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Abstract In this paper, we present DetLock, a runtime system to ensure deterministic
execution of multithreaded programs running on multicore systems. DetLock does not
rely on any hardware support or kernel modification to ensure determinism. For track-
ing the progress of the threads, logical clocks are used. Unlike previous approaches,
which rely on non-portable hardware to update the logical clocks, DetLock employs
a compiler pass to insert code for updating these clocks, thus increasing portabil-
ity. For 4 cores, the average overhead of these clocks on tested benchmarks is brought
down from 16 to 2 % by applying several optimizations. Moreover, the average overall
overhead, including deterministic execution, is 14 %.

Keywords Multicore · Multithreading · Determinism

Mathematics Subject Classification 68N01 · 68W10 · 68N20

1 Introduction

Single threaded programs are much easier to test, debug and maintain than their mul-
tithreaded counterparts. This is because the only source of non-determinism in them is

In this paper, we extended DetLock, whose paper was published in MuCoCos 2012 affiliated with SC12.
In this journal paper, we further improve the performance of DetLock by applying several more
optimizations. Furthermore, we evaluated the performance with several more benchmarks.
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interrupts or signals, which are rare. On the other hand, multithreaded programs have
a more frequent source of non-determinism in the form of shared memory accesses.
Due to this, multithreaded programs suffer from repeatability problems, which means
that running the same program with the same input can result different outputs. This
repeatability problem makes multithreaded programs hard to test and debug. Fur-
thermore, it is also difficult to build fault tolerant versions of these programs. This
is because fault tolerant systems usually depend upon replicas (identical copies of
redundant processes) to detect errors.

If access to shared data is not protected by synchronization objects in a mul-
tithreaded program, we can have race conditions, which may produce unexpected
results. Running a program with race conditions deterministically does not avoid the
problem of having unexpected results, but just makes sure that the same results can
be replicated.

The ideal situation would be to make a multithreaded program deterministic even in
the presence of race conditions. This is not possible to do efficiently with software alone
though. One can use a relaxed memory model where every thread writes to its own
private memory, while data to shared memory is committed only at intervals. However,
stopping threads regularly for committing to shared memory degrades performance as
demonstrated by CoreDet [2], which has a maximum overhead of 11x for 8 cores. We
can reduce the amount of committing to the shared memory by only committing at
synchronization points such as locks, barriers or thread creation. This approach is taken
by DTHREADS [15]. Here one can still imagine the slowdown in case of applications
with high lock frequencies. Moreover, since in this case committing to the shared
memory is done less frequently, more data has to be committed, thus also making it
slow for applications with high memory usage. This is why hardware approaches have
been proposed to increase efficiency of deterministic execution. Two such approaches
are Calvin [7] and DMP [4]. They use the same concept as CoreDet for deterministic
execution but make use of a special hardware for that purpose.

Since performing deterministic execution in software alone is inefficient, we can
relax the requirements to improve efficiency. For example, Kendo [13] does this by only
supporting deterministic execution for well written programs that protect every shared
memory access through locks. In other words, it supports deterministic execution only
for programs without race conditions. The authors of Kendo call it Weak Determinism.
Considering the fact that most well written programs are race free and there exist tools
to detect race conditions, such as Valgrind [12], Weak Determinism is sufficient for
most well written multithreaded programs. Therefore, DetLock also only supports
Weak Determinism.

The basic idea of Kendo is that it uses logical clocks for each thread to determine
when a thread will acquire a lock. The thread with the least value of logical clock
gets the lock. Though being quite efficient, Kendo still suffers from portability prob-
lems. First of all, it requires deterministic hardware performance counters for counting
logical clocks. Many popular platforms (including many x86 platforms) do not have
any hardware performance counter that is deterministic [16]. Secondly, Kendo needs
modification of the kernel to allow reading from the hardware performance counters
for deterministic execution.
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To overcome portability issues faced by Kendo, our tool DetLock has a completely
software-based approach of updating the logical clocks. The code for updating the
clocks is inserted through an LLVM [8] compiler pass. Since, LLVM is a popular
open source compiler framework available on many platforms, our approach is portable
across a wide range of platforms. Moreover, it requires no modification of the kernel.
We can sum up the contribution of this paper as follows.

– A portable mechanism to update logical clocks for Weak Deterministic execution
that depends upon the compiler rather than using hardware performance counters,
since many platforms have no such deterministic counters available.

– A user-space approach to update the logical clocks that does not require modifying
the kernel.

– A number of optimization techniques to reduce the overhead of the code used to
update the logical clock and improve the performance of deterministic execution.

This paper is an extension on our previous work on this topic [11]. In this paper, we
apply several more optimizations to improve the performance. This paper is organized
as follows. In Sect. 2, we discuss the background and related work, while in Sect. 3,
we give an overview of DetLock’s architecture. This is followed by Sect. 4 where we
present the optimization methods used to improve the performance of DetLock. In
Sect. 5, we evaluate the performance of our scheme, and we finally conclude the paper
with Sect. 6.

2 Background and related work

In this section, first we will discuss the state of the art for deterministic execution and
then discuss our contribution.

2.1 State of the art

Single threaded programs are mostly deterministic in behavior. We say mostly because
interrupts and signals can introduce non-determinism even in single threaded pro-
grams. However, these non-deterministic events are rare. On the other hand, in mul-
tithreaded programs running on multicore processors, shared memory accesses are a
frequent source of non-determinism.

One way to ensure determinism of multithreaded programs is to write code for them
in a deterministic parallel language. Examples of such languages are StreamIt [14]
and SHIM [5]. The disadvantage of this approach is that porting programs written
in traditional languages to deterministic languages is difficult as the learning curve
is high for programmers used to programming in traditional languages. Moreover, in
languages which are based on the Kahn Process Network Model, such as SHIM, it is
difficult to write programs without introducing deadlocks [10].

Deterministic execution at runtime can be done either through hardware or software.
Calvin [7] is a hardware approach that executes instructions in the form of chunks
and later commits them at barrier points. It uses a relaxed memory model, where
instructions are committed in such a way that only the total store order (TSO) of the

123



1134 H. Mushtaq et al.

program has to be maintained. DMP [4] uses a similar relaxed memory approach. The
disadvantage of hardware approaches is that they are restricted to the platforms they
were developed for.

Besides hardware methods, software only methods for deterministic execution also
exist. One such method is CoreDet [2] that uses bulk synchronous quantas along with
store buffers and relaxed memory model to achieve determinism. Therefore, it is sim-
ilar to Calvin, but implemented in software. Logical clocks are used for deterministic
execution. Since CoreDet is implemented in software, it has a very high overhead,
possibly upto 11x for 8 cores, as compared to the maximum 2x for Calvin. Another
similar approach is DTHREADS [15]. It runs threads as separate processes, so that
memories which are modified can be tracked down through the memory management
unit. Only at synchronization points such as locks, barriers and thread creation for
example, it updates the shared memory from the local memories of the threads. There-
fore, it avoids the overhead of using bulk synchronous quantas like CoreDet and also
does not have the need to maintain logical clocks like CoreDet. However, the overhead
for programs with high lock frequency or large memory usage is still very high.

Since performing deterministic execution in software alone is inefficient,
Kendo [13] relaxes the requirements by only working for programs without race condi-
tions (Weak Determinism). It does not use any hardware besides deterministic hardware
performance counters found in some processors. It executes threads deterministically
and performs load balancing by only allowing a thread to complete a synchronization
operation when its clock becomes less than those of the other threads, with ties bro-
ken with thread IDs. Clock is calculated from retired stores, is paused when waiting
for a lock and resumed after the lock is acquired. Kendo still suffers from portability
problems as it requires hardware performance counters which are deterministic. Many
platforms, including many x86 platforms, do not have any deterministic hardware per-
formance counter [16]. Moreover, Kendo requires modification of the kernel to read
from such hardware performance counters. A technique related to deterministic mul-
tithreading is record/replay. Examples of systems using this technique are Rerun [6],
Karma [1] and Respec [9].

2.2 Our contribution

As discussed in the previous section, we already have tools such as Kendo to exe-
cute multithreaded programs deterministically on multicore platforms. However, one
main bottleneck of using Kendo is that it requires deterministic hardware performance
counters, which are not available on many platforms. For evaluation of their tool, the
authors of Kendo had to specifically use the Core 2 processor, which had deterministic
retired stores counters available on it. As we can see from Fig. 1, which shows the
retired stores difference compared to the expected value, none of the listed proces-
sor besides Core 2, has a deterministic retired stores counter. Moreover, Kendo, also
requires modification of the kernel to access these performance counters.

Now imagine a scenario, where a company wants to reduce the cost of testing for
its software as well as ease maintainability of it by making it deterministic. If they
go for the Kendo technique, it would make their software non-portable as it would be
unable to run on processors which do not have any deterministic hardware performance
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Fig. 1 Determinism of retired
stores performance counter of
various processors [16]

Fig. 2 DetLock modifies the LLVM IR code by inserting code for updating logical clocks

counter. Moreover, you can expect users not wanting to modify the kernels of their
operating systems. This is where our technique is useful, as it would allow a program
to run on every machine, without requiring to modify the kernel.

This work is an extension of our previous work [11] on this topic. By applying new
optimizations, we were able to further reduce the overhead of clock updating code
inserted by our compiler pass, and improve performance of deterministic execution.

3 Overview of the architecture

In this section, we discuss the architecture of DetLock and the application programming
interface (API) that it provides to the programmer.

3.1 Architecture

We use Kendo’s algorithm to perform deterministic execution. However, unlike Kendo
which requires deterministic hardware performance counters, which are not available
on many platforms, we insert code to update logical clocks at compile time. This
also means that we do not need to modify the kernel which is required by Kendo to
read from performance counters. Figure 2 shows the point of compilation where the
DetLock pass executes, which is between the point where the LLVM IR (intermediate
representation) code is translated to the final binary code by the LLVM backend.

The unit of our logical clock is one instruction. For instructions which take more than
one clock cycles, the logical clock is updated according to the approximate number
of clock cycles they take. However, to keep our discussion simple, in this paper, for
DetLock one instruction equals one logical clock count.

The Kendo’s method of acquiring locks deterministically is illustrated in Fig. 3. In
this figure, an example is given for a process with two threads. If Thread 1 is trying
to acquire a lock when its logical clock is 1,029, it will not be able to do so if Thread
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Fig. 3 Kendo’s method of acquiring locks for deterministic execution

2’s clock is at 329, because of being less than 1,029. But, as soon as Thread 2’s clock
get past 1,029, Thread 1 will acquire the lock.

So basically our purpose is not only to reduce the code that updates the clocks but
also to update the clocks as soon as possible. In fact, at compile time it is possible
to increment the clock even before instructions are executed. For example, if we
know that a leaf function (a function with no function calls) executes fixed amount of
instructions, we can increment the logical clock before executing any instruction of
that function.

Therefore in all optimizations we apply, besides trying to reduce the clock update
overhead, we also try to increment the clock as soon as possible. Without any opti-
mization, we update the clock at start of each of the basic block of LLVM IR. If there
is a function call inside that block, we split that block, such that each block either
contains no function call or starts and ends with a function call. Then we update the
clock at the top of each block if that block contains no function calls, otherwise we
update the clocks in between the function calls. By splitting blocks in such a way, we
can more easily apply optimizations.

3.2 Application programming interface

We provide our own functions for locks, barriers and thread creation for deterministic
execution. They internally use the pthread library. However, it is not necessary for
the programmer to modify the code to use them. A header file is provided by us that
replaces the definition of these functions with ours. The header file can be specified in
the makefile, thus making it unnecessary to modify source code files. Moreover, the
code to initialize the clock for the main thread is inserted by the compiler.

It has to be noted that since our method depends upon the compiler to insert clocks
for deterministic execution, it is not possible to increment the clocks in functions which
are implemented in a library (since they have not been compiled with our pass). This
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problem also exists for functions which are built in the compiler, as LLVM generates
no code for them at IR level. For many built-in functions such as memset and math
functions, we just keep an estimate of the instructions they take and increment the clock
accordingly. For memset and other functions which depend upon the size parameter, we
increment the clock considering the size parameter. Since most built-in functions are
simple, we can use an estimate for them. We provide a text file (instructions estimate
file) for such purpose, where these functions can be defined with the approximate
number of instructions they take along with their dependency on input parameters.
However, this is not always possible for functions in shared libraries. One way is to
ignore them and the other way is to add them in the instructions estimate file if possible
(if the instructions count for them can be approximated satisfactorily).

Another concern are functions which internally use locks, such as malloc. For such
functions, we provide our own implementation which replaces the locks with our own
deterministic locks.

