=1

Mi · |xi|mi
·
∣

∣M−1
i

∣

∣

mi

∣

∣

∣

∣

∣

M

=

∣

∣

∣

∣

∣

k
∑

i=1

Mi ·
∣

∣

∣
xi ·

∣

∣M−1
i

∣

∣

mi

∣

∣

∣

mi

∣

∣

∣

∣

∣

M

.

(2.5)

In other cases, it is desirable to express the CRT equation without the modulo M op-
eration. This is achieved by rewriting X according to the Fundamental Theorem of the
Remainder. The quotient of the integer division is denoted by α1 when the remainder
theorem is applied to Equation (2.4), respectively by α2 when applied to Equation (2.5).

k
∑

i=1

Mi · xi ·
∣

∣M−1
i

∣

∣

mi
= X + α1 ·M (2.6a)

k
∑

i=1

Mi ·
∣

∣

∣xi ·
∣

∣M−1
i

∣

∣

mi

∣

∣

∣

mi

= X + α2 ·M (2.6b)

Note that α2 value is upper bounded by the number of moduli k, as indicated by Equation
2.7.

k
∑

i=1

Mi ·
∣

∣

∣xi ·
∣

∣M−1
i

∣

∣

mi

∣

∣

∣

mi

<
k
∑

i=1

M

mi
·mi =

k
∑

i=1

M = k ·M (2.7)

Thus α2 ∈ [0, k − 1]. This observation proves to be crucial for some base extension
methods presented in Chapter 4.
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2.5 Conclusion

This chapter presented an introduction to RNS. It covered preliminary concepts, along
with definitions and theorems that form the foundations of residue number systems. We
have seen that RNS is best suited for applications that require several additions and
multiplications, but relatively few conversions or magnitude related operations. Such
applications are typical for public-key RSA cryptosystems for instance, in which modular
exponentiation (essentially, sequences of modular multiplications) is the most significant
operation, accounting for most of the time spent for encryption and decryption. In
the next chapter we present RSA cryptosystems while giving special attention to fast
modular multiplication/exponentiation methods for wide operands.
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Modular Arithmetic in RSA

Cryptography 3
Faster implementations of public-key cryptography, and in particular of RSA are of ut-
most importance nowadays. Performing fast modular multiplication for large integers is
of special interest because it provides the basis for performing fast modular exponentia-
tion, which is the key operation of the RSA cryptosystem. Currently, it seems that in a
radix representation, all major performance improvements have been achieved. Never-
theless, the use of RNS proves to be a promising alternative for achieving a breakthrough.
All these aspects are detailed throughout this chapter.

3.1 The RSA cryptosystem

This section presents an overview of the RSA cryptosystem, followed by a short proof of
why the encryption-decryption mechanism works. The section concludes with considera-
tions regarding the employed key-sizes and with an example of a small RSA cryptosystem.

3.1.1 Introduction

Generally speaking, cryptography falls into two main categories: secret and public key
cryptography.

Secret-key cryptography is based on a prior exchange of a common secret key. Since
a single key is used for both encryption and decryption, the major issue associated
with symmetric-key systems is the key distribution problem, that is an efficient method
has to be devised for the parties to agree upon and then exchange keys securely. In
1970, W. Diffie and M. E. Hellman proposed in [10] an efficient method of exchanging
a shared secret key over an unsecured communications channel and thus setting up the
basis of a new type of cryptography: the public-key cryptography. The assymetric-key
cryptography uses a key (public) for encryption, which is made available to everyone
at the sending end, and another one (secret) for decryption, that is known only by the
recipient of the message.

In 1977, R. Rivest, A. Shamir, and L. Adleman introduced the RSA cryptosystem
[26], which became the most widely used public-key cyptosystem in the world. Its
security depends upon the intractability of the integer factorization problem and it can
be used to provide both data encryption and digital signatures. In what follows the RSA
encryption-decryption protocol is shortly reviewed.

3.1.2 RSA algorithm

Prior to the execution of the encryption-decryption protocol, outlined in Algorithm 2,
each party that wants to communicate should generate first its own public/private key
pair, as described in Algorithm 1.

13
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Algorithm 1 Public key generation

Ouput: a public key (n, e) and a private key d.

1. Generate randomly two large primes p and q, which are kept secret.

2. Compute the modulus n = p · q and Euler’s totient function Φ = (p− 1)(q − 1).

3. Select a random integer e, 1 < e < Φ, coprime with Φ.

4. Compute the multiplicative inverse of e with respect to modulus Φ (d · e ≡
1 (modΦ)) (e.g., by using the Extended Euclidian algorithm, described in Ap-
pendix A.3).

Algorithm 2 RSA encyption-decryption protocol

Bob encrypts a message m and sends it to Alice; Alice decrypts the message

1. Encryption

a. Bob should obtain the public key (n, e) of Alice.

b. Bob represents the message m as an integer between 0 and n− 1.

c. Bob computes c = memodn.

d. Bob sends the cyphertext to Alice.

2. Decryption

a. Alice should use its private key d to recover the messagem form the cypher-
text m = cdmodn.

3.1.3 RSA proof

The RSA encryption system is based on Euler’s theorem and its generalization, the
Carmichael’s theorem.

Theorem 3.1 (Euler’s Theorem) If n and a are two positive, relatively prime integers,
then it holds

∣

∣

∣
aΦ(n)

∣

∣

∣

n
= 1,

where Φ(n) is the Euler’s totient function (the number of integers less than n, and
relatively prime with n).

Theorem 3.2 (Carmichael’s theorem) If n and a are two positive, relatively prime in-
tegers, then

∣

∣

∣
aλ(n)

∣

∣

∣

n
= 1,

where λ(n) is the Carmichael function (the least common multiple of the factors of Φ(n)).

Theorem 3.3 If n is a product of distinct primes, then, for all integers a

∣

∣

∣
aλ(n)+1

∣

∣

∣

n
= |a|n .
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The corectness of the RSA scheme, i.e., the fact that the encryption and decryption are
inverse operations, relies on the fact that

∣

∣

∣
me·d

∣

∣

∣

n
= m, for m ∈ [0, n− 1].

There are two cases to consider.
Case 1. gcd(m,n) = 1
We have |d · e|Φ(n) = 1, relation which rewritten for an integer α ≥ 1 becomes

d · e = α · Φ(n) + 1

∣

∣

∣
cd
∣

∣

∣

n
=
∣

∣

∣
(me)d

∣

∣

∣

n

=
∣

∣

∣
m1+α·Φ(n)

∣

∣

∣

n

=
∣

∣

∣m · (mΦ(n))α
∣

∣

∣

n

= |m · 1|n
= |m|n .

Case 2. gcd(m,n) > 1
For n, a product of two odd distinct primes,

λ(n) =
Φ(n)

gcd(p− 1, q − 1)

will always be a divisor of Φ(n). Since λ(n)|Φ(n), the equality |e · d|Φ(n) = 1 implies
that |e · d|λ(n) = 1. Using a derivation similar to case 1, and based on Theorem 3.3, we
obtain

∣

∣

∣
md·e

∣

∣

∣

n
= |m|n ,

which concludes our explanation.

3.1.4 RSA key sizes

As far as the operands sizes are concerned, the following remarks can be made.
The stochastic primes p and q should be chosen such that they have approximately the

same bit length to ensure that any attempts to factor the modulus are computationally
infeasible. For instance, for 1024-bit modulus n, p and q should be chosen about 512-bits
each.

The exponent e is usually chosen small and preferably with a small Hamming weight
(the number of 1’s in its binary representation), in order to increase the efficiency of
the exponentiation (for the square-and-add exponentiation algorithm introduced in the
next section, a small Hamming weight reduces the number of modular multiplications).
One exponent currently used in practice is e = 216 + 1 = 65537. The exponentiation
algorithm would require in this case 16 modular squarings and 2 modular multiplications
(since the Hamming weight is 2).
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For security reasons, the bit length of the modulus n is typically in the range 512-
2048 bits or even more, and thus efficient long integer modular arithmetic is required for
achieving high troughput rates at these bit precisions.

A small RSA cryptosystem example is illustrated subsequently.

Example 3.1 We presume that Alice wants to make a public key, and that Bob wants to
use that key to encrypt the plaintext 9726 and send it to Alice. Alice chooses the primes
p = 101 and q = 113 and computes

n = p · q = 101 · 113 = 11413

Φ(n) = (p− 1) · (q − 1) = 100 · 112 = 11200

Next, the public exponent is selected such that it is a small integer coprime with Φ(n).
For instance, e = 3533 would satisfy this constraint.
The secret decryption exponent d is computed by

d =
∣

∣e−1
∣

∣

Φ(n)

=
∣

∣3533−1
∣

∣

11200

= 6597.

Alice publishes the pair (11413, 3533), respectively the modulus n and the public exponent
e. Bob obtains the public key of Alice, computes the cyphertext

c = me mod n =
∣

∣97263533
∣

∣

11413
= 5761

and sends it over the channel. When Alice receives this cyphertext, she uses her secret
decryption exponent to recover the message

m = cd mod n =
∣

∣57616597
∣

∣

11413
= 9726.

3.2 Modular Exponentiation

Modular exponentiation (ab mod m) and its key constituent operation, modular multi-
plication (a · b mod m), are the fundamental operations underlying cryptographic algo-
rithms. Since modular multiplications account for most of the time spent for encryption
and decryption, their optimization is crucial. This can be achieved either by reduc-
ing the number of modular multiplications or by reducing the latency of each modular
multiplication.

Several algorithms have been reported in the literature for performing efficiently
modular exponentiation. This section covers modular exponentiation using arithmetic
in RNS.
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3.2.1 Introduction

Assuming m and e have a bitlength of 1024 each, c = me would require a total number
of

log2(m
e) = e · log2m ≈ 21024 · 1024 = 21034

bits in order to store its value. Therefore c cannot be obtained by performing first the
modular exponentiation me and only after that the reduction modulo n. Thus these
operations have to be interleaved at each step.

A straighthforwards way of performing exponentiation is

m
SQ
−−→ m2 MUL

−−−→ m3 MUL
−−−→ m4 MUL

−−−→ . . .

However, this naive approach requires e − 1 modular multiplications, which would be
infeasible for large exponents.

Taking into consideration that not all powers of m need to be computed in order to
obtain me, a faster method would be:

m
SQ
−−→ m2 MUL

−−−→ m3 SQ
−−→ m6 MUL

−−−→ m7 . . .

This method is called the square-and-multiply algorithm and is detailed in Subsection
3.2.2. The algorithm provides a systematic way for finding the exact sequence in which
squarings and multiplications by m have to be performed in order to efficiently compute
me.

3.2.2 Binary Exponentiation Method

The method is based on scanning bit-by-bit the exponent. At each step (i.e., for every
scanned bit) a squaring is performed. If and only if the currently scanned exponent
bit is 1, then a subsequent multiplication is performed. Depending on the direction of
processing the exponent bits (i.e., from MSB to LSB, or vice-versa), there exist two
versions of the algorithm: the left-to-right binary method which is described below and
the right-to-left binary method that is similar but requires an extra variable to keep the
powers of m.

Let k = ⌊log2e⌋ + 1 denote the bitlength of the exponent e whose binary expansion
is

e = (ek−1ek−2 . . . e1e0) =
k−1
∑

i=0

ei · 2
i.

The left-to-right binary exponentiation algorithm computes the exponentiation starting
from the most significant bit position of the exponent E and proceeding to the right, as
described in Algorithm 3.

Example 3.2 Let e = 26 = (11010)2 and k = 5. We want to compute me using the
square-and-multiply method.

Since ek−1 = e4 = 1, in the initialization step 1. we take c := m. Then, the algorithm
proceeds as follows:
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SQ MUL

e3 = 1 i = 3 (m)2 = m2 m2 ·m = m3

e2 = 0 i = 2 (m3)2 = m6 -
e1 = 1 i = 1 (m6)2 = m12 m12 ·m = m13

e0 = 0 i = 0 (m)13 = m26 -

Algorithm 3 Left-to-right binary exponentiation algorithm

Input: m, e, n
Output: c = |me|n

1. if ek−1 = 1 then c := m else c := 1

2. for i = k − 2 downto 0

2a. c:=|c · c|n

2b. if ei = 1 then c := |c ·m|n

3. return c

Assuming ek−1 = 1, the algorithm requires k − 1 squarings (step 2a.) and H(e)− 1
multiplications (step 2b.), where H(e) is the Hamming weight of the exponent (the
number of ones in its binary representation). Since 0 ≤ H(e) − 1 ≤ k − 1, we have a
total maximum number of multiplications of 2 · (k− 1), a minimum of k− 1, while in the
average case (H(e) = 0.5 ·k, that is half of the bits of e are 1), 1.5 ·(k−1) multiplications
are needed. For instance, for 1024-bit exponents, the square-and-add algorithm has
a logarithmic computational complexity, requiring on average only 1.5 ∗ 1023 = 1535
multiplications, while the straightforward exponentiation needs a linear amount of 21024

multiplications.
The binary method is used frequently in smart cards and embedded devices, due to its
simplicity and low memory requirements.

This method can be generalized by scanning multiple bits of the exponent at a time.
Generally, if log2m bits are scanned, the method is called m-ary [14]. When compared
to the binary method, it requires fewer iterations (clock cycles), but at the expense of
higher memory resources. Usually, this method is used for software implementations on
processors which have access to bigger memory resources.

3.3 Modular Multiplication

The modular multiplication operation may be decomposed in two parts: a normal mul-
tiplication followed by a reduction. In its simple form, modular reduction requires trial
division for finding the multiple of the modulus that has to be subtracted from the result
and thus it is inherently slow. For this reason, faster alternative algorithms are utilized
(Fast-Fourier Transforms [27], Karatsuba-Ofman algorithm [15], [32], Barret reduction
and Quisquater’s modification [12], redundant-digit division [31], etc.). Since presenting
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a survey of these algorithms is out of the scope of this thesis, we just focus on the one
of interest in the context of this thesis, the Montgomery multiplication.

3.4 Montgomery Multiplication

One method that allows efficient implementation of modular multiplication is the Mont-
gomery algorithm, introduced in 1985 by P. L. Montgomery [18]. The algorithm com-
putes c = |a · b|n, without performing the division by n. Using a specific representation of
the operands, that is the n-residue notation, the costly division by modulus n is replaced
with division by a power of 2, which reduces to simple shifts for numbers represented in
binary form.

In what follows we present the main idea behind the Montgomery reduction algo-
rithm. The Mongomery reduction of |a · b|n with respect to r is defined as

MontMult(a, b) =
∣

∣a · b · r−1
∣

∣

n
,

where a, b, and n are k-bit numbers, and r−1 is the multiplicative inverse of r with
respect to the modulus n, as defined in Equation (2.2). The radix r is usually chosen
as two to the power of a multiple of the machine wordsize: 0 ≤ r = 2k·w < n. The
algorithm requires that n and r are coprime (gcd(r, n) = 1). Since r is a power of 2, it
implies that n should be taken odd. This requirement is easily satisfied in the case of
RSA criptography, where the modulus n is a product of two primes.

Before the algorithm can be started, the input operands have to be converted to their
n-residue representation. The n-residue of an integer a < n with respect to r is defined
as

ā = |a · r|n , where a < n. (3.1)

The Montgomery multiplication algorithm computes the n-residue of the product of
two integers whose n-residues are known as follows:

MontMult(ā, b̄) = c̄ =
∣

∣ā · b̄ · r−1
∣

∣

n
=
∣

∣a · r · b · r · r−1
∣

∣

n
=
∣

∣c · r−1
∣

∣

n
.

Thus, the n-residue representation is stable over Montgomery multplication. At the
end, a final conversion step has to be performed to transform the result back from the
n-residue representation to normal residue representation. An important observation is
that these forward and backward conversions can be carried out using the same algorithm
as follows:

ā = MontMult(a, r2) =
∣

∣a · r2 · r−1
∣

∣

n
= |a · r|n

a = MontMult(ā, 1) =
∣

∣a · r · r−1
∣

∣

n
= |a|n .

(3.2)

The method requires an additional integer n′ such that

r · r−1 − n · n′ = 1.

This relation is an immediate consequence of Bezout’s identity, which states that the
greatest common divisor of two numbers can be represented as a linear sum of the two
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numbers. A possible solution for computing the values of r−1 and n′ would be based
on the utilization of the extended Euclidian Algorithm A.2. Also, applying a modulo r
reduction to both sides of the previous equation, would result in |−n · n′|r = 1, which
further implies that n′ =

∣

∣−n−1
∣

∣

r
.

The Montgomery multiplication algorithm is outlined in Algorithm 4.

Algorithm 4 Montgomery multiplication

Input: an odd modulus n and a radix r = 2⌈log2n⌉ such that gcd(n, r) = 1,
an auxiliary value n′ =

∣

∣−n−1
∣

∣

r
,

2 n-residue integers ā and b̄ such that ā · b̄ < r · n.

Output: the product
∣

∣ā · b̄ · r−1
∣

∣

n
.

function MontMult(ā, b̄)

1. t := ā · b̄

2. v := |t · n′|r
3. u := (t+ v · n)/r

4. if u ≥ n then u := u− n

5. return u

In step 2. the integer n′ is used in conjunction with the LSB half of t (since |t · n′|r =
||t|r · n

′|r), in order to compute the number of multiples of the modulus n that need to
be added to t, such that the LSB half of u becomes zero. Now, since the lower half of u
is 0, it can be safely shifted to right, which is equivalent to a division by r (step 3.). Note
that an addition of an integer multiple of the modulus, such that u becomes a multiple
of r, |t+ v · n|r = 0, does not change the congruency modulo n: |t+ v · n|n = |t|n. An
extra subtraction of n may be necessary at the end to guarantee that the result is fully
reduced with respect to the modulus n, that is 0 ≤ u < n (step 4.). This holds true,
because we have a maximum bound of 2n for for the value of u in step 3. Under the
assumption that t < r · n

u =
t+ v · n

r
<

r · n+ r · n

r
= 2n.

Example 3.3 For a = 21 and b = 7, compute |a · b|13 using the Montgomery method.

Since the modulus n = 13, we can take r = 2⌈log213⌉ = 24 = 16 and thus n′ = 11.
Next, we have to convert the input values a and b to their n-residue form:

ā = |a · r|n = |21 · 16|13 = 11,

b̄ = |b · r|n = |7 · 16|13 = 8

Step MontMult(11,8)

1. t := ā · b̄ = 88
2. v := |t · n′|r = |88 · 11|16 = 8
3. u := (t+ v · n)/r = (88 + 8 · 13)/16 = 192/16 = 12
4. 12 < n
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Therefore, we have obtained
∣

∣ā · b̄ · r−1
∣

∣

n
= 12. A subsequent call to the Montgomery

multiplication will yield the desired result as follows:

Step MontMult(12,1)

1. t := 12 ∗ 1 = 12
2. v := |t · n′|r = |12 · 11|16 = 4
3. u := (t+ v · n)/r = (12 + 4 · 13)/16 = 64/16 = 4
4. 4 < n

Thus, |a · b|n = |21 ∗ 7|13 = 4 as it should.

3.4.1 Montgomery Exponentiation

The main disadvantage of Montgomery’s method is the time-consuming pre and post
processing for conversions between normal residue and n-residue representation. There-
fore Montgomery algorithm is more suited when several modular multiplications with
respect to the same modulus have to be performed, as required in the case of modular
exponentiation. In this way the ratio between the overhead associated with the conver-
sions and the actual modular arithmetic computation is reduced and the Montgomery
approach can outperform classical exponentiation methods.

The following algorithm summarizes the computation of the modular exponentiation
x = |me|n employing Montgomery multiplications. As exponentiation algorithm, we
utilize the binary method described in Subsection 3.2.2.

Algorithm 5 Montgomery exponentiation algorithm

Input: 0 < m, e < n

Output: |me|n

function MontExp(m,e,n)

1. m̄ := |m · r|n = MontMult(m,
∣

∣r2
∣

∣

n
)

2. x̄ := |1 ·R|n = MontMult(1,
∣

∣r2
∣

∣

n
)

3. for i=k-1 downto 0 do

3a. x̄ := MontMult(x̄, x̄)

3b. if ei = 1 then x̄ := MontMult(m̄, x̄)

4. x := MontMult(x̄, 1)

5. return x

Steps 1. and 2. convert the input operand m and the initilization value 1 to their
n-residue representation. After this preprocessing has been completed, the binary expo-
nentiation method is applied. The square and multiplication operations modulo N are
performed using O(k) calls to the Montgomery multiplication routine, where k is the
bitlength of the exponent e. After the n-residue of |me|n is obtained, an additional step
(step 4.) is required to convert this result back to an ordinary residue number repre-
sentation. Except the preprocessing overhead (step 1.-2.), the inner-loop (step 3a.-3b.)
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performs only multiplications modulo 2k and divisions by 2k, which makes this approach
very fast.

Example 3.4 It is required to compute x =
∣

∣510
∣

∣

13
using the Montgomery exponentia-

tion method.

The first step is to choose r. Since n = 13, we can take r = 24 = 16. Next the values
of r−1 and n′ are derived. Thus we have r−1 = 9 and n′ = 11.

Step 1. m̄ = |m · r|n = |5 · 16|13 = 2.

Step 2. x̄ = |1 · r|n = |1 · 16|13 = 3.

Step 3. Next we perform the binary exponentiation method.

Ei Step 4a. Step 4b.

1 MontMult(3,3)=3 MontMult(2,3)=2
0 MontMult(2,2)=10 -
1 MontMult(10,10)=16 MontMult(2,16)=2
0 MontMult(2,2)=10 -

Step 4. x = MontMult(10, 1) = 12.

Therefore, we obtain 12 as the result of
∣

∣510
∣

∣

13
.

3.5 RNS Modular Multiplication

As described in Chapter 2, RNS exhibits several advantages over commonly employed
fixed-radix, weighted number representations, that facilitates fast, parallel implementa-
tions of long integer arithmetic. This makes RNS a good candidate for supporting the
long multiplications involved in Montogomery method. Recalling from Section 3.4, the
Montgomery multiplication algorithm relies on the folowing two relations, repeated here
for convenience:

{

|t+ |t · n′|r · n|r = 0,

|t+ |t · n′|r · n|n = t.

The rationale behind choosing the value of r is to easily compute the operation
modulo r in the first aforementioned equation. For weighted, binary number systems,
this is achieved by letting r be an integer power of the radix 2, but for RNS representation,
it is preferable to take r as the dynamic range of the RNS base. This way, all numbers
less than r are already reduced modulo r. However, there is a drawback induced by this
choice: all numbers greater than r need a larger RNS base to be represented. Therefore,
costly base extension operations are required in order to compute these additional RNS
residues.

The Montgomery algorithm was first adapted to RNS by Posch & Posch in [25]. In
what follows, the RNS version of Montgomery multiplication Algorithm 4, is presented
according to [7].
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Algorithm 6 Montgomery Multiplication for RNS

Input: two RNS bases B = (m1, . . . ,mk) and B′ = (m′
1, . . . ,m

′
k) with gcd(M,M ′) = 1

a positive integer N represented in both bases such that gcd(N,M) =
= 1 and 0 < 4N < M < M ′

2 integers a and b, represented in both bases, with a · b < M ·N

Output: r′ =
∣

∣a · b ·M−1
∣

∣

N
, represented in both bases

1. t = a · b in base B ∪B′

2. q = t · (−N−1) in base B

3. base extension: q from base B −→ q′ in base B′

4. r′ = (t+ q′ ·N)M−1 in base B′

5. base extension: r′ from base B′ −→ r in base B

In order to derive the RNS Montgomery multiplication method, we consider two
RNS bases B = (m1, . . . ,mk) and B′ = (m′

1, . . . ,m
′
k) of relatively prime moduli which

implies that gcd(M,M ′) = 1, where M and M ′ are the dynamic ranges of the two bases.
Eventhough it is not mandatory, it is assumed an equal number of elements for both
bases, for regularity purposes of the correpondent hardware architecture or software

implementation. Next we take M =
k
∏

i=1

mi as the Montgomery constant r. Therefore

the Montgomery method yields
∣

∣a · b ·M−1
∣

∣

N
,

where a, b, and the modulus N are positive integers represented in the predefined bases
B and B′, as

〈a〉B = (a1, . . . , ak) 〈a〉B′ = (a′1, . . . , a
′
k)

〈b〉B = (b1, . . . , bk) 〈b〉B′ = (b′1, . . . , b
′
k)

〈N〉B = (N1, . . . , Nk) 〈N〉B′ = (N ′
1, . . . , N

′
k)

In step 1. we compute the product a · b in both RNS bases. This can be done in
parallel for all moduli, in constant time, according to Equation (2.3) as follows:

t = |a · b|M = (|a1 · b1|m1
, . . . , |ak · bk|mk

),

t′ = |a · b|M ′ = (
∣

∣a′1 · b
′
1

∣

∣

m′

1
, . . . ,

∣

∣a′k · b
′
k

∣

∣

m′

k

).

In step 2. we have to compute q such that r = a · b+ q ·N is a multiple of M . The
term a · b+ q ·N represented in base B, composed solely of 0, since any multiple of M ,
represented modulo M equals 0. Thus, we have

〈r〉B = 0 ⇔ ri = |ai · bi + qi ·Ni|mi
= 0 for i = 1, . . . , k.

The value of q is then given by the solutions of the previous equations

qi =
∣

∣

∣
ai · bi ·

∣

∣−N−1
i

∣

∣

mi

∣

∣

∣

mi

for i = 1, . . . , k
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Step 3. Since r is a multiple of M , as pointed out previously, it is composed only
of 0 in base B, which further divided by M yields 0. Moreover, we have to perform
the division by M , that reduces in RNS to a multiplication by the multiplicative inverse
of M which unfortunately does not exist modulo M . Thus, we need a larger dynamic
range to accommodate r. Also the new base moduli should be prime to M for the inverse
∣

∣M−1
∣

∣

M ′
to exist.

In step 3, a base extension is perfomed to obtain q′, the RNS representation of q in base
B′.

Step 4. Now we can evaluate r′ =
∣

∣(t′ + q′ ·N ′) ·
∣

∣M−1
∣

∣

M ′

∣

∣

M ′
. The term t′ = |a · b|M ′

is already computed form step 1., the multplicative inverse
∣

∣M−1
∣

∣

M ′
is a precomputed

constant, hence we obtain

r′i =
∣

∣

∣(ti + q′i ·N
′
i) ·
∣

∣

∣

∣M−1
∣

∣

M ′

∣

∣

m′

i

∣

∣

∣

m′

i

.

Step 5. In order to be able to perform modular exponentiation by repeating the
Montgomery multiplication, the range of the output should be made compatible with
the range of the input. Hence we need to convert the result r′ back to base B, which is
achieved by applying again a base extension.

We note that if a · b < M ·N we have the output in the desired range that is < 2N ,
as suggested by the following derivation:

a · b+ q′ ·N

M
<

M ·N +M ·N

M
= 2N < M.

If only one multiplication is desired, then the condition 2N < M suffices for the algorithm
to give the correct result. Otherwise, it is required that 4N < M < M ′ in order to
reuse the ouput as input for a subsequent modular multiplication without any preceding
reduction

(2N)2 < M ·N ⇒ 4N < M.

There exist several RNS Montgomery multiplication methods in the literature. The
main difference between them is the base extension algorithm, which induces different
conditions for the range of the input and output values, or necessitates additional oper-
ations to counterbalance other introduced effects. In the following chapter, a survey of
existing base extension methods is presented.

3.6 RNS Moduli Choice

The Montgomery method works for RNS basis with moduli of any form. However, if
we choose the moduli of a particular form, the overall performance can be improved.
The number of moduli and their form both affect the complexity of the algorithm to
be performed and the efficiency of the representation. Thus, selecting the proper set
of moduli is a major issue. An important remark is that usually, we tend to choose
the moduli such that thay are comparable in magnitude to the largest one, due to the
fact that the computation speed is dictated by the largest modulus. In the following
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we present an overview of different possible moduli and highlight their advantages and
disadvantages.

• Mersenne numbers

Among these special forms, moduli of the form m = 2k − 1 are of special interest [14].
Based on the property

∣

∣

∣
2k
∣

∣

∣

m
= 1,

the modulo reduction operation |a|m is greatly simplified. It requires at most two k-bit
operations, for a < m2, obtained by writting a = a1 · 2

k + a0 and then reducing both
sides modulo m and observing that:

|a|m =

{

a1 + a2 if a1 + a2 < m,
a1 + a2 −m if a1 + a2 ≥ m.

When these moduli are prime numbers, they are called Mersenne numbers. Nevertheless,
this approach is rather unpractical. Since there exists only one Mersenne number of k
bits, choosing as the bases moduli only relatively prime moduli of this form would result
in a base with moduli not comparable in magnitude and a dynamic range wider than
required.

• Pseudo-Mersenne numbers

Crandall [9] enlarged the class of Mersenne numbers and proposed in 1992 the pseudo-
Mersenne numers. The pseudo-Mersenne moduli have the form m = 2k− c, where k ∈ N

and c < 2k/2. The operation |a|m costs in this case 2 ·H(c) + 2 k-bit additions, where
a < 22k and H(c) denotes the Hamming weight of c. Thus, it is preferable to choose c,
such that H(c) is minimized.

• Generalized Mersenne numbers

Solinas introduced in 1999, [29] another class of moduli, the Generalized Mersenne num-
bers. A Generalized Mersenne number has the following polynomial form

m = f(2k), where f(X) = Xn − C(X)

with C polynomial of degree ≤ n/2 and ‖C‖∞ = 1.

In the above definition ‖C‖∞ = 1 means that the coefficients fi of the polynomial f
belong to the set {−1, 0, , 1}. Among these numbers, one particular form that allows
smaller RNS base dynamic ranges when compared to Mersenne numbers, while still
maintaing the efficiency of the modulo reduction, is m = 2k1 − 2k2 − 1. The operation
|a|m, where a < m2, requires at most 6 k1-bit additions for 0 < k2 <

k1+1
2 . Furthermore,

the number of additions can be reduced to 4, if k2 is taken bigger than 1. However,
there is a drawback when using these numbers: there exists only one number for a given
bitlength of the modulus and a fixed f(X). This implies that each generalized Mersenne
number necessitates a dedicated implementation.
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• Extended Generalized-Mersenne numbers

In 2003, Chung and Hassan in [8] proposed an extension class by combining the pseudo-
Mersenne numbers and the Generalized Mersenne numbers. The Extended Generalized
Mersenne numbers are defined as follows:

m = f(2k − c), where f(X) = Xn − C(X) with ‖C‖∞ = 1 and degree(C) ≤ n/2.

Among these moduli form alternatives, the Generalized Mersenne numbers are more
adapted for computations with large numbers, and thus they are better suited for im-
proving the performance of the RNS Montgomery algorithm.

3.7 Conclusion

This chapter provides an overview of the RSA cryptosystem, emphasizing its computa-
tional requirement, the modular exponentiation that is broken into a sequence of modular
multiplications with respect to a large modulus. The binary exponentiation method and
the Montgomery multiplication are scrutinized in detail. By combining the efficient mod-
ulo reduction operations provided by the Montgomery method with RNS, a powerfull
arithmetic tool is obtained, which improves the global performance. We have also given
guidelines regarding the moduli form and their influence on the overall performance.
Then, the bottleneck of the RNS Montgomery multiplication algorithm is identified,
most of computational effort is due to the two required base extensions. Several meth-
ods have been proposed in the literature for performing the two base extensions and are
presented in detail throughout the next chapter.



Base Extension 4
RNS base extension is the process of finding the residue digits with respect to a new set
of moduli, given the residue digits relative to another set of moduli. In most cases, the
original base could be a subset of the new RNS base, that is one ore more additional
moduli are appended to the original set.

Formally stated, given the RNS representation of some integer X in base B =
(m1,m2, ...,mk), 〈X〉B = (x1, x2, ..., xk), compute the representation of X in another

RNS base B′ = (m′
1,m

′
2, ...,m

′
k), 〈X〉B′ = (x′1, x

′
2, ..., x

′
k). M =

k
∏

i=1

mi denotes the dy-

namic range of the original base B, while M ′ =
k
∏

i=1

m′
i represents the dynamic range of

the second base B′. Eventhough it is not necessary to use the same number of moduli for
both bases, it is preffered this way for regularity purposes. These notations are utilized
throughout the remaining of the chapter.

Several techniques have been suggested in the literature for this purpose and are
discussed in this chapter. Section 4.1 presents a short overview of the previous exist-
ing base extension methods. The section concludes with a comparative study of their
performance, as seen form the prospective of the RNS Montgomery multiplication algo-
rithm. In Section 4.2, a novel base extension method based on Diophantine equations is
introduced.

4.1 Previous Work

Different methods have been proposed for performing RNS base conversion. However,
there exist two main approaches: either using an auxiliary representation, e.g., Mixed
Radix System or based on the CRT. All other methods are only variations of these two
methods, which variations arise from choosing a particular set of moduli or from adapting
certain properties in order to match a particular chosen approach.

4.1.1 Base extension based on the CRT

The CRT based methods make use of one of the two alternative forms of CRT, described
by Equation (2.6a) and (2.6b), which are remainded here for convenience:

k
∑

i=1

Mi · xi ·
∣

∣M−1
i

∣

∣

mi
= X + α1 ·M,

27
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k
∑

i=1

Mi ·
∣

∣

∣xi ·
∣

∣M−1
i

∣

∣

mi

∣

∣

∣

mi

= X + α2 ·M.

As it stands, provided the value of α is known, a new residue xk+1 with respect to the
modulus mk+1 can be computed by

xk+1 = |X|mk+1
=

∣

∣

∣

∣

∣

k
∑

i=1

∣

∣

∣
xi
∣

∣M−1
i

∣

∣

mi
Mi

∣

∣

∣

mk+1

− |αM |mk+1

∣

∣

∣

∣

∣

mk+1

(4.2a)

xk+1 = |X|mk+1
=

∣

∣

∣

∣

∣

k
∑

i=1

∣

∣

∣xi
∣

∣M−1
i

∣

∣

mi

∣

∣

∣

mk+1

· |Mi|mk+1
− |αM |mk+1

∣

∣

∣

∣

∣

mk+1

(4.2b)

Hence, α has to be derived, whose computation is the main difference in the distinguished
techniques. Its value can either be computed exactly or approximated (using fixed or
floating point arithmetic).

• Shenoy and Kumaresan [28]

The method relies on the knowlegde of the residue xr with respect to an additional
redundant modulus k ≤ mr < M , chosen relatively prime to all other moduli from both
bases (gcd(M,mr) = gcd(M ′,mr) = 1).

The exact value of α can be derived from Equation (4.2b) written with respect to
the modulus mr, as follows:

xr = |X|mr
=

∣

∣

∣

∣

∣

k
∑

i=1

|Mi|mr
·
∣

∣

∣xi
∣

∣M−1
i

∣

∣

mi

∣

∣

∣

mr

− |αM |mr

∣

∣

∣

∣

∣

mr

,

|αM | =

∣

∣

∣

∣

∣

k
∑

i=1

|Mi|mr
·
∣

∣

∣
xi
∣

∣M−1
i

∣

∣

mi

∣

∣

∣

mr

− xr

∣

∣

∣

∣

∣

mr

.

Multiplying both sides of the above equation with the multiplicative inverse
∣

∣M−1
∣

∣

mr
,

yields

|α|mr
= α =

∣

∣

∣

∣

∣

∣

∣M−1
∣

∣

mr

(

k
∑

i=1

|Mi|mr
·
∣

∣

∣xi
∣

∣M−1
i

∣

∣

mi

∣

∣

∣

mi

− xmr

)∣

∣

∣

∣

∣

mr

. (4.3)

Recalling from Equation (2.7) that for this form of the CRT (Equation (2.6b)), the value
of α is upper bounded by the number of moduli k, and since the redundant modulus mr

was chosen such that k ≤ mr ≤ M , it follows that |α|mr
= α.

• Posch and Posch [24], [25]

Posch & Posch presented in [24] a base extension method that approximates α using
either floating point or fixed point arithmetic.

As opossed to Shenoy and Kumaresan technique, this method uses the alternative
form of the CRT described in Equation (2.6a). Dividing both sides of this equation by
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the dynamic range M , results in

α+
X

M
=

k
∑

i=1

xi · wi, where wi =

∣

∣M−1
i

∣

∣

mi

mi
< 1. (4.4)

Then, they made the following oberservation: α is an integer, which implies that the

rational number
X

M
< 1 should cancel out the fractional part of the right hand sum.

Therefore, the desired value of α is obtained by rounding the sum towards minus infinity

α =

⌊

k
∑

i=1

xi · wi

⌋

. (4.5)

Basically, their method computes a weighted sum of all xi, with the weights being rational
constants, < 1 and depending on the set of moduli mi.

The effect of limited precision representation of the wi weights, is reflected in the error
δi

wi = w∗
i + δi.

Using these truncated values w∗
i , instead of the accurate ones (wi), introduces a total

error ǫ that in rare occurences could lead to an α greater by one than the estimated
value

α =

⌊

k
∑

i=1

xi · w
∗
i + ǫ

⌋

= ⌊α∗ + ǫ⌋ , where ǫ =
k
∑

i=1

xi · δi.

As a result the base extension method returns either the correct value xk+1 or xk+1−M .
The latter case requires additional steps to be dealt with.

In order to keep the error within certain bounds (<< 1), it is required that the fixed
sized mantissa of the arithmetic unit in use should have at least ⌈log2k +m+ ξ⌉ bits,
wherem accounts for the maximum bit lentgh of the base moduli mi and ξ is a parameter
> 2 used to discrimate whether α = ⌊α∗⌋ or α = ⌊α∗ + 1⌋.

This method was further enhanced in [25], by tuning up the RNS Montgomery multi-
plication algorithm in order to cope with the offset ofM , such that the exception handling
module for detecting and correcting the wrong approximation of α is eliminated.

• Kawamura et al. [13]

Kawamura et al. propose a similar technique that approximates α by fixed point com-
putations. They consider Equation (2.6b), rearrange it and divide it by M

α+
X

M
=

k
∑

i=1

wi

mi
, where wi =

∣

∣

∣
xi ·

∣

∣M−1
i

∣

∣

mi

∣

∣

∣

mi

. (4.6)

Therefore,

α =

⌊

k
∑

i=1

wi

mi

⌋

(4.7)
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When compared to Posch’s solution, this representation has the advantage that α is
upper bounded by k, which leads to a simpler derivation of its value.

They approximate α by using as numerator the most significant q bits of wi, denoted
by truncq(wi) and as denominator 2m, followed by an addition of a suitable chosen offset
δ to compensate the induced approximation errors as follows:

α =

⌊

k
∑

i=1

truncq(wi)

2m
+ δ

⌋

=

⌊

k
∑

i=1

⌊wi/2
m−q⌋

2q
+ δ

⌋

, (4.8)

with m the maximum bit-length of the moduli mi.
If the offset δ is chosen 0 the algorithm outputs either the correct α value, or the

correct value plus 1, as obtained also from the Posch & Posch technique.
However, provided δ is chosen such that

1

2q
<

ξ

k

(

1−
ǫk

ξ

)

⇔ 2−q <
ξ

k
− ǫ, (4.9)

where 2−(w−q) << 1 and ǫ = maxk

(

2w −mi

2w

)

<< 1, then the base extension algorithm

is error-free and the approximate value equals α.

• Bajard et al. [7]

Bajard et al. follow a rather different approach. They do not compute α at all, instead
they allow an offset of αM ≤ (k − 1)M to occur in Equation (4.2a). They compute

|X + α ·M |mk+1
=

∣

∣

∣

∣

∣

k
∑

i=1

∣

∣

∣
xi
∣

∣M−1
i

∣

∣

mi
Mi

∣

∣

∣

mk+1

∣

∣

∣

∣

∣

mk+1

.

Therefore, instead of extending X, the authors extend X + α ·M . This method is not
a generally available base extension method; it was developed as an optimization in the
context of RNS Montgomery multiplication algorithm. Its corectness relies on the fact
that the offset is eliminated via a second base extension.

Performance evaluation

Subsequently, the aforementioned methods are put in the context of the RNS Mont-
gomery multiplication method, outlined in Algorithm 6, and their performance is ana-
lyzed. Before further proceeding with the methods, a remark is in order: the underlying
implementation of the RNS arithmetic for all methods, assumes 2k computational ele-
ments (functional units) working in parallel. The 2k value is due to the assumption that
the cardinality of both RNS bases is equal to k. Each of these elements is dedicated to
a specific modulus mi and can compute independently

|xi · yi + zi|mi
.

We consider that this operation takes one cycle to complete. In consequence, performance
is assesed either in terms of the number of elementary arithmetic operations (modular
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multiplication and addition, as described in the equation above) or in terms of the
asymptotic time complexity.

The RNS Montgomery algorithm requires two base extensions: step 3. and step 5.
from Algorithm 6. However, as explained below, not all presented CRT-based base exten-
sion methods can be used for both directions of conversion required by the Montgomery
technique.

Shenoy et al. technique requires as a prerequisite that the residue modulo the redun-
dant modulus mr is known beforehand. We now consider the first base extension case.
We recall that in step 2., the value of q is computed in base B. The major drawback of
emplyoing Shenoy method for the first base extension is the fact that whenever the value
of q is greater than M , an operation modulo M is required prior to the reduction by mr.
Since there is no efficient way to carry the redundant residue through the computation
of |q|M , the method is not suited for the first base extension. However, for the second
base extension, the method can be efficiently used.

The method of Posch et al. is available for both base extensions. However, the
Montgomery algorithm has to be modified according to the needs of the base extension
method, that is additional steps are required to detect and fix the wrong approximations
of the result and thus we will be exclud it from our considerations.

The method of Kawamura et al. can also be used for both base extensions. In order
to use the Montgomery algorithm repeatedly to construct a modular exponentiation, the
base extension method requires that

{

2N/(1− ξ) ≤ M

4N/(1−∆) ≤ M ′ where ∆ = k(ǫ+ δ),

and ǫ = max(2m−mi)/2
m and δ = max(wi− trunc(wi))/mi accounts for the denomina-

tor, and respectively the numerator approximations from Equation (4.8). It can be easily
proved that with these conditions satisfied and keeping in mind that r′ < (1 +∆)M , all
intermediate values are less than MM ′ and the largest output value is less than 2N :

r′ =
ab+ q′N

M
<

4N2 + (1 +∆)MN

M

≤
(1−∆)MN + (1 +∆)MN

M
= 2N

≤ (1− ξ)MM ′

≤ MM ′.

Finally, we consider the method of Bajard et al. and assume that we use it for the
first base extension. After performing step 3., we obtain the extended value q′ = q+αM .
At step 4., r′ = (ab+ q′N)M−1 has to be evaluated, which now becomes

r′ = (ab+ q′N)M−1 = (ab+ qN)M−1 + αN = r + αN.
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Since no α is computed, the algorithm has the advantage of being fast but at the expense
of additional measures of precaution. The conditions ab < MN , α < k, and q < M result
in

r′ =
ab+ qN

M
+ αN <

MN +MN

M
+ kM = (k + 2)N < M ′.

Furthermore, in order to apply repeatedely the Mongomery multiplication, without re-
ducing the intermediate results, it is required that

ab < MN ⇒ ((2 + k)N)2 < MN ⇒ M > (2 + k)2N.

We note that if r′ is reduced modulo N , it gives the correct result:
∣

∣ab ·M−1
∣

∣

N
. In

conclusion, a maximum offset of (n − 1)M can be carried through the computations.
This unwanted offset is removed by the second base extension method.
If we apply Bajard method also for the second base extension, then we would end up
with a value r∗ in base B that is not equal to r′ in base B′. As a consequence, r in base
B is not derived correctly, making it an invalid input for a subsequent execution of the
Montgomery algorithm.
Thus the Bajard method is suitable only for the first base extension.

Table 4.1 summarizes the available base extension methods performance, the required
conditions for the methods to be used within the Montgomery algorithm and their com-
patibility with the first and second base extension steps of the Montgomery algorithm.

Examining Table 4.1, we note that all methods exhibit the same asymptotic com-
plexity both in terms of number of iterations performed (clock cycles) and in terms of
required modular multiplications. However, in the context of RNS Montgomery mul-
tiplication, the state-of-the-art base extension methods are Shenoy et al. method and
Bajard et al. technique. The former is suited only for the first base extension. The
results are not perfectly reduced and the method relies on the fact that another base
extension will follow to yield the correct result. The latter has the disadvantage that
requires the knowledge of an extra residue beforehand and thus cannot be applied to
the second base extension. Shenoy et al. method is preffered to Kawamura et al. tech-
nique mainly due to its simpler implementation (i.e., no pseudo floating point unit is
required; only identical integer channels are needed). Furthermore, the conditions are
easy to satisfy (e.g., no restriction on the choice of the moduli is imposed as in the case
of Kawamura et al.).

4.1.2 Base extension via MRS

The main ideea behind performing base extension via Mixed-Radix Number System
(MRS) is to derive the MRS representation of X and afterwards to compute the residues
modulo the target base B′. Before explaining the conversion procedure, it is necessary
to explain the system itself.

Definition 4.1 Mixed-Radix Number System (MRS) Given a set of radices mi

and a set of digits ai, where 0 ≤ ai < mi, a number X that belongs to the set [0,
k
∏

i=1

mi)
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Kawamura et al. Bajard et al. Shenoy et al.

range of input values a, b a, b < 2N a · b < MN a · b < MN

range of output value r′ r′ < 2N r′ < (k + 2)N r′ < 2N

other conditions 2N/(1− ξ) ≤ M 0 < (k + 2)2N < M |r′|mr
known

4N/(1−∆) ≤ M ′ 4N < M
∆ ≤ ξ

time complexity O(log2k) O(log2k) O(log2k)

no. of modular multiplications k2 + 2k k2 + k k2 + 2k

first base extension (step 3.) • • -

second base extension (step 5.) • - •

Table 4.1: CRT-based base extension algorithms.
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can be uniquely represented in the mixed-radix form as the k-tuple (a1, ..., ak) such that:

X = a1 + a2 ·m1 + a3 ·m1m2...+ ak ·m1...mk−1. (4.10)

This is a weighted, positional number system, in which each of the weights determines a
different radix, whence the term ”mixed-radix”. An example of a mixed-radix number
system is the familiar binary number system, in which mi = 2 for all i, and the weights
are consequently powers of two. In an RNS with a given set of moduli mi, the MRS
defined by the set of radices that is equal to the set of RNS moduli is called the associated
system. 1. RNS to MRS conversion

The Mixed Radix Conversion problem can be formulated as follows:

Given a RNS base B defined by the set of moduli (m1, ...,mk), compute the associated
mixed radix digits ai of a known residue number 〈X〉B = (x1, x2, ..., xk).

• Szabo and Tanaka, [30]

The classical MRS conversion was proposed by Szabo and Tanaka in 1967 and is briefly
described next.
Performing a modular reduction w.r.t. m1 on both sides of Equation (4.10) yields

|X|m1
= a1.

Hence a1 is equal to the first residue digit x1.
To find the second MRS digit, a2, we subtract a1 from both sides of Equation (4.10)

X − a1 = a2 ·m1 + a3 ·m1m2...+ ak ·m1...mk−1,

perform a reduction modulo m2 that gives

|X − a1|m2
= |a2m1|m2

,

and finally multiply both sides with the multiplicative inverse of m1 with respect to the
modulus m2

∣

∣

∣
(X − a1) ·

∣

∣m−1
1

∣

∣

m2

∣

∣

∣

m2

= |a2|m2

|x2 − a1|m2
= a2.

The third MRS digit can be derived in a similar manner:

|X − a1|m3
= |a3m2m1 + a2m1|m3

∣

∣

∣
(X − a1) ·

∣

∣m−1
1

∣

∣

m3

∣

∣

∣

m3

= |a3m2 + a2|m3

∣

∣

∣
(X − a1) ·

∣

∣m−1
1

∣

∣

m3
− a2

∣

∣

∣

m3

= |a3m2|m3

∣

∣

∣((X − a1) ·
∣

∣m−1
1

∣

∣

m3
− a2) ·

∣

∣m−1
2

∣

∣

m3

∣

∣

∣

m3

= |a3|m3

= a3.
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Following the same procedure, that is succesively subtracting and dividing in residue
notation, all ai values can be obtained:

a1 = x1

a2 =
∣

∣

∣(x2 − a1) ·
∣

∣m−1
1

∣

∣

m2

∣

∣

∣

m2

a3 =
∣

∣

∣((x3 − a1) ·
∣

∣m−1
1

∣

∣

m3
− a2) ·

∣

∣m−1
2

∣

∣

m3

∣

∣

∣

m3

...

ak =
∣

∣

∣((...(xk − a1) ·
∣

∣m−1
1

∣

∣

mk
− a2) ·

∣

∣m−1
2

∣

∣

mk
− ...ak−1) ·

∣

∣m−1
k−1

∣

∣

mk

∣

∣

∣

mk

(4.11)

The main drawback of this approach is that the mixed radix conversion as described
by Equation (4.11) is inherently sequential. That is for computing ai it is necessary to
determine first all aj , with j = 1, ..., i − 1. Furthermore, for each ai there are nested
multiplications that must be carried out in sequence. The method requires a large num-
ber of arithmetic operations k(k − 1)/2 modular additions and multplications, resulting
in an asympototic complexity in the order of O(k2).

• Gbolagade and Cotofana, [11]

They propose a parallel approach that require a linear amount of arithmetic operations.
The method enables parallelization by maximizing the utilization of the modulo adders
and multipliers at each iteration. Due to the very nature of the evaluated expression,
not all modulo units can be utilized in parallel at a particular iteration i. Based on this
observation, they use the remaining modulo mi units to calculate intermediate results
that are required in further iterations. At each level, one MR digit is computed by

ak =

∣

∣

∣

∣

∣

∣m−1
k−1

∣

∣

mj+(k−1)
·
∣

∣

∣

(

yk−2
j+(k−1) − yk−2

k−1

)∣

∣

∣

mj+(k−1)

∣

∣

∣

∣

mj+(k−1)

,

where yba is an auxiliary variable, with the exponent b denoting different levels where
MRDs are computed, and a incrementing as progress is made from one level to another.
For instance, at level 1,

y1j+1 =
∣

∣

∣
(xj+1 − x1) ·

∣

∣m−1
1

∣

∣

mj+1

∣

∣

∣

mj+1

are computed in parallel by the different modulo mi ways for j = 1, ..., k− 1. For j = 1,
the value of a2 is derived. The remaining y values will be used in the next level.
Level 2 computes

y2j+2 =
∣

∣

∣

∣

∣m−1
2

∣

∣

mj+2
(y1j+2 − y12)

∣

∣

∣

mj+2

for j = 1, ..., k − 2, where j = 1 gives a3. The process is continued untill all MRDs are
obtained.

2. MRS to RNS conversion

The conversion form MRS to a target RNS can be formulated as follows:
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Given the mixed-radix representation (a1, ..., ak) and the set of radices (m1, ...,mk),
find the residues of the MRS encoded number X modulo an RNS base B′, defined by the
set of moduli m′

1, ...,m
′
k.

• Szabo and Tanaka, [30]

The classical way to convert X from the MRS representation to the target RNS base B′

is also due to Szabo and Tanaka.
The new residues can be obtained if Equation (4.10) is reduced by each target modulus
m′

i

|X|m′

i
= |a1 + a2 ·m1 + a3 ·m1m2...+ ak ·m1...mk−1|m′

i
, (4.12)

which gives us

|X|m′

i
=
∣

∣

∣
|a1|m′

i
+ ...+ |ak|m′

i
· |m1...mk−1|m′

i

∣

∣

∣

m′

i

=

∣

∣

∣

∣

∣

∣

k
∑

s=1



|as|m′

i
·

∣

∣

∣

∣

∣

s−1
∏

t=1

mt

∣

∣

∣

∣

∣

m′

i





∣

∣

∣

∣

∣

∣

m′

i

,
(4.13)

where

∣

∣

∣

∣

∣

s−1
∏

t=1

mt

∣

∣

∣

∣

∣

m′

i

are constants and so can be pre-computed and stored beforehand. This

method is highly parallelizable, but at the expense of k2 look-up tables, for base B′ with
moduli set cardinality of k.

• Bajard et al., [6], [5]

Recalling Equation (4.12) and rewriting it in a serial, reccursive manner yields

|X|m′

i
= |a1 + a2 ·m1 + a3 ·m1m2...+ ak ·m1...mk−1|m′

i

= |a1 +m1 · (a2 + ...mk−3 · (ak−2 +mk−2 · (ak−1 +mk−1ak))...)|m′

i
.

The method requires |mj |m′

i
pre-computed constants. Each of these occurences are sub-

stituted by the difference mj − m′
i, which is a small number (less than the maximal

difference between two moduli of base B and B′). Thus under the assumption that all
the moduli have roughly the same size, |X|m′

i
can be obatined using these differences

that are not completely reduced, but smaller than a predefined bound. In this way the
need for the k2 look-up tables is alleviated, but the sum in Equation (4.13) can no longer
be computed in parallel.

Further improvements are made by encoding each modulus mi and m′
i as the differ-

ence ci, respectively c′i to the first value that cannot be stored in the register anymore
(e.g., for a wordlength of w, mi = 2w− ci, with ci < w). The authors use this differential
encoding to compute efficiently the required modular multiplications.
The same approach can also be used for computing the multiplicative inverses

∣

∣m−1
i

∣

∣

mj

in the RNS to MRS conversion. We note that the addition of any multiple of mj does
not have any effect on the final residue with respect to the modulus mj :

∣

∣m−1
i

∣

∣

mj
=
∣

∣(2w − ci)
−1
∣

∣

mj
=
∣

∣(2w − ci − (2w − cj))
−1
∣

∣

mj
=
∣

∣(cj − ci)
−1
∣

∣

mj
,
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where cj − ci is a small positive number, assuming that the moduli are sorted ascending
after size. Using this differential approach, the storage requirements for each modulus
are signifincantly reduced, and thus the complexity of the conversion is also reduced.
The authors propose an efficient way of performing modular multiplications using this
differential encoding approach.

Performance evaluation

The base extension methods via MRS are available for both step 3. and step 5. of the
Montgomery Algorithm 6. They are error-free, and thus do not require any additional
conditions besides the ones mentioned in Section 3.5:

{

4N < M ′

2N < M.

However, since generally these methods are slower than the CRT-based methods, we
decided not to study their performance in details.

4.2 Diophantine Base Extension

This section begins with a short introduction into the mathematics of linear Diophantine
equations [19]. Then a detailed description of the proposed base extension algorithm
is presented, followed by a numerical example to illustrate the process. Finally, the
method performance is evaluated and compared with the state-of-the-art base extension
algorithms.

4.2.1 Diophantine Equations Basics

Definition 4.2 (Diophantine Equation) Let x1, x2, . . . , xn be n variables and let
f(x1, x2, . . . , xn) be a polynomial in these variables with integer coefficients. The in-
determinate equation f(x1, x2, . . . , xn) = c, with the added proviso that the solutions are
rational integers (i.e., in the ring Z) or rational numbers (i.e., in the field Q), is called
a diophantine equation.

Definition 4.3 (Linear Diophantine Equation) A linear diophantine equation is an
equation of the form

a1x1 + a2x2 + . . .+ anxn = c,

where a1, a2, . . . , an and c are integers, and where integer solutions are sougth for the
unknowns x1, x2, . . . xk.

In what follows, we restrict ourselves to the case of linear diophantine equations in two
variables.

Theorem 4.1 (Integer solutions existence) Let a, b, c be integers with ab 6= 0. The
linear Diophantine equation ax + by = c has integer solutions in x and y if and only if
gcd(a, b)|c.
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Theorem 4.2 (General form of solutions) Let a, b, c be integers with ab 6= 0. If a prim-
itive solution (x0, y0) of the linear Diophantine equation ax+ by = c is known, then the
general form of solutions is given by

{

x = x0 + t · (b/d)

y = y0 − t · (a/d),

where d = gcd(a, b) and t is a parameter ∈ Z.

This is evident, since

a(x− x0) + b(y − y0) = 0.

To be noted that the equation in two unknown variables ax + by = c, as an equation
over the reals has a continuously infinite number of solutions, while as a Diophantine
equation, it has only a countably infinite number of solutions.

A particular solution (x0, y0) can be found by expressing d = gcd(a, b) as a linear
combination of a and b: d = ua+ vb and then multiplying it by c/d

{

x0 = uc/d

y0 = vc/d,

while u and v can be found for instance using the extended Euclidian algorithm, decribed
in Appendix A.2.

4.2.2 Proposed Diophantine Base Extension Method

In the following theorem we introduce a novel base extension method, which makes use
of linear Diophantine equations theory in order to reduce the amount of calculations
required by the base extension process.

Theorem 4.3 (Diophantine Base Extension) Given the residues xi of an integer X <

M =
k
∏

i=1

mi and the relatively prime moduli mi, where i = 1, ..., k, the residue xk+1 w.r.t.

to an additional modulus mk+1 < M such that gcd(mk+1,M) = 1, can be computed using
the subsequent relations

v =

⌊

k
∑

i=1

(

mk+1

mi
· xi ·

∣

∣(Mi ·mk+1)
−1
∣

∣

mi

)

⌋

,

xk+1 = |±c · v|mk+1
,

(4.14)

where c is a positive or negative precomputed value.

The proof is as follows.
We denote with B′ the extended base, composed out of the original base moduli mi,
with i = 1, ..., k, to which the mk+1 modulus is appended.
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First, we represent X in this extended base B′, using the CRT reconstruction formula
in Equation (2.5)

X =

∣

∣

∣

∣

∣

k+1
∑

i=1

M ′
i ·
∣

∣

∣xi
∣

∣M ′−1
i

∣

∣

mi

∣

∣

∣

mi

∣

∣

∣

∣

∣

M ′

,

where M ′ is the dynamic range of base B′.
Since M ′ = M ∗mk+1 and base B is a subset of base B′, we can split the sum from the
previous equation in two parts: the former term that contains all the base B residues
and the latter term that includes only the unknown residuu xk+1:

X =

∣

∣

∣

∣

∣

k
∑

i=1

Mi ·mk+1 · xi ·
∣

∣(Mi ·mk+1)
−1
∣

∣

mi
+M · xk+1 ·

∣

∣M−1
∣

∣

mk+1

∣

∣

∣

∣

∣

M ′

.

Next, we rewrite the previous equation according to the Fundamental Theorem of the
Remainder, and we obtain for some integer α as follows:

k
∑

i=1

Mi ·mk+1 · xi ·
∣

∣(Mi ·mk+1)
−1
∣

∣

mi
+M · xk+1 ·

∣

∣M−1
∣

∣

mk+1
= X + α ·M ·mk+1.

Rearranging the above and dividing both sides by M , yields

xk+1 ·
∣

∣M−1
∣

∣

mk+1
= α ·mk+1 +

X

M
−

k
∑

i=1

(

mk+1

mi
· xi ·

∣

∣(Mi ·mk+1)
−1
∣

∣

mi

)

.

We observe that the left side of this equation is an integer. It follows that the
right side has to be also an integer, which implies that the fractional part of
k
∑

i=1

(

mk+1

mi
· xi ·

∣

∣(Mi ·mk+1)
−1
∣

∣

mi

)

must cancel out
X

M
.

The following result is thus obtained

xk+1 ·
∣

∣M−1
∣

∣

mk+1
− α ·mk+1 = −

⌊

k
∑

i=1

(

mk+1

mi
· xi ·

∣

∣(Mi ·mk+1)
−1
∣

∣

mi

)

⌋

(4.15)

We note that the aforementioned equation is a linear Diophantine equation with two
unknowns.
Recalling from the previous subsection, the equation has the form

a1 · x1 + a2 · x2 = a where gcd(a1, a2) = 1,

where a1, a2 and a are given integers and x1, x2 are the unknowns. The solution is given
by the Euclidian algorithm for finding the greatest common divisor of a1 and a2, which
is further detailed.
We may write:

a2 = q1 · a1 + r1 where 0 < r1 < a1 and gcd(a1, r1) = 1.
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Then

x1 = −q1 · x2 +
−r1 · x2 + a

a− 1
= −q1 · x2 + x3

Therefore

r1 · x2 + a1 · x3 = a

We write again

a1 = q2 · r1 + r2 where 0 ≤ r2 < r1 and gcd(r2, r1) = 1

Then

x2 = −q2 · x3 +
−r2 · x3 + a

r1
= −q2 · x3 + x4

and so

r2 · x3 + r1 · x4 = a

Continuing this process, we have a decreasing set of positive integers r1, r2, ... untill we
come to a stage where

rn−2 · xn−1 + rn−3 · xn = a, rn−2 = 1.

Then xn−1, xn−2, ..., x2, x1 are given succesively in terms of a parameter xn.
Thus instead of computing first a particular solution p, q, and then derive all integer
solutions

x1 = p+ t · a2 x2 = q − t · a1 for t ∈ Z,

as explained in Subsection 4.2.1, we have obtained another parametrization of the integer
solutions x1, x2.

In Equation (4.15), we denote

x1 = xk+1 a1 =
∣

∣M−1
∣

∣

mk+1
x2 = B a2 = −mk+1

a = −

⌊

k
∑

i=1

(

mk+1

mi
· xi ·

∣

∣(Mi ·mk+1)
−1
∣

∣

mi

)

⌋

.

We note that M and mk+1 are coprime from hyphotesis, which implies that the multi-
plicative inverse

∣

∣M−1
∣

∣

mk+1
is also coprime with mk+1. According to Theorem 4.1, this

means that the equation will always have integer solutions. Solving the linear Diophan-
tine equation as described above, yields the solution x1, expressed in terms of xn and a.
We observe that if a1 = 1, there is no need to solve the Diophantine equation, since it
reflects already the solution in terms of xn = x2 and a.
What we search for, is a particular solution p of x1 such that 0 ≤ p < mk+1. From the
general form of the solution described by Theorem 4.2, we note that when increasing
t with 1, the solution x1 also increases with a2. Otherwise stated, there is a unique
solution p in the interval [0,mk+1), given by

p = |x1|mk+1
= |±mk+1 · xn + c · a|mk+1

= |+c · a|mk+1
,
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where c ∈ Z. In conclusion, if we take the absolute value of a and denote it with v, we
obtain:

xk+1 =

{

|+c · v|mk+1
for c < 0

|−c · v|mk+1
for c > 0

This concludes the proof.

4.2.3 Numerical Example

Let (6, 12, 17, 20) be the residues of X < M , w.r.t. to the moduli (7, 13, 19, 29). The
problem is to compute the residue xk+1 relative to the modulus mk+1 = 8.

First we derive the value of a:

a = −

⌊

k
∑

i=1

(

mk+1

mi
· xi ·

∣

∣(Mi ·mk+1)
−1
∣

∣

mi

)

⌋

= −⌊6 ∗ 4.5714 + 12 ∗ 1.2308 + 17 ∗ 5.4737 + 20 ∗ 7.7241⌋ = −289.

The solution of the Diophantic equation 5x1 − 8x2 = a is precomputed as follows:

5x1 − 8x2 = a q1 = −1 r1 = −3

−3x2 + 5x3 = a q2 = −1 r2 = 2

2x3 − 3x4 = a q3 = −1 r3 = −1

−x4 + 2x5 = a

, followed by back-substitution to obtain the general solution

x4 = 2x5 − a

x3 = 3x− 5− a

x2 = 5x5 − 2a

x1 = 8x5 − 3a

Finally, we compute the residue modulo mk+1 by

xk+1 = |−3a|mk+1
= 3,

as it should.

4.2.4 Performance Evaluation

The best state-of-the-art RNS Montgomery Multiplication algorithm [3], uses Bajard
et al. base extension method [7] for the first base extension and Shenoy et al. base
extension technique [28] for the second base extension method.

• Performance evaluation in terms of arithmetic operations

Performing base extension relative to one modulus, results in the following number of
operations:
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Method No. of modular multiplications No. of regular multiplications

Bajard et al. k + 1 -

Shenoy et al. k + 2 -

Our method 1 k

One can observe that we have obtained the same asymptotic complexity as Bajard
and Shenoy methods in terms of elementary operations performed. However, Bajard
method is suitable only for the first base extension of the Montgomery algorithm (it
returns the expected correct result plus an offset that is eliminated by the second base
extension), while our method is exact, allowing to be used for both base extensions.
Moreover most of the required multiplications are regular ones which may result in a
substantial speedup in practice.

Since
mk+1

mi
·
∣

∣(Mi ·mk+1)
−1
∣

∣

mi

are constants, they can be precomputed and stored offline. In what follows, we denote
these constants by ξi. Our method involves fixed point computations. However this
requirement can be alleviated and replaced with integer computations. This can be
achieved if we multiply each constant ξi with 2p, perform integer multiplications with
each xi, compute the sum and then divide the final result by 2p as follows:

v = (
k
∑

i=1

xi · ξi 2
p)/2p.

p should be chosen sufficiently large such that we obtain the correct truncated result v.
For example, for 64-bit moduli, p can be chosen 40.

When executing the RNS modular multiplication algorithm, the two base exensions
performed for k moduli, require in total 2k2 + 3k modular multiplications, when us-
ing Bajard-Shenoy combination and 2k2 regular multiplications and 2k modular mul-
tiplications when our method is employed. We note that for the state-of-the-art RNS
Montgomery Multiplication with Bajard-Shenoy combination, the reported improvement
relative to prior work [13] was of k modular multiplications. A modular multiplication
involves a regular multiplication and a reduction, and thus it is more time consuming
than a regular multiplication. Since the latency is dependent on the implementation,
there is no effective way of normalizing the two operations in order to accurately com-
pare the methods theoretically. Furthermore, k is actually a small number, which implies
that the asymptotic notation might not be that relevant in practical situations. In this
case the constants count and practical evaluations may reflect better the performance
improvement.
If we consider that the latency of a normal multiplication represents a fraction µ from the
latency of a modular multiplication, i.e., τm = µ · τ , an RNS Montgomery multiplication
requires 2k2+2µk multiplications when employing our method for both base extensions
and 2µ2k2 + 3µk for the state-of-the-art Bajard-Shenoy combination. Generally speak-
ing we can assume that, µ is a constant between 1 and 2 depending on the practical
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Our algorithm Bajard + Shenoy Kawamura et al.

Step 1, 2, 4 of Algorithm 6 5k 5k + 3 5k

First base extension k2 + k k2 + k k2 + 2k

Second base extension k2 + k k2 + 2k k2 + 2k

Total 2k2 + 7k 2k2 + 8k + 3 2k2 + 9k

Table 4.2: Number of arithmetic operations (multiplications) of three RNS Montgomery
multiplication algorithms.

implementation details and k, the cardinality of the two RNS bases, is a small number,
e.g., 6. In Figure 4.1, we present the theoretical speedup per Montgomery multiplication
computed for different values of α (from 1.5 to 2 in increments of 0.05) and k = 6.

Figure 4.1: Theoretical speedup per Montgomery multiplication for k = 6 moduli and
variable µ.

• Performance evaluation in terms of time complexity

Similar to the previous section, we assume k2 processing elements working in parallel
and that one modular multiplication and addition take 1 cycle. When performing the
base extension relative to one modulus, we obtain the following figures of merit:

Method No. of cycles consumed

Bajard et al. ⌈log2 k + 1⌉

Shenoy et al. ⌈log2 (k + 1) + 1⌉

Our method ⌈log2 k + 1⌉

Thus, all methods have the same asymptotic complexity in the order of O(log2(k)) for
one modulus, and O(k · log2(k)) for k moduli.

4.3 Conclusion

This chapter begins with a thorough study of existing base extension methods. Then,
the methods are put in the context of RNS Montgomery multiplication algorithm and
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their performance is analyzed comparatively in terms of performed modular multipli-
cations. Afterwards, the proposed Diophantine base extension method is presented in
detail, and its performance is analyzed theoretically. Our method reduces the number
of modular multiplications involved: for the derivation of k new residues, it requires k2

regular multiplications and k modular multiplications, while the state-of-art methods
necessitates k2 + k and k2 +2k modular multiplications, respectively. We have obtained
the same asymptotic complexity as the state-of-the-art base extension methods both in
terms of arithmetic operations and in terms of time complexity. However, in the context
of RNS Montgomery algorithm k is usually chosen a small number. Thus the asymptotic
complexity does not reflect the actual speedup due to the fact that constants in this par-
ticular case, have a big impact on performance. Moreover, since our dominant operations
are regular multiplications, which are generally less time consuming than modular ones,
the effect on the overall performance is significant.
The proposed method can be used for both base extensions required by the Montgomery
algorithm, as opposed to Bajard method that can be used only for the first base extension
and to Shenoy method that can be employed solely for the second base extension. Fur-
thermore, our method does not require any additional information that must be known
beforehand (e.g., the residue with respect to a redundant modulus) as in the case of
Shenoy base extension. The practical performance of the Diophantine base extension
method is analyzed throughout the next chapter.
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This chapter analyzes the pratical implications of the proposed Diophantine base exten-
sion method on the overall RSA performance. The simulation environment is presented
in Section 5.1, while the performance is evaluated in Section 5.2 both for the proposed
method and for the state-of-the-art methods.

5.1 Simulation Setup

This subsection describes the simulation environment and the employed system compo-
nents.

In order to ensure the required level of cryptographic strength, mathematical func-
tions used in public key cryptography schemes require performing operations on large
integers in the range of 512 to 2048 bits. Software implementation of such arithmetic
operations is difficult since currently available processors have the word-size limited to
up to 64 bits. Multiple algorithms have been developed to perform these multi-precision
arithmetic operations efficiently, and several libraries implementing such algorithms exist
both commercially and in public domain.
The GNU Multiple Precision library (GMP) [1] is a portable C library for arbitrary
precision arithmetic on integers, floating point and rational numbers.
The selection of the GMP library was mainly driven by the fact that it offers a well-tested
set of cryptographic operations and all the necessary primitives for implementing new
algorithms. The library supports different processor families and provides optimizations
in the form of assembly code for specific families. GMP represents large numbers inter-
nally in a signed-magnitude format. The magnitude of the number is represented as an
array of unsigned integers called limbs, while a signed integer keeps track of the sign of
the number and of the number of the limbs. A last variable in the structure is required
for recording the space allocated for the array. GMP provides two APIs for development:
a high level API which manages the memory allocated for the operands and the result
and a low level API for time-critical user.

The RSA cryptosystem was coded in C++, compiled with g++ version 4.4.5 and
ran on an Intel i5 540 machine at 2.54 GHz, under Ubuntu Linux, with a 2.6.35 kernel
in single user mode. We implemented the RNS Montgomery multiplication Algorithm 6
and the RSA encryption-decryption protocol, considering 2 cases: in the former one, we
used the proposed Diophantine base extension method for both base extensions, while in
the latter one we used the state-of-the-art combination, that is Bajard et al. [7] method
for the first base extension and Shenoy et al. method for the second base extension [28].
These two cases are denoted in what follows by Implementation 1 and Implementation
2, respectively.

As exponentiation technique, we use the left-to-right binary method described in
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Base B Base B′

4 moduli 2512−210−1 2512−222−1
2512−219−1 2512−223−1
2512 − 1 2512−222−1
2512−228−1 2512

5 moduli 2512−210−1 2512−28+1
2512−219−1 2512−217−1
2512−228−1 2512−216−1
2512−220−1 2512−217+1
2512 2512−222−1

6 moduli 2512−210−1 2512−226−1
2512−216−1 2512−218+1
2512−219−1 2512−225−1
2512−228−1 2512−217−1
2512−220−1 2512 − 1
2512 2512−25−1

Table 5.1: Example of 3 RNS moduli sets utilized for simulation

Algorithm 5. For all implementation scenarios, we employ the same public exponent
e = 216+1 = 65537. This value a common choice for RSA cryptosystems, the encryption
for this case requiring 16 modular squarings and one modular multiplication. Since the
number of RNS moduli and their form, both have a big impact the algorithm performance
and the efficiency of the representation, we used moduli sets of varying cardinality (k =
4, 5, 6) and form, i.e., generalized Mersenne numbers with different Hamming weights
and bit lengths. An example of employed RNS moduli set is presented in Table 5.1.
Throughtout the experiments, we denote by mu the ratio between the latency of a
modular multiplication and the latency of a regular one.

5.2 Performance Analysis

The profiling analysis of our RSA implementation, revealed that modular exponentiation
operation accounted for 99.5% of the overall execution time.

To achieve accurate, high-resolution timings in the order of micro-seconds, we used
the Performance API (PAPI), developed by Browne et al. [2]. PAPI is an API for
accesing hardware performance counters on different platforms. In order to achieve a
better abstraction of various tasks, is built upon two different layers: the Portable Layer,
that consists of the API for tool and application developers and the Machine Specific
Layer, used to accces performance counters on a particular platform. The Portable Layer
is composed of a low-level API, allowing acces to all core PAPI functions and direct
interaction with the counter interface and a simple high-level interface for performing
simple time measurements. Before the measurements were performed, the turbo boost,
hyper-threading and speedstep technologies were disabled.
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In order to evaluate the performance of our method, we considered different RSA
key sizes, e.g., 512, 1024 bits, and several messages to encrypt. For every case, we
measure the execution times of the RNS Montgomery multiplication kernel for both
implementations. Each time we compute the speedup as the ratio between the execution
time of Implementation 2 and the execution time of Implementation 1.

Figure 5.1: Measured vs. estimated (using µ estimated from the two Montgomery ker-
nels) speedup for 512-bit RSA key n, and for 512-bit RNS moduli.

Figure 5.2: Measured speedup for 1024-bit RSA key N, and for k = 4.

Figure 5.3: Measured speedup for 512-bit multiplication operands.
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The main results of our experiments are graphically presented in Figure 5.1, 5.2, and
5.3. We observe that the speedup exhibits a linear increase tendency proportional with
the RNS sets cardinality k, see Figure 5.1. Moreover, as indicated by Figure 5.2, the
speedup increases for large bit length moduli. This is quite expected, since our method
is dominated by normal multiplications, thus it exhibits a very small dependency on the
form of RNS moduli, while the dominant operations in Bajard and Shenoy methods are
modular multiplications. To get a better inside in the implications of the moduli form
on the base extension complexity we also studied the way the Hammming weight of the
RNS moduli influence the µ value. We assumed 512-bit moduli with various Hamming
weights and determined the ratio between the coresponding modular multiplication and
a regular one. The results are depicted in Figure 5.3 and one can observe that the larger
the Hamming weight the larger µ, thus by implication the speedup provided by our
method. Furthermore, we note that our method is general and can be efficiently applied
to moduli of any form while for Bajard and Shenoy methods, choosing moduli that are
not optimized for modulo operation cost reduction result in added complexity.

5.3 Conclusion

In order to evaluate the performance of our method, we implemented and simulated the
RSA encryption-decryption protocol, using both the state-of-the-art methods and our
proposed Diophantine base extension method. Several measurements were performed
under different setup conditions. We considered several cases: (i) we varied the RNS
moduli set cardinality; (ii) we varied the bitlength of the RNS moduli set; (iii) we
varied the Hamming weight of an RNS modulus. We considered different RSA key-sizes,
e.g., 512-bits, 1024 bits and messages to encrypt of varying length. For each case, we
measured the execution time required per Montgomery kernel for both implementations
and computed the speedup. Simulation results reveal that for sets of 4, 5 and 6 moduli
of 512-bits, our method provides a speedup per Montgomery kernel of 1.93, 2.42, and
3.17, respectively.
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This chapter summarizes in Section 6.1 the issues that were addressed by this thesis,
along with the proposed solution. Section 6.2 presents the contributions of the performed
research, while Section 6.3 concludes this thesis with some suggestions for future works.

6.1 Summary

Chapter 2 introduced the basic mathematical concepts underlying RNS. First, we men-
tioned the major difference between residue arithmetic and standard 2’s complement
arithmetic, which is the lack of carry-propagation (i.e., the independence of digits). A
basic algebra of residues was developed and we have noted that addition and multiplica-
tion are easy to perform in RNS, as opposed to operations that require the determination
of magnitudes (e.g., division, overflow, sign determination). Thus, the best applications
for RNS are the ones involving several additions and multiplications modulo large num-
bers, such as the case of RSA cryptography. The chapter concluded with one of the most
important results in RNS, the Chinese Remainder Theorem that allows the reconstruc-
tion of the binary/decimal number from its RNS representation.

Chapter 3 presented an overview of the RSA cryptosystem, emphasizing its compu-
tational requirements: modular multiplications with respect to a large modulus as core
operations of exponentiation. Next, the left-to-right binary method, which provides a
systematic way for finding the exact sequence in which squarings and multiplications
have to be applied in order to compute efficiently the exponentiation, was detailed. Af-
terwards, the Montgomery algorithm, for performing effectively modular multiplications
while avoiding division by the large modulus, was scrutinized in detail. In order to im-
prove the global performance, RNS was combined with the Montgomery method and the
bottleneck of this algorithm was identified as being the two required base extensions.

The main purpose of Chapter 4 was to survey the existing base extension methods and
to propose a novel base extension technique that improves the overall performance of the
RNS Montgomery algorithm. There are basically two main approaches for performing
base extension: using the CRT or via an intermediate representation such as MRS. The
methods were put in the context of the RNS Montgomery multiplication algorithm and
their performances were compared. Then, the basic mathematical background of linear
Diophantine equations was covered, followed by a detailed description of the proposed
Diophantine base extension method. The method was compared with the state-of-the-
art methods employed for the RNS Montgomery algorithm: Bajard et al. for the first
base extension and Shenoy et al. for the second base extension and its performance was
analyzed in terms of time complexity and arithmetic operations.

Chapter 5 evaluated practically the proposed method performance. The RSA
encryption-decryption scheme was implemented in C++ both for our method and for the
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state-of-the-art methods. Several measurements were performed under different setup
conditions: for various RNS moduli sets, for different length of the plaintext to be en-
crypted, and for various RSA key sizes.

6.2 Main Results

In this thesis, a novel RNS base extension method is proposed to speedup the Mont-
gomery modular multiplication. By making use of linear Diophantine equations theory,
our method significantly diminishes the latency of the RNS base extension/conversion
by reducing the number of required multiplications and by replacing most of the mod-
ular multiplications with regular ones. Given the representation of an integer X in
an RNS base B comprising k relatively prime moduli {m1,m2, . . . ,mk}, our method
has an O(log2k) asymptotic time complexity and requires k regular multiplications and
one modular multiplication for the derivation of a residue digit with respect to a new
relatively prime modulus mk+1.

When applied in public key cryptography, in the context of RNS based Montgomery
modular multiplication that requires two base extensions, each of them with respect to
k new relatively prime moduli (forward base extension - from base B to base B′ and
backward base extension - from B′ to B), our method provides a speedup of O(µ) relative
to the state-of-the art, where µ is the ratio between the computation time required by a
modular multiplication and by a regular one. The result is perfectly reduced and does
not require any additional information that must be known beforehand, as opposed to
similar state-of-the-art base extension techniques.

The method’s practical performance was assessed by implementing the RSA
encryption-decryption protocol in C++. Two implementations were made: the first one
using our method and the second one using the state-of-the-art base extension meth-
ods. Several measurements were performed under different setup conditions: various
RNS sets were considered (for k=4, 5, and 6), with different Hamming weights, the
length of the RSA modulus was varied and the plaintext size was increased gradually.
Experimental results obtained for software implementations of two RNS based RSA
encryption-decryption kernels based on state of the art and on our approach, for 512-bit
moduli indicate that for sets of 4, 5, and 6 moduli, our method provides a speedup per
Montgomery kernel of 1.93, 2.42, and 3.17, respectively.

6.3 Proposed Future Research

The future research avenues can be summarized as follows:

- Based on our experience this far we see the task of reducing the number of multipli-
cations for the base extension in the following perspective: (i) for a new modulus
the new residue must be a function of all k residues in the initial base (and of
course, of the new modulus); (ii) in the best case, a linear relation might exist
and then at least k multiplications are required; (iii) for k new moduli at least k2

mutiplications and thus further reduction of the number of multiplications is un-
likely. Special cases may exist for which one encounters a situation similar to fast
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transforms. Then more realistic approach would be to find such bases for which
the multiplications could be shorter due to special form of the moduli (polynoms
of powers of 2).

- The background of the proposed work lies in the CRT, which enables breaking down
the multiplication in a field of a very large number in mutiplications into smaller
fields. The main issue in this context is that division and other operations are not
simpler but more cumbersome. Then if one could find a way to construct another
representation of numbers in finite fields with a better behavior when writing them
as a product of fields, more efficient algorithms might be developed.
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Auxiliary Algorithms A
A.1 Computing the greatest common divisor using the Eu-

clidian algorithm

Given two non-negative integers a and b, their greatest common divisor can be coomputed
as follows:

Algorithm 7 Euclidian algorithm for computing the greatest common divisor of two
numbers

Input: a, b ∈ Z such that a ≥ b > 0

Output: gcd(a, b)

function Euclid(a, b)

1. while b 6= 0 do

1a. r := |a|b
1b. a := b, b := r

2. return a

Example A.1 Apply the Euclidian algorithm to find the greatest common divisor of
a = 77 and b = 42.

The following steps of division are performed:

77 = 42 · 1 + 3542 = 35 · 1 + 735 = 7 · 5 + 0

So, we have obtained gcd(77, 42) = 7.
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A.2 Expressing gcd(a,b) as a linear combination of a and
b

Algorithm 8 Extended Euclidian algorithm for finding the multiplicative inverse

Input: a, b ∈ Z such that a ≥ b > 0

Output: d = gcd(a, b) and integers x and y such that ax+ by = d

function ExtEuclid(a, b)

1. if b = 0 then return (a, 1, 0)

2. x1 := 1, x2 := 0, y1 = 0, y2 = 1, r1 = a, r2 = b, i := 2

3. do

3a. i := i+ 1

3b. qi = ⌊ri−2/ri−1⌋

3c. ri = ri−2 mod ri−1

3d. xi = xi−2 − qi · xi−1

3e. yi = yi−2 − qi · yi−1

3f. while ri 6= 0

4. return (ri−1, xi−1, yi−1)

Example A.2 Let a = 137 and b = 60. It is required to compute d = gcd(a, b) ,x and y
such that ax+ by = d.

i ri qi xi yi

1 137 - 1 0

2 60 - 0 1

3 17 2 1 −2

4 9 3 −3 7

5 8 1 4 −9

6 1 1 −7 16

7 0

Thus gcd(137, 60) = 8, x = −7 and y = 16.
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A.3 Computing the multiplicative inverse using the Ex-
tended Euclidian algorithm

Given two positive coprime integers a and m, it is often required to find
∣

∣a−1
∣

∣

m
. The

algorithm below, using the reccursive relation for finding the greatest common divisor
between a and m: gcd(a,m) = gcd(a,m mod a), computes x such that the following
Diophantine equation holds a · x+m · y = 1.

Algorithm 9 Extended Euclidian algorithm for finding the multiplicative inverse

Input: a ∈ Zm such that gcd(a,m) = 1

Output:
∣

∣a−1
∣

∣

m
provided that it exists

function ExtEuclidInv(a,m)

1. e := m, f := a, x := 0, v := 1;

2. while f > 0 do

2a. q := ⌊e/f⌋

2b. r := e− q · f

2c. e := f , f := r

2d. r := x− q · v

2e. x := v, v := r

3. if x < 0 then x := m+ x

4. return x

Example A.3 Let a = 7 and m = 60. It is required to compute
∣

∣a−1
∣

∣

m
.

e f x v q r

60 7 0 1 0 0

7 4 1 −8 8 −8

4 3 −8 9 1 9

3 1 9 −17 1 −17

1 0 −17 −52 3 −52

Hence, we have

∣

∣a−1
∣

∣

m
=
∣

∣7−1
∣

∣

60
= |−17|60 = |60− 17|60 = 43

.
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