
Accurate and Efficient Identification of Worst-Case
Execution Time for Multicore Processors: A Survey

Hamid Mushtaq, Zaid Al-Ars, Koen Bertels
Computer Engineering Laboratory

Delft University of Technology
Delft, the Netherlands

{H.Mushtaq, Z.Al-Ars, K.L.M.Bertels}@tudelft.nl

Abstract—Parallel systems were for a long time confined to
high-performance computing. However, with the increasing pop-
ularity of multicore processors, parallelization has also become
important for other computing domains, such as desktops and
embedded systems. Mission-critical embedded software, like that
used in avionics and automotive industry, also needs to guarantee
real time behavior. For that purpose, tools are needed to calculate
the worst-case execution time (WCET) of tasks running on a
processor, so that the real time system can make sure that real
time guarantees are met. However, due to the shared resources
present in a multicore system, this task is made much more
difficult as compared to finding WCET for a single core processor.
In this paper, we will discuss how recent research has tried to
solve this problem and what the open research problems are.

I. INTRODUCTION

For a long time, single core processors ruled the desktop
and embedded market. The popularity of the single core
processors could be attributed to the portability they provided.
A program written for one processor, could be ported to
the faster version of the same processor without changing a
single line of code. However, at one point, it was no more
possible to build faster single processors due to the huge
amount of power they would need. That is the point, where
multicore processors came into existence, as they are more
power efficient. Nowadays, multicore processors are common
in desktops, laptops and mobile phones. However, industries
which use mission critical embedded software, such as avionics
and the automotive industry have been reluctant to employ
multicore systems. The reason being that such software also
needs to meet timing deadlines for real time performance. For
guaranteeing real time performance, the real time scheduler
needs to know the worse-case execution time (WCET) of each
task. Finding a good estimate (less pessimistic) of WCET, of
a task is much simpler if it runs on a single core processor
than if it runs on a multicore processor concurrently with other
tasks. This is because those tasks can share resources, such as
shared cache or shared bus, and/or may need to concurrently
read and/or write shared data.

Recently, there has been an increasing interest to solve
the problem of finding WCET for tasks running on multicore
processors, from hardware solutions to software solutions for
Commodity Off The Shelf (COTS) processors. In this paper,
we discuss the research done in this context and also point
out the open issues. In Section II, we provide the necessary
background to help reader understand the problem of WCET.
This is followed by Section III which discusses the WCET

 
WCET 

calculation
 

 
Static methods

 

 
Measurement 

based methods
 

 
Model checking

 

 
Static analysis

 

 
Measurement

 

 
Simulation

 

Figure 1. Methods used for WCET calculation

Execution 
time

Normalized 
distribution

Exact WCET

Measured WCET

Calculated WCET

Figure 2. Measurement based vs static methods

calculation techniques employed for single core processors.
Next, we discuss the research that has been done for calcu-
lating WCET of multicore processors in Section IV. This is
followed by Section V on open issues. We finally conclude the
paper with Section VI.

II. BACKGROUND

Multicore processors can be useful in embedded systems,
such as automotive systems, as that would mean that software
could be made more centralized. This translates to less cable
usage in cars, and therefore less fuel consumption, as more ca-
ble length is directly proportional to fuel consumption in cars.
Moreover, with processors with more cores, more functionality
could be added, for example, we could have an improved
braking system, which uses more sensors [27].

Mission critical embedded systems perform hard real time
tasks, which need to complete within a certain time period.
To be able to guarantee that those tasks finish within that
time period, their WCET should be known. For single core
processors, techniques to find WCET are well known and there
are several tools available to perform that. Those techniques
and tools can be found in the literature [30].



CFG 
construction

Input 
executable

Data

Legend

Phase

CFG

Loop bound 
analysis

Value analysis
Control-flow 

analysis

Annotated CFG

Basic block 
timing info

Processor 
model

Path analysis

Figure 3. Steps for WCET calculation using static analysis

As seen from Figure 1, there are two main methods of find-
ing WCET, measurement based methods and static methods. In
measurement based methods, the execution time is measured
either through direct measurement or simulation of the code by
giving different inputs. The obvious drawback of this method
is that the WCET can be underestimated in this way, as not
all possible paths could be tested with the limited number of
inputs. This fact is shown in figure 2, where the curve for the
measurement-based experiments is shown with a solid line,
while the curve with all possible inputs possible is shown with
a dotted line. To overcome this, one could put a safety margin
over the measured WCET. However, the safety margin is still
just a guess and the picked WCET could end up less than the
real WCET. One way to have better estimations is to measure
the worst-case execution time of each basic block and then try
to find the path with the worst-case time by adding the time
taken by these blocks. However, this would only work for
very simple processors. In the presence of advanced features,
such as pipeline, branch predication, out-of-order execution
and caches, this would not work. In the presence of these
advanced features, the worst-case execution time of a block is
dependent on the path followed by the program. For example,
the cache misses in a basic block will be dependant upon from
which path the program reached that basic block.

Due to the fact that measurement based methods under-
estimate WCET, we limit ourselves to only static methods.
There are two major kinds of static methods used for calcu-
lating WCET, namely static analysis and model checking. The
combination of these two is also employed in some cases. The
details of these methods is discussed in detail in the next two
sections.

The major steps taken in calculating WCET are shown in
Figure 3 [1]. The input executable is read to construct a control
flow graph (CFG). Afterwards, control-flow analysis (CFA) is
performed which performs steps such as removing infeasible
paths, trying to find loop bounds and determine frequencies
of execution of paths, etc. At that point, the user could also
provide information such as loop bounds which could not be
found by CFA, or known values at certain locations in the
program, so that CFA can more precisely find infeasible paths.
The annotated CFG with the micro-architectural analysis is
then used to find the WCET of each basic block. Finally path

 
Tree based

 

 
Explicit path 
enumeration 

technique
 

 
IPET

 

 
ILP

 

 
CLP

 

 
Path Analysis

 

Figure 4. Path analysis methods used for WCET calculation

analysis is performed to find the WCET. Since the goal is to
calculate a WCET which is at least equal to the real WCET,
the calculated WCET is almost always greater than the real
WCET, as shown in Figure 2. Therefore, the quality of a tool
measuring WCET is assessed by how close WCET it calculates
with respect to the real WCET, in other words how much
tighter the WCET it calculates.

III. WCET FOR SINGLE CORE PROCESSORS

While the main focus of this paper is on finding WCET
for multicore processors, it is first important to discuss the
techniques applied to single core processors. This is because,
even for single core processors, finding WCET is not straight
forward, as typical single core processors are designed to have
good average-case execution time, through features such as
pipelining, cache memories, out-of-order execution, specula-
tion and branch prediction. All these features, make accurate
timing analysis a difficult problem [4].

These performance-enhancing features, also introduce tim-
ing anomalies. For example, one may assume that it would
be safe to use a cache miss time for WCET calculation.
However [21] showed that for out-of-order execution, it is
possible that in some cases a cache hit would increase the
time as compared to a cache miss.

There exist two main techniques for finding WCET for
single core processors, namely static analysis and model
checking. Static analysis is more computationally efficient in
finding the WCET as compared to model checking, as model
checking can have state-space explosion problems. However,
model checking can find tighter WCET estimates. This is be-
cause, model checking can more accurately model a processor,
while static analysis can just approximate the processor model,
as it needs to find the WCET without actually running the
program. These two techniques can be combined though to
achieve the best results. In Section III-A, we will discuss
related work using static analysis, while in Section III-B, we
will discuss techniques which employ model checking for
finding WCET.

A. Static analysis

Static analysis techniques try to find the WCET without ac-
tually running the program. Since they do not run the program,
they need to approximate the processor model. Therefore,
static analysis techniques are divided into two steps. First step
is performing CFA on the CFG, and performing value analysis
to find loop bounds, values to eliminate infeasible paths and
addresses to help in finding cache hits and misses, followed
by processor modeling to obtain the WCET of each basic



block in the program. There are three techniques to do this,
abstract interpretation (AI), integer linear programming (ILP)
and constraint logic programming (CLP). The second step is
to find the WCET using WCET of the basic blocks. Different
techniques employed for this purpose (Path analysis) are shown
in Figure 4.

1) Tree based: The tree based method for path analysis tra-
verses the CFG in bottom-up fashion, combining the WCETs
of the basic blocks along the way (see [30] for more detail).
This method is quite efficient but suffers from some limitations.
For example, it is not possible to represent goto statements.
Also, it is difficult to eliminate infeasible paths. An example
of a paper using this technique is [9], which employs this
technique for a processor with pipeline, branch prediction and
an instruction cache.

2) Explicit path enumeration technique: This technique
tries to find the longest path in terms of execution time by
looking for all the possible paths in the program. It first tries
to eliminate all infeasible paths in the program. This method
suffers from low performance, as the number of paths that need
to be examined increases exponentially with the program size.

3) ILP: Due to the problem associated with explicit-path-
enumeration technique, authors in [19] propose integer lin-
ear programming (ILP) to solve the WCET problem implic-
itly. That is why this techniques is known as implicit-path-
enumeration technique (IPET). Equation 1 is the basic equation
of calculating WCET with this technique. Here c is the cost of
basic block i and x is the number of times that basic block is
executed. The WCET is given by finding the maximum value
of Equation 1.

n∑
i=1

cixi. (1)

The authors of [19] extended their work to also account for
architectures with instruction caches in [20]. Both modeling
of the instruction cache (processor modeling) and calculating
of WCET (path analysis) is done using ILP. A basic block
is further divided into line blocks, where each line block
represents contiguous instructions which use the same cache
line. Also, information is kept for a line block whether it
incurs a cache miss or is a cache hit. This method might
work for simple models, but for more complex processor
architectures, which include pipelining, speculative execution,
branch prediction and out-of-order execution for example, it
becomes prohibitively difficult to use ILP due to its restrictive
nature. For those purposes, Abstract Interpretation (AI), which
is discussed next, is much more feasible.

4) AI+ILP: Abstract Interpretation (AI) is a dataflow tech-
nique to approximate model of a processor. AI can be used for
example to get a set of possible values for a variable. However,
since AI is an approximate method, it might also include values
in a set, which would not occur in the program. Therefore,
techniques using AI overestimate WCET at the cost of finding
WCET in less time as compared to model checking.

That is why authors in [29] separate processor modeling
and path analysis steps. For processor modeling, they use AI.
Through AI, they model pipeline and caches. Through AI, they

can classify an instruction as always hit, always miss, persistent
(miss for first time and then always hit) or unclassified. In
the case of unclassified, both scenarios are considered, that is
cache hit and cache miss, as previously discussed that due to
timing anomalies, it is not enough to consider cache miss as
the worst case scenario.

While [29] checks for always miss, always hit and un-
classified instructions in a global scope, [15] also consider
local scopes like loops and functions. They argue that the same
cache line block used in different scopes might not interfere
with each other and therefore would be mutually exclusive,
so in this way we could have blocks which are classified
as persistent only in that local scope. This method reduced
estimates of the WCET by upto 74%.

5) CLP: Another alternative of processor modeling and
path analysis using ILP is to use constraint logic programming
(CLP). The drawback of ILP is that we are limited to only us-
ing linear constraint with ILP, and for representing disjunction,
we have to duplicate a block. For example, if a block can
be reached from two different paths, it has to be duplicated
into two blocks, each having a different WCET, but with CLP,
we can actually define through constraint equations the value
of WCET values for that block for different paths. Authors
in [22] showed that using CLP significantly reduced WCET
calculation time as compared to ILP, as there are much less
blocks required due to the ability of representing disjunctions
through constraint equations.

B. Model checking

The problem with static analysis is that it is an approximate
method, due to the approximate nature of the processor mod-
eling steps. With model checking on the other hand, we can
build a more concrete model of a processor, and therefore have
tighter WCET estimates. For example, when cache accesses
cannot be classified with AI, we have to check execution
time with both cache miss and cache hit. On the other hand,
with model checking, some of those instructions which were
unclassified in AI, could be classified, thus tightening up the
WCET estimates. [14] is an example which supports model
checking for finding WCET for Java processors. The authors
use UPPAAL [3] model checker for that purpose. The authors
noticed that model checking was enough for typical tasks in
embedded systems. However, for larger applications, it was too
slow. The authors recommended that model checking could
be combined with static analysis in such a way, that the
more important code fragments could be analyzed with model
checking while the remainder of the application with static
analysis.

[23] also uses a model checker. Instead of using each
instruction in the model checker, the authors use basic blocks,
thus reducing the number of states for model checking.

[17] combine model checking with static analysis to find
WCET. The model checking is useful in deriving loop bounds,
which change dynamically. For example, for loop bounds that
depend upon two variables, the user just has to feed a range
of values of these variables and the model checker can extract
the loop bounds from them.



possible L2 cache interferences from the non-real-time
thread.

Memory

L2 Cache

Core 1 Core 2

L1−I$ L1−D$ L1−I$ L1−D$

Figure 1. A dual-core processor with a shared
L2 cache.

2.2 Timing Anomalies in Multi-Core
Computing

The inter-thread cache conflicts in multi-core pro-
cessors with shared cache memories can lead to timing
anomalies. Timing anomalies were first discovered in
out-of-order superscalar processors by Lundqvist and
Stenstrom [24], where the worst-case execution time
does not necessarily relate to the worst-case behav-
ior. For instance, Lundqvist and Stenstrom [24] found
that a cache miss in a dynamically-scheduled proces-
sor may result in a shorter execution time than a cache
hit, which is counterintuitive. Similarly we find that
in a multi-core processor with a shared L2 cache, the
worst-case behavior of a single thread does not nec-
essarily lead to the worst-case execution time of that
thread, because of the inter-thread cache conflicts.

For example, Figure 2 shows the control flow graph
of a code segment, which contains two paths: P1 (A-
B-D) and P2 (A-C-D). Suppose P1 is the worst-case
path of this code segment without considering the im-
pact of other threads. After we take into account the
inter-thread cache conflicts; however, P1 may not be
the worst-case path. For instance, if another thread
running on another core evicts several instructions of
the block C, while none or fewer instructions of block
B are replaced by other threads in the shared L2 cache,
then path P2 (A-C-D) may become the worst-case path
and thus lead to the worst-case execution time for this

core and/or across multiple cores falls out of scope of this paper.

D

C
B

A P2P1

Figure 2. An example of a timing anomaly in
a multi-core processor.

thread. The reason is that the penalty of the inter-
thread L2 cache misses occurring during the execu-
tion of the block B can be larger than the difference
between path lengths of P1 and P2, which is also the
necessary and sufficient condition for the aforemen-
tioned time anomaly to happen.

Because of the timing anomalies in multi-core pro-
cessors, the WCET analysis of each thread running on
each core cannot be performed independently, which
can significantly increase the complexity of the timing
analysis. In particular, although current timing anal-
ysis techniques [1] can reasonably bound the perfor-
mance of a single-core processor, they cannot be eas-
ily extended to compute the worst-case performance
of each thread running on a multi-core processor.
For instance, in Figure 2, while we can use existing
single-core WCET analysis techniques [1] to obtain
the worst-case path, i.e., P1 (A-B-D), we must update
this calculation by integrating the inter-thread cache
conflicts information. Therefore, the critical prob-
lem of WCET analysis for multi-core processors with
shared instruction caches is to safely and accurately
identify the worst-case inter-core cache conflicts.

3. Our Approach

We propose a WCET analysis approach for multi-
core processors with shared L2 caches with three ma-
jor steps, including cache analysis, pipeline analysis
and path analysis, which are built upon the extension
of a single-core timing analysis tool called Chronos
[2]. In this section, we first introduce the static cache
analysis to bound the worst-case L2 instruction misses

828282

Figure 5. Example of timing anomaly in a multicore processor [32]

IV. WCET FOR MULTICORE PROCESSORS

We discussed previously that single core processors can
have timing anomalies in the presence of complex performance
enhancing features. Multicore processors have another source
of timing anomalies due to shared resources, such as shared
cache memory. An example is shown in Figure 5. Let us
assume the path ABD is the worst-case path if seen separately.
In the presence of shared L2 cache however, ACD might
become worst-case path if a thread running on another core
evicts more instructions from C than B in the L2 cache.
Therefore, whenever analyzing WCET for a multicore, we
always need to consider all the tasks running on different cores
together, which can significantly increase the complexity of
timing analysis.

In Section IV-A, we discuss the WCET calculation methods
used for mutlicore systems, which are static analysis and model
checking, whereas, in Section IV-B, we discuss techniques that
assist in WCET estimation.

A. WCET calculation methods

Like in case of single core processors, WCET calculation
techniques can also be divided into static analysis and model
checking. These two techniques for multicore systems and their
comparison is discussed next.

1) Static analysis: The first work done in this regard was by
[32], which extends [29] to a multicore processor with private
L1 caches but shared L2 cache. Through AI, this method tries
to find out which instructions are always cache hits or always
cache hits after the first time. It considers all other instructions
as cache misses. This method first checks for L1 cache misses
separately. An L1 cache miss implies either an L2 cache hit or
an L2 cache miss. The basic idea is to check if the same cache
block will be used by another thread running on another core.
If that is the case, the basic block is marked as to have an L2
cache miss if the other thread is using that block with a loop,
otherwise it is marked as always-except-one-hits. If the cache
block is not used by the other core, then it is marked as always-
hit. The WCET is found by solving the linear constraints
formed by AI. The authors of this paper extend this method to
also include data caches in [33]. The drawback of this method
though is that it considers the effect of caches in isolation,
that is not including performance enhancing features such as
branch prediction and speculative execution which can cause
timing anomalies. In case of timing anomalies, it is not enough
to assume cache miss as the worst case.

To solve this problem [7] include pipelining, branch pre-
diction and speculative execution in their analysis. Although
they only consider instruction L2 caches. With timing anomaly

in consideration, the timing analysis becomes more complex,
as we cannot just assume a cache miss, if we are not sure
about a cache access being a cache miss or a cache hit. This
is the reason, the authors classify cache accesses as always-hit,
always-miss and unclassified. For unclassified, both a cache hit
and a cache miss are tried to find out the WCET.

[13] uses a technique similar to [7] but improves WCET
calculation by employing bypassing of caches. Bypass of a
load instruction for example, for a cache level means that
if there is a miss, the memory block would not be brought
into the cache, while if there is a cache hit, age of no cache
block would be altered. In this way, instructions which are
rarely used in a program could be bypassed, thus reducing
inter-core conflicts and therefore improving timing analysis.
The instructions to be bypassed are chosen by the compiler
at compile time. [13] only considers bypassing for instruction
caches, while [18] does it for both instruction and data caches.
It has to be noted though that not every processor has a bypass
instruction and therefore this method is not portable.

2) Model checking: Besides, static analysis, model check-
ing is also a viable approach for calculating WCET for a
multicore processor. We can either use model checking alone
or combine it with static analysis. When model checking is
used alone, both the processor modeling and path analysis
is done using the model checker. The user can query the
model checker with a guess WCET, to see if the maximum
time calculated by the model checker is less than or equal
to the guessed WCET. The guess is refined until the WCET
is matched with the maximum time calculated by the model
checker.

[31] uses model checking to estimate WCET. The model
checking language used is PROMELA, which is the language
of SPIN [2] model checker. The approach works for shared L2
caches. The authors show that using model checking improves
the tightness of WCET as compared to static analysis only
approaches. This is because model checking can check every
possible interleaving of threads running on different cores, and
therefore some cache accesses which cannot be classified as
cache miss or cache hit, can be properly classified with a model
checker. One problem with using a model checker is the state-
space explosion problem. The authors of [31] tried to reduce
this by first finding L1 and L2 cache hits and misses for a
task by assuming it is running on a single core processor.
This information is then imported for model checking the real
scenario, that is tasks running on a multicore processor. In this
way, only the L2 hits need to be taken care of, as L2 misses
would still be misses on a multicore.

[8] combines static analysis with model checking to
calculate WCET. AI is used to model the shared cache, but
model checking is used to model the shared bus, which is the
bus that is used to read from and write to the main memory.
The main reason of using model checking for the shared bus
is because it is much simpler to model it with a model checker
as compared to modeling it with AI. Furthermore, since it is
more accurate, it also gives tighter WCET estimates.

[12] uses UPPAAL [3] to model a multicore system with
private L1 caches and a shared L2 cache. This method also
works for tasks communicating with each other through shared
memory using spin locks. Since, each instruction is modeled,



 
WCET for 
multicore

 
 

Static-analysis
 

 
 

Model-
checking 

 

Pros: 
· Faster
Cons: 
· Complex to setup
· Finds more pessimistic 

WCET

Pros: 
· Simpler to implement
· Finds tighter WCET
Cons: 
· State explosion problem
· Scalability problem

Figure 6. Model checking vs static analysis comparison

the state space is large, and therefore this method only works
for small programs. Even for those programs, a WCET can
only be calculated with two cores. For more cores, state space
explosion is observed.

[6] uses model checking and static analysis. This method
supports shared memory communication among the tasks. A
program is divided into communication and execution slices.
At the start of an execution slice, data is loaded into the private
caches of the cores and at the end of the communication slice,
data is put back in the main memory. State-space explosion
occurs when there is too much communication involved. Also,
this method slows down execution, as data has to be read
from and written to the main memory at each execution and
communication slice.

3) Model checking vs static analysis: Figure 6 compares
static analysis with model checking for finding WCET for
multicore processors. We can see that static analysis is faster
but finds more pessimistic WCET as compared to model
checking based approaches. Moreover, it is also more difficult
to implement. The problem with model checking is that it
suffers from scalability problem, as with more cores, there
are more states possible, thus causing state-space explosion
for larger programs. The good thing though is that model
checking can be aided by static analysis to reduce those states,
as done by some papers discussed in Section IV-A2. However,
none of those papers used a processor with more than 2 cores,
suggesting that even by combining static analysis with model
checking, it is still difficult to find a scalable method.

B. Assisting WCET estimation

Hardware approaches can ease in estimating tighter WCET.
For example, [10] proposes hardware mechanism to al-
low execution of synchronization operations such as mu-
tex locks in bounded time. The logic for the hardware
synchronization primitives (such as test-and-set, fetch-and-
increment/decrement) is nested in the memory controller.

Cache locking and cache partitioning [28] can make the
task of WCET calculation much easier. Cache partitioning
means that the tasks running on different cores use a separate
portion of the shared cache, while cache locking allows a user
to load certain data in the cache and lock it, that is, prevent
it from being replaced. The benefit of cache partitioning is
that one could perform WCET calculation for tasks running
on separate cores separately. While cache partioning can ease
the calculation of WCET, it can also reduce performance, as
due to less cache space available to a task, more cache misses
could occur.

[16] proposes synchronized cache management to ease
finding a tighter WCET. This is done by using page coloring.
Physical pages of different colors do not cause cache conflict.
Moreover, there are limited number of pages of the same
color. Accesses within the same colored memory by different
cores cause conflict only when the number of cache ways are
exhausted. The authors view each color as a shared resource,
where a lock is required to access that shared resource. For
locking, the authors implemented a synchronization protocol.

[26] propose an interference-aware arbiter, through which
the maximum time to access a shared resource by a hard real-
time task (HRT), such as shared memory has an upper bound.
The system assumes that both HRT and non-real time (NRT)
tasks are running concurrently on the system and makes sure
that the access to a shared resource by an HRT is bounded in
time to ease WCET calculation.

V. OPEN ISSUES

For single core processors, there are several tools available
for estimating WCET of tasks as discussed in [30]. However,
there is no such tool available yet for multicore processors,
as we saw that timing analysis for multicore processors is
much more complex due to increased number of states possible
due to access of shared resources. Here, we discuss the still
open issues for solving the problem of estimating WCET for
multicore systems.

A. Scalability and precision

Although the scalability of static analysis is better as
compared to model checking, the static analysis methods are
still not very scalable, as the possible number of states with
a multicore processor is still much more than that of a single
core one. There are no papers yet that use more than two cores
for experiments. All of the static analysis approaches that we
discussed use ILP for path analysis. It would be interesting to
use CLP instead, because [22] showed that CLP is much faster
than ILP on single core.

A combination of model checking and static analysis
methods could represent the most appropriate solution. One
way to solve the scalability issue would be to only perform
model checking on the compute-intensive part of the code and
use static analysis for the rest.

B. Synchronization

Almost all the methods that we discussed for finding
WCET on multicore processors ignore the problem of data
sharing between the cores, and those that do consider it have
some limitations. [6] writes back data to the main memory after
every communication slice and reads it back from the main
memory at the start of each execution slice, thus incurring a
much larger overhead as compared to keeping the shared data
in cache. [10] describes a hardware approach to bound the
time of synchronization operations, but the obvious drawback
of this method is that it needs hardware modifications, thus
impacting portability.

One possible solution is to use determinsitic execution [25]
[24], where locks for shared memory access are acquired in
such a way that there is only one schedule possible. Although



this method ensures determinism of shared memory accesses
for only a given input, [5] showed that even when an exhaustive
set of inputs is considered, deterministic execution can have
a smaller schedule space than non-deterministic approaches.
However, to employ this method, the problem of global clock
reading that [25] and [24] employ would need to be solved
first, as global clock reading can cause cache evictions and
therefore increase cache coherence activity.

VI. CONCLUSION

In this paper, we discussed the challenges of finding WCET
for multicore processors and discussed some recent approaches
in that direction. However, none of the existing approaches
have been tried and tested for more than two cores, thus raising
the concern of scalability of such approaches. Also, most of
these approaches ignore the fact that data could be shared
between the cores. Those that do, suffer from performance
or portability problems. We also gave suggestions on how this
scalability and synchronization problem could be solved.

ACKNOWLEDGMENT

This work is carried out under the BENEFIC project
(CA505), a project labeled within the framework of
CATRENE, the EUREKA cluster for Application and Tech-
nology Research in Europe on NanoElectronics.

REFERENCES

[1] http://compilation.gforge.inria.fr/2010 12 Aussois/programpage/pdfs/MAIZA.
Claire.aussois2010.pdf

[2] http://spinroot.com/spin/whatispin.html

[3] Gerd Behrmann, Re David, and Kim G. Larsen. A tutorial on uppaal. pages
200–236. Springer, 2004.

[4] Christoph Berg, Jakob Engblom, and Reinhard Wilhelm. Requirements for and
design of a processor with predictable timing. In Perspectives Workshop: Design
of Systems with Predictable Behaviour, 16.-19. November 2003, volume 03471 of
Dagstuhl Seminar Proceedings. IBFI, Schloss Dagstuhl, 2004.

[5] Tom Bergan, Joseph Devietti, Nicholas Hunt, and Luis Ceze. The deterministic
execution hammer: How well does it actually pound nails? In 2nd Workshop on
Determinism and Correctness in Parallel Programming, 2011.

[6] Frédéric Boniol, Hugues Cassé, Eric Noulard, and Claire Pagetti. Deterministic
execution model on cots hardware. In Proceedings of the 25th International con-
ference on Architecture of Computing Systems, pages 98–110, Berlin, Heidelberg,
2012.

[7] S. Chattopadhyay, C.L. Kee, A. Roychoudhury, T. Kelter, P. Marwedel, and H. Falk.
A unified wcet analysis framework for multi-core platforms. In Proceedings of the
18th Real-Time and Embedded Technology and Applications Symposium (RTAS),
pages 99–108, 2012.

[8] Sudipta Chattopadhyay, Abhik Roychoudhury, and Tulika Mitra. Modeling shared
cache and bus in multi-cores for timing analysis. In Proceedings of the 13th
International Workshop on Software &#38; Compilers for Embedded Systems,
pages 6:1–6:10, New York, NY, USA, 2010.

[9] Antoine Colin and Isabelle Puaut. A modular and retargetable framework for tree-
based wcet analysis. In Proceedings of the of the 13th Euromicro Conference on
Real-Time Systems, pages 37–44, 2001.

[10] M. Gerdes, F. Kluge, T. Ungerer, C. Rochange, and P. Sainrat. Time analysable
synchronisation techniques for parallelised hard real-time applications. In Design,
Automation Test in Europe Conference Exhibition 2012, pages 671–676.

[11] Sylvain Girbal, Miquel Moretó, Arnaud Grasset, Jaume Abella, Eduardo Quiñones,
Francisco J. Cazorla, and Sami Yehia. On the convergence of mainstream and
mission-critical markets. In Proceedings of the 50th Annual Design Automation
Conference, pages 185:1–185:10, New York, NY, USA, 2013.

[12] Andreas Gustavsson, Andreas Ermedahl, Björn Lisper, and Paul Pettersson.
Towards wcet analysis of multicore architectures using uppaal. In Proceedings
of the 10th International Workshop on Worst-Case Execution Time Analysis, pages
103–113. Österreichische Computer Gesellschaft, 2010.

[13] D. Hardy, T. Piquet, and I. Puaut. Using bypass to tighten wcet estimates for
multi-core processors with shared instruction caches. In Proceedings of the 30th
Real-Time Systems Symposium, pages 68–77, 2009.

[14] Benedikt Huber and Martin Schoeberl. Comparison of implicit path enumeration
and model checking based wcet analysis. In In Proceedings of the 9th International
Workshop on Worst-Case Execution Time (WCET) Analysis, 2009.

[15] Bach Khoa Huynh, Lei Ju, and A. Roychoudhury. Scope-aware data cache analysis
for wcet estimation. In Real-Time and Embedded Technology and Applications
Symposium, pages 203–212, 2011.

[16] Christopher J. Kenna, Jonathan L. Herman, Bryan C. Ward, and James H.
Anderson. Making shared caches more predictable on multicore platforms. In
Euromicro Conference on Real-Time Systems, 2013.

[17] Sungjun Kim, Hiren D. Patel, and Stephen A. Edwards. Using a model checker
to determine worst-case execution time. Technical report, Columbia University
Computer Science Technical Reports, 2009.

[18] Benjamin Lesage, Damien Hardy, and Isabelle Puaut. Shared Data Caches
Conflicts Reduction for WCET Computation in Multi-Core Architectures. In
Proceedings of the 18th International Conference on Real-Time and Network
Systems, page 2283, Toulouse, France, 2010.

[19] Yau-Tsun Steven Li and Sharad Malik. Performance analysis of embedded
software using implicit path enumeration. In Proceedings of the 32nd annual
ACM/IEEE Design Automation Conference, pages 456–461, New York, NY, USA,
1995.

[20] Yau-Tsun Steven Li, Sharad Malik, and Andrew Wolfe. Performance estimation
of embedded software with instruction cache modeling. In ACM TRANSACTIONS
ON DESIGN AUTOMATION OF ELECTRONIC SYSTEMS, pages 257–279, 1999.

[21] T. Lundqvist and P. Stenstrom. Timing anomalies in dynamically scheduled
microprocessors. In Proceedings of the 20th IEEE Real-Time Systems Symposium,
pages 12–21, 1999.

[22] Amine Marref and Guillem Bernat. Predicated worst-case execution-time analysis.
In Proceedings of the 14th Ada-Europe International Conference on Reliable
Software Technologies, pages 134–148, Berlin, Germany, 2009.

[23] Alexander Metzner. Why model checking can improve wcet analysis. In Rajeev
Alur and DoronA. Peled, editors, Computer Aided Verification, volume 3114 of
Lecture Notes in Computer Science, pages 334–347. Springer Berlin Heidelberg,
2004.

[24] H. Mushtaq, Z. Al-Ars, and K. Bertels. Detlock: Portable and efficient deter-
ministic execution for shared memory multicore systems. In High Performance
Computing, Networking, Storage and Analysis (SCC), 2012 SC Companion:, pages
721–730, 2012.

[25] Marek Olszewski, Jason Ansel, and Saman Amarasinghe. Kendo: efficient
deterministic multithreading in software. SIGPLAN Not., 44(3):97–108, March
2009.

[26] Marco Paolieri, Eduardo Quiñones, Francisco J. Cazorla, Guillem Bernat, and
Mateo Valero. Hardware support for wcet analysis of hard real-time multicore
systems. In Proceedings of the 36th annual international symposium on Computer
architecture, ISCA ’09, pages 57–68, New York, NY, USA, 2009. ACM.

[27] H. Shah, A. Raabel, and A. Knoll. Challenges of wcet analysis in cots multi-
core due to different levels of abstraction. In Workshop on High-performance and
Real-time Embedded Systems (HiRES 2013), 2013.

[28] V. Suhendra and T. Mitra. Exploring locking partitioning for predictable shared
caches on multi-cores. In Design Automation Conference, 2008. DAC 2008. 45th
ACM/IEEE, pages 300–303, 2008.

[29] Henrik Theiling, Christian Ferdinand, and Reinhard Wilhelm. Fast and precise
wcet prediction by separated cache and path analyses. Real-Time Syst., 18(2/3):157–
179, May 2000.

[30] Reinhard Wilhelm, Jakob Engblom, Andreas Ermedahl, Niklas Holsti, Stephan
Thesing, David Whalley, Guillem Bernat, Christian Ferdinand, Reinhold Heck-
mann, Tulika Mitra, Frank Mueller, Isabelle Puaut, Peter Puschner, Jan Staschulat,
and Per Stenström. The worst-case-execution-time problem-overview of methods
and survey of tools. ACM Trans. Embed. Comput. Syst., 7(3):36:1–36:53, May
2008.

[31] Lan Wu and Wei Zhang. A model checking based approach to bounding worst-
case execution time for multicore processors. ACM Trans. Embed. Comput. Syst.,
11(S2):56:1–56:19, August 2012.

[32] Jun Yan and Wei Zhang. Wcet analysis for multi-core processors with shared
l2 instruction caches. In Real-Time and Embedded Technology and Applications
Symposium, 2008. RTAS ’08. IEEE, pages 80–89, 2008.

[33] Wei Zhang and Jun Yan. Accurately estimating worst-case execution time for
multi-core processors with shared direct-mapped instruction caches. In Embedded
and Real-Time Computing Systems and Applications, 2009. RTCSA ’09. 15th IEEE
International Conference on, pages 455–463, 2009.