4 Performance optimizations

We apply several optimizations to reduce the clock updating overhead. Moreover, we
try to increment clocks as soon as possible so that waiting time for threads who are
waiting for other threads’ clocks to go past them is reduced. Clock updating code is
removed from the blocks whose clocks are made zero by our optimizations. In this
paper, we highlight such blocks with gray color. To illustrate the effect of our opti-
mizations, we are going to show how the optimizations change example functions. The
clocks associated with each block are shown at the right of the assignment operators.
Moreover, a block in parallelogram shape implies that it contains one or more function
calls. The optimizations are discussed below.

4.1 Optimization 1 (function clocking)

As discussed in Sect. 3.1, the sooner the clocks are updated, the better, and leaf func-
tions with only one basic block are perfect candidates for such an optimization. Clocks
can be removed from such functions and instead be added to the basic blocks calling
such functions. Besides functions with only one blocks, our method also considers
leaf functions with multiple blocks, given that there are no loops in such functions. If
our pass sees that all possible paths taken by such a function do not differ by much, we
calculate the mean value for all possible paths and use that mean value to update the
clock. The criteria we have set is that the minimum and maximum clock difference of
all possible paths should not be more than the mean value divided by 2.5. Moreover
the standard deviation between all the different paths should not be greater than one
fifth of the mean value.

We call such leaf functions as clocked functions. By intuition, we can judge that it
is also possible to clock functions which call only clocked functions. In this way, we
can even clock functions which are not necessarily leaf functions. More detail on this
optimization can be found in [11].

Previously, in [11], we did not consider the possibility of clocked functions being
called indirectly through functions pointers. In that case, since we remove the clocks
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Fig. 4 Example function before and after applying optimization 2b

of clocked functions, the clock does not get updated. To correct this problem, we create
clones of clocked functions. The clock from cloned clock functions is removed but
clock updating code is inserted in the original clocked functions. Wherever our pass
finds a direct call of a clocked function, it replaces it with call to the cloned version
of that clocked function. However, since indirect calls still call the original clocked
function, the clock does get updated properly even with indirect calls.

4.2 Optimization 2 (conditional blocks)

This optimization deals with if-else and switch statements and consists of four parts,
which are described below.

4.2.1 Opt 2a: pushing clocks upwards

This optimization is based on the principle that if a block has two or more successors,
we can make the successor with the least clock zero and subtract its original value
from all its siblings, while also adding its original clock to the parent block. Another
principle of this optimization is that if all predecessors of a merge block have that
merge block as their only successor, the clocks could be shifted from the merge node
to them. More details about this optimization can be found in [11].

4.2.2 Opt 2b: cloning blocks

In this optimization, we clone blocks where possible to reduce the number of clock
updates. For example, for the example function shown in Fig. 4, block if.end6 is cloned,
so that for the paths formed by blocks split.entry1, if.then4 and if.end6, clock needs
to be updated only once, rather than twice or thrice.
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Fig. 5 Example function before and after applying optimization 2c

Fig. 6 Part of an example function before and after applying optimization 2d

4.2.3 Opt 2c: adding additional blocks

In this optimization, we add new blocks where necessary to reduce the clock updating
code. To illustrate this, an example function before and after applying this optimization
is shown in Fig. 5. Three new blocks are added to update the clocks removed from the
three blocks shown in gray in the optimized version. The accumulated clock of those
three blocks is also added to the clock of block if.end. With this optimization, for the
path from for.cond5 to if.end, clock is updated only twice, while in the unoptimized
version it is updated 5 times. Note that the block (. . .) here represents a bundle of basic
blocks, which we do not show due to space limitations.

4.2.4 Opt 2d: pushing clocks downwards

In this optimization, we update the clock from top to bottom. This optimization can
remove clocks more efficiently in some cases as compared to Opt 2a. However, Since
we try to update clocks as soon as possible, we apply this optimization only for paths
where the accumulated clock is less than a certain value. Part of an example function,
before and after applying this optimization is shown in Fig. 6. We can see that with
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this optimization, for the part of the example function, clock is only updated once,
rather than twice or thrice in the original version of that function.

4.3 Optimization 3 (averaging of clocks)

This optimization is based on the fact that paths emanating from a block in a func-
tion could be matching close together in total clock values. One can imagine it as
a specialized case of the optimization 1 (function clocking). For function clocking,
we just considered the paths emanating from the entry block, but here we also check
for paths besides the entry block. When forming paths for a block, we only consider
blocks dominated by it (execution must pass through the dominating block to reach
its dominated blocks). More details about this optimization can be found in [11].

4.4 Optimization 4 (loops)

This optimization deals with loops. The different types of optimization we applied on
loops are discussed next.

4.4.1 Opt 4a: forwarding clocks from blocks with backedges

This optimization considers the fact that loops are often executed multiple times. So
for example, if you have a for loop, the increment operation will take place just before
the next iteration. Therefore we check for back edges and if we see that the clock of
the block from which the backedge is originating is less than a certain threshold value
and is also less than the clock of the block it is jumping to, we merge its clock value
to that block’s clock and remove clock updating code from it.

4.4.2 Opt 4b: incrementing clocks before for loops

This optimization is based on the fact that for many for loops, the number of iterations
can be checked at compile time. So for example, if at compile time, we can see that a
for loop is executed n number of times, we can update the clock ahead of time. First
our pass figures out the least number of instructions an iteration in a loop will execute.
This number multiplied with n is incremented before execution of the for loop. Inside
the for loop, we update the clock only where it is necessary.

An example function before and after applying this optimization is shown in Fig. 7.
Here, the minimum number of instructions executed by the for loop for an iteration is
21. Therefore it is multiplied by the number of iterations N of the for loop.

The pseudocode for optimization 4b is shown in Fig. 8. For each block in a func-
tion, it checks if its a loop header. This optimization is only applied for inner most
loops, as they are usually the most compute intensive types of loops. The meet-
sOpt4bRequirements checks if all blocks inside the loop are at the same level, as
well as checks other things, such as, no block has unclocked functions. If all the
requirements are met, the optimization is applied. preds here are the predecessor
blocks of the loop header. For example, in the example function shown in Fig. 7, block
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Fig. 7 Example function before and after applying optimization 4b

for.cond2.preheader.lr.ph is the predecessor. If there is only one predecessor, which
have no other successor than the loop header, the clock is added to that predecessor
block, as shown by the code on line 14 to 19. Otherwise, a block is added in between
the loop header and its predecessors to update the clock. The be block returned by
meetsOpt4bRequirements is the block that contains the backedge, which is for.inc.2
in this case. This is passed as a parameter to the updateClocksInLoop function, which
shifts the constant clock value of the loop, that is, the least number of instructions the
loop will always execute in an iteration, to the header block. The value in the header
block is then shifted to the predecessor block. In this case, the updateClocksInLoop
function added 15 to the original clock of for.cond2.preheader, which is later shifted
to the predecessor block for.cond2.preheader.lr.ph.

UpdateClocksInLoop works by first concentrating clock to all merge nodes which
are guaranteed to be executed in an iteration. Such blocks are for.inc, for.inc1 and
for.inc2 in the example function. The list of all blocks preceding such a merge node
is checked to see which one has minimum value, and that minimum value is added
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Fig. 8 Pseudocode for optimization 4b

to such merge node. For example, if.then and if.else are blocks preceding the merge
node for.inc. if.then17 is not included in the list since its being dominated by if.else,
which is already preceding the merge node in question. Since if.else has the minimum
clock of the two, its clock (1) is added to for.inc, making clock of for.inc 6, while
making clock of if.else 0, and also subtracting 1 from if.then. The same is done with
the other two merge nodes. After doing this step, for.inc and for.inc1 contain clock
values of 6 each while for.inc2 contain clock value of 3. So, overall these three merge
nodes contain clock value of 15. This clock value is removed from all these nodes and
shifted to for.cond2.preheader to make its clock 21 from 6, while making the clocks
of these merge nodes 0. Later on, clock is removed from for.cond2.preheader and
updated before executing the loop in for.cond2.preheader.lr.ph by multiplying it with
the number of times the loop will execute.

4.4.3 Opt 4c: cloning while loops

It is not possible to apply optimization 4b, where the number of iterations of a loop
could not be determined at compile time, which is usually the case with while loops. If
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Fig. 9 Part of an example function before and after applying optimization 4c

a while loop executes constant number of instructions in each iteration, we clone that
while loop, so that clock is updated at every other iteration rather than each iteration.
A part of an example function before and after applying this optimization is shown
in Fig. 9. Note that even if we applied optimization 4a here, the clock would have
been updated after 8 instructions. But by cloning these loops, it is executed after 16
instructions. Note that we also add blocks to update the clock if the while loop exits
on an odd iteration.

5 Performance evaluation

We tested performance of DetLock with 8 benchmarks, 6 from SPLASH-2 [17] and
2 from PARSEC [3]. All benchmarks were run on a 2.66 GHz quad core machine
and compiled with maximum optimization enabled (level -O4 for clang/llvm). We
first discuss the results. Afterwards, we show how clocking instructions ahead of time
improves the deterministic execution.

5.1 Results

Table 1 shows the performance overheads with different optimizations and Fig. 10
gives a pictorial view of that overhead. In Table 1, along with the results with different
optimizations, we also show the original execution times, locks per second and number
of clocked functions for each benchmark. Note that all the times are in milliseconds.
The left bars in Fig. 10 show the performance overhead without applying optimizations,
while the bars in the middle show performance after applying optimizations of [11]
only. The bars on the right show the overhead after applying all the optimizations,
including those mentioned in this paper. The lower portion of the bar is the overhead
of the inserted clocks updating code only, while the upper portion shows the additional
overhead for deterministic execution.

From Fig. 10, we can see that new optimizations introduced in this paper improved
performance for several benchmarks as shown by the decrease in size of the right bars.
The improvement relative to [11] is most significant for barnes, water and swaptions.
For water for example, the overhead of deterministic execution is brought down from
20 to 0 %. Table 1 show performance with different optimizations. The optimization 4
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Fig. 10 Overheads

is shown combined with optimization 1 in the table, because some loops in the bench-
marks consist of clocked functions, and without adding optimization 1, the impact of
optimization 4 could not be seen in such cases. Overall, we see that all optimizations
work to reduce the clock updating overhead as well as the deterministic execution
overhead. However, from the average column, we can see that while optimization 2
reduced the clock update overhead more than optimization 4 and 1 combined, the later
reduced the overall time, including deterministic execution more than optimization 2.
The reason for this is discussed next.

5.2 Effect of updating clocks ahead of time

From Table 1, we can see that optimization 4 and 1 combined reduce the overall
deterministic execution time more than optimization 2. This is even when optimization
2 reduced the clock updating overhead more than optimization 4 and 1 combined. The
reason for this is because updating clocks ahead of time reduces waiting time of a thread
which is in the process of acquiring a lock, as the clocks of other threads progresses
more quickly in this way (even before execution of some instructions), thus allowing a
waiting thread’s clock to reach the minimum global more quickly. This effect is most
pronounced for swaptions and radiosity. For swaptions for example, clock updating
overhead with optimization 2 is 7 % while overall deterministic execution overhead
with Optimization 2 is 29 %. On the other hand, with optimization 4 and 1 combined,
the clock updating overhead is 3 % while overall deterministic overhead is only 13 %,
which means an increase of only 10 % overhead over clock updating overhead as
compared to an increase of 22 % with optimization 2. Similarly, for radiosity, there is an
increase of 26 % (46–20 %) overhead over clock updating overhead with optimization
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4 and 1 combined as compared to an increase of 48 % (57–9 %) with optimization 2.
This is because optimizations 4 and 1 can more aggressively increment clock ahead
of time as compared to optimization 2, as optimization 4 and 1 work at function and
loop levels, whereas optimization 2 works only at basic blocks level.

6 Conclusion

In this paper, we described our tool DetLock, which consists of an LLVM compiler
pass to insert code for updating logical clocks for Weak Deterministic execution. Since
our scheme does not depend on any hardware or modification of the kernel, it is very
portable. Moreover, we apply several optimizations to reduce the amount of code
inserted for clock updating. Furthermore, since the algorithm for Weak Determinism
that we use gives lock to the thread with minimum logical clock, we try to increment
the clocks of threads as soon as possible so that threads waiting for locks have to wait
less. We increment the clocks even before instructions are executed if possible. On
average, the overhead of inserting clock updating code is only 2 %, whereas the overall
overhead including deterministic execution is 14 % for selected benchmarks. This is
an improvement over our previous work [11], with which on average, the overhead of
inserting clock updating code is 6 %, while overall overhead including deterministic
execution is 20 %.
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