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Abstract—Recent progress in processing speeds, network
bandwidths, and middleware technologies have contributed
towards novel computing platforms, ranging from large-scale
computing clusters to globally distributed systems. Conse-
quently, most current computing systems possess different
types of heterogeneous processing resources. Entering into
the peta-scale computing era and beyond, reconfigurable
processing elements such as Field Programmable Gate Arrays
(FPGAs), as well as forthcoming integrated hybrid computing
cores, will play a leading role in the design of future
distributed systems. Therefore, it is important to develop sim-
ulation tools to measure the performance of reconfigurable
processors in the current and future distributed systems. In
this paper, we propose the design of a simulation framework
to investigate the performance of reconfigurable processors
in distributed systems. The framework incorporates the par-
tial reconfigurable functionality to the reconfigurable nodes.
Depending on the available reconfigurable area, each node
is able to execute more than one task simultaneously. Fur-
thermore as a case study, we present a simple task schedul-
ing algorithm to verify the functionality of the simulation
framework. The proposed algorithm supports the scheduling
of tasks on partially reconfigurable nodes. The simulation
results are based on various experiments and they provide a
comparison between full (one node-one task mapping) and
partial (one node-multiple tasks mapping) configuration of
the nodes, for the same set of parameters in each simulation
run. Results suggest that the average wasted area per task
is less as compared to the full configuration, verifying the
functionality of the simulation framework.

Index Terms—Simulation framework; Distributed systems;
Partial reconfiguration; Reconfigurable resources; Resource
management.

I. Introduction

In recent decades, many new computing platforms have

emerged due to research and development in processing

resources, network speeds, and middleware services [1][2].

These platforms range from large-scale clusters to globally

dispersed grid systems and contain diverse and heteroge-

neous processing resources of different number and types.

These large-scale distributed computing systems are expected

to possess millions of cores providing performance in peta-

scale [3][4]. The growth in computing power in distributed

systems has created new paradigms and opportunities for

exploration of novel methods to utilize these resources in

effective manners [5]. Nevertheless, this scenario leads to an

enormous complexity with many design and optimization al-

ternatives for resource management, application scheduling,

and run-time systems.

In the design of next-generation distributed systems

and supercomputers, acceleration resources such as FPGAs,

Graphics Processing Units (GPUs), and upcoming integrated

hybrid computing cores will play a significant role [6][7].

Moreover, GPUs, FPGAs, and multi-cores provide impressive

computing alternatives, where some applications allow sev-

eral orders of magnitude speedup over their General-Purpose

Processor (GPP) counterpart. Therefore, future computational

systems will utilize these resources to serve as their main

processing elements for appropriate applications and in some

cases, as co-processors to offload certain compute-intensive

parts of applications from the GPPs.

Advances in reconfigurable computing technology (e.g.,

FPGAs) over the past decade have significantly raised in-

terest in high-performance paradigm [8]. Some of the char-

acteristics of reconfigurable hardware include, configura-

bility, functional flexibility, power efficiency, ease of use,

extensibility (adding new functionality), (reasonably) high

performance, hardware abstraction, and scalability (by adding

more soft-cores). Due to these reasons, multi-FPGA systems

are quite an impressive solution for high-performance and

distributed computing systems [9][10]. In many research

fields of high-performance computing, FPGAs have emerged,

either as custom-made signal processors, embedded soft-core

processors, multipliers, prototyping designs, systolic arrays,

or custom computing architectures. With the emergence

of high-level C-like programming environments, FPGAs are

continuously improving. However, their design complexity

and utilization in a high-performance distributed system are

open to innovative research. Various different approaches

include efficient resource management, design-space explo-

ration, hardware-software co-design, job scheduling algo-

rithms, reconfigurability, and simulation and synthesis frame-

works. With the prospects of including new processing

elements (such as FPGAs) in distributed systems, application

task scheduling in these systems has become more pertinent

and significant beyond its original scope. Similarly, new

methodologies like partial run-time reconfiguration for high-

performance reconfigurable computing are being exploited

[11]. In partial reconfiguration, a portion of an FPGA is
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dynamically modified while the remaining regions continue

to operate without any disruption. It allows an efficient

utilization of FPGA by only configuring the required func-

tionality at any point in time.

In our previous paper [12], we presented the design

of a simulation framework for the resource management

and tasks scheduling for dynamic reconfigurable processing

nodes in a distributed computing system. We termed our

proposed simulation framework as Dynamic Reconfigurable

Autonomous Many-task Simulator (DReAMSim). In this

work, we have extended our simulation framework to provide

the following contributions:

• Design and implementation to incorporate partial re-

configurable functionality to the reconfigurable nodes in

DReAMSim. A node region can be reconfigured at run-

time while the other regions are already configured and

are executing some tasks. In this way, a particular node

can accommodate more than one task simultaneously,

depending upon its available reconfigurable area.

• Design of efficient data structures to maintain the dy-

namic statuses of the nodes.

• As a case study, a task scheduling algorithm is pro-

posed and implemented to verify the functionality of

the simulation framework. The algorithm supports the

scheduling of tasks on partially reconfigurable nodes.

The simulation results are based on various experiments, and

they provide a comparison between full (one task per node)

and partial (multiple tasks per node) reconfiguration of the

nodes, for the same set of parameters in each simulation run.

Results suggest that the average wasted node area per task in

case of partial reconfiguration is less as compared to full

reconfiguration, verifying the functionality of the simulation

framework.

The remainder of the paper is organized as follows. Section

II presents related work and the basic concept. Section III

presents the top-level organization of the DReAMSim simu-

lation framework. In Section IV, we detail the formal system

model and the design and implementation the DReAMSim.

In Section V, we propose a task scheduling algorithm which

takes into account the partial reconfigurability of the nodes in

a distributed system. The simulation environment and results

are discussed in Section VI. Finally, Section VII provides the

conclusions and future work.

II. Related Work and Basic Concept

GridSim [13] and SimGrid [14] are the most notable

simulation tools for application task scheduling, grid econ-

omy, and resource management for distributed computing

systems. These tools provide extensive frameworks for mod-

eling of computing resources comprising of GPPs, with fixed

computing capacities for every simulation run. Due to this

constraint, these simulation tools can not be modified to add

reconfigurability of nodes. However, CRGridSim [15] was an

effort to extend GridSim to add reconfigurable elements in

grid systems, but the proposed extensions were limited. It

only included a speedup factor of a reconfigurable element

over a GPP, as the primary reconfiguration parameter. Many
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Figure 1: A conceptual overview of a distributed system with

reconfigurable nodes.

other significant parameters, such as area utilization, re-

configurability, reconfiguration delay, hardware technology,

application model, and application size were not considered.

In our previous work [12], we proposed the design of a

simulation framework for reconfigurable processors in large-

scale distributed systems. A user can model reconfigurable

processing elements and implement various scheduling poli-

cies. In the current work, we have extended our framework

to include the option for partial reconfigurability among the

nodes. Hence, a node can be reconfigured for more than one

configurations at one time.

Figure 1 depicts a conceptual overview of a large-scale dis-

tributed system containing reconfigurable processing nodes,

as well as GPPs. It consists of a Resource Management System

(RMS) which handles the monitoring, load distribution, appli-

cation task scheduling among different nodes in the system.

It can be noted that each reconfigurable node contains a

particular configuration (denoted as Ci ) of a processor of

a certain type (Ptype). It can execute an application task,

which requires a preferred processor configuration (denoted

as Cpref ). An existing Ci on a node can be changed by

sending a bitstream of a different configuration. The RMS

distributes the tasks onto suitable nodes specified by some

task scheduling algorithm. If a task prefers a certain processor

configuration (Cpref ), then the RMS reconfigures a suitable

node by sending the corresponding bitstream and sends the

task for processing.

III. The DReAMSim Simulation Framework

Figure 2 depicts the top-level organization of the DReAM-

Sim simulation framework. There are 4 different subsystems

in the proposed framework; input, information, core, and

output subsystems. Each subsystem is composed of various

modules.

The input subsystem: it is the input interface to al-

low user inputs to the framework. It allows a user to

set application specifications as well as user-defined resource

specifications. It generates synthetic tasks which may require

a particular processor configuration (Cpref ) and required

estimated time for the execution of tasks. It can also support
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Figure 2: DReAMSim top-level organization.

real workloads and user constraints. A user can specify

the task arrival rate and arrival distribution functions. The

User-defined resource specification module is responsible for

generating nodes and different processor configurations. It

can produce nodes with various reconfigurable area sizes.

Reconfiguration method (full or partial reconfiguration) can

also be set. For simulation purposes, a user can specify the

node upper and lower area limits. For a more realistic study,

these limits can be specified according to the real area sizes of

the reconfigurable devices available in the market. Similarly,

a variety of processor configurations can be generated. Again

for a realistic experiment, different configurations of Ptype

and their corresponding parameters can be specified allowing

various processor options for application tasks.

The information subsystem: this subsystem provides

resource information during a particular simulation. The

job submission manager simulates the task arrivals corre-

sponding to a user-defined task arrival rate and distribution

function. The resource information manager maintains all

sorts of information about the nodes. This consists of static

and dynamic information. The static information contains

fixed reconfigurable area, hardware family or type, etc. The

dynamic information includes the current set of processor

configurations, the state (currently idle or busy), number of

currently running tasks, available reconfigurable area etc.

This information is required by various other modules, such

as the task scheduling manager or monitoring module to

perform different jobs.

The core subsystem: this subsystem is the core of the

framework and it consists of a task scheduling manager,

a monitoring module, and a load balancing module. The

task scheduling manager can implement different scheduling

policies to schedule tasks onto various nodes. Due to the

dynamic nature of a distributed system with reconfigurable

nodes, the task scheduling process becomes a significant

matter. First of all, as a result of the large number of nodes, it

is hard to address issues such as load balancing when a task

is scheduled to the available set of nodes. Secondly, since

the nodes are reconfigurable and the system is dynamic,

the scheduling should be adaptive. For these reasons, the

framework contains a load balancing module. The current

states of different nodes can be checked by the monitoring

module.

The output subsystem: contains an XML simulation

report generator which accumulates the statistics associated

with various performance metrics that are produced by the

framework and are gathered during each simulation run.

IV. Design and Implementation

A. System Model

In this section, we provide a formal system model by

defining node, configuration, and task models. A typical

reconfigurable node can be defined by the following tuple:

Nodei (TotalArea,AvailableArea,C, family, caps, state)
where C = {C1, C2, · · · , Cm}

(1)

Where C represents a set of current processor config-

uration on the node and i represents the node number.

TotalArea is the total reconfigurable area of the node i,
whereas, AvailableArea is the remaining reconfigurable

area on the node, after it is configured with m configurations.

A device family defines the group of compatible nodes

which share similar types of resources and performance.

Furthermore, caps represent a list of different capabilities

available on a node. For example, a node’s caps may include

hardware resources, such as embedded memory, DSP slices,

configuration bandwidth, etc. Finally, state represents the

status of the node i: busy or idle. Subsequently, the general

configuration of a processor to be configured on a node, is

represented as:

Ci (ReqArea, Ptype,param, BSize, ConfigT ime)
where param = {parameter1, · · · , parameterk} (2)

Where i represents the configuration number and ReqArea
is the total reconfigurable area required by the configuration

i. Ptype represents the processor configuration required by

tasks and param is a set of parameters representing a list

of attributes of a particular Ptype processor which provide its

architectural details. Some examples of Ptype are multipliers,

systolic arrays, soft-core processors, and custom-made signal

processors. One such example is a parameterizable soft-core

ρ-VEX VLIW processor presented in [16]. It has been imple-

mented on FPGA and can be adopted to several architectural

parameters. These parameters include the number and

types of functional units (multipliers and ALUs), cluster cores,

the number of issues, or the number of memory slots. Finally,

BSize represents the file size of bitstream for a configuration

Ci. Similarly, an application task is defined by the following

tuple:
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Figure 3: Dynamic data structures in the resource information system.

Taski (trequired, Cpref , data) (3)

Where i represents the task number, trequired is the ex-

ecution time required by the task i if it is processed on

its preferred processor configuration (Cpref ), and data is

the input data of the task. Cpref is the preferred processor

configuration required by task i. This configuration is a

specific processor implemented on a reconfigurable node.
Based on the definitions of above tuples, the

AvailableArea of a node can be calculated as follows:

AvailableArea =

⎧⎨
⎩

TotalArea ifm = 0

TotalArea−
m∑
i=1

ReqAreai ifm > 0

(4)
Where m represents the cardinality of the set C in

the tuple 1, and it provides the total number of current

configurations of the node.

B. Dynamic Data Structures for Resource Management

We designed and implemented effective and dynamic data

structures to provide a simple mechanism for the mainte-

nance of information corresponding to dynamically recon-

figurable nodes in the resource information manager. Figure

3 depicts the proposed data structure. Information regarding

all reconfigurable nodes in the system is maintained by a

data structure denoted by node list. Each item (node) in this

list updates the information about a node and it contains a

config-task-pair list, TotalArea, AvailableArea, and other

node attributes. It also contains two pointers namely, Inext

and Bnext. As depicted in the Figure 3, these pointers are

used to link all the idle or busy nodes of a certain con-

figuration. The config-task-pair list is another data structure

which maintains the configuration-task pairs on a particular

node. It keeps track of all the configurations on a node.

Whenever a new configuration is made on the node, a new

configuration-task entry is created in the list. In this figure,

all the actively running tasks are represented by Tj . If there

is no currently running task on a particular configuration

on the node, then it is represented by NULL. The maximum

number of configuration-task pairs on a node depends on the

AvailableArea of the node.
Each configuration instantiates a typical processor config-

uration of type Ptype, its ReqArea, and a list of its param.

Additionally, it consists of two pointers Idle start and Busy

start. Idle start (or Busy start) points to the first node of the

linked list of the idle nodes (or busy nodes) configured with

this particular configuration.
The main reason to propose these pointers and linked lists

is to maintain the dynamic behavior of the nodes which

are expected to contain various configurations at different

times. In addition, these linked lists ease up the search effort

needed to get the state information of a certain node. This

search effort can become especially time-consuming, if the

total number of nodes is very large.

C. DReAMSim Class Design

A class diagram of the DReAMSim framework, represented

by using simple, unified modeling language (UML) notation,

is depicted in the Figure 4. It provides details of different

classes implemented in order to generate tasks, nodes, con-

figurations, scheduler, lists, and simulation environment. The

framework implements the following important classes:
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Task

-TaskNo: int
-NeededArea:long int 
-PrefConfig:int 
-AssignedConfig: int 
-CreateTime:long long int 
-StartTime: long long int 
-CompletionTime:long long int 
-RequiredTime:long long int 
-SusRetry:long long int 

+ CreateTask()
+ SendTaskToNode()
+DiscardTask()
+TaskCompletionProc()
+FindPreferredConfig()
+FindClosestConfig()

Node

-NodeNo: int
-Config_Task_List: Config_Task_Pair[]
-Config_Task_Entries: long int
-TotalArea: long int
-AvailableArea: long int 
-ReconfigCount: long int 
-NetworkDelay: long int 
-INext: Node * 
-BNext: Node *

+InitNodes()
+SendBitstream()
+MakeNodeBlank()
+MakeNodePartiallyBlank()
+AddTaskToNode()
+RemoveTaskFromNode()

Config

-ConfigNo: int
-ConfigTime: int
-RequiredArea: int
-IdleHead: Node *
-BusyHead: Node *

+InitConfigs()

ConfigTaskPair

-task: Task *
-config: Config *

SusList

-Item: Task *
-Next: SusList *

+AddTaskToSuspQueue()
+RemoveTaskFromSuspQueue()
+SearchSuspQueue()

RNG

+poisson(double):int 
+binomial(double, int):int 
+gamma(double, double )
+multinom(uint, double,uint)
+rand_int32()

DreamSim

-TimeTick: long long int 
-TotalTasks: int   
-TotalConfigs: int  
-TotalNodes:int
-TotalCompletedTasks: int  
-TotalCurGenTasks: int 
-TotalCurSusTasks: int 
-TotalDiscardedTasks: int 
-Total_Wasted_Area: long int 
-Total_Search_Length_Scheduler: long int 
-Total_Task_Wait_Time:long int 
-Total_Tasks_Running_Time:long int 
-Total_Configuration_Time:long int 
-NextTaskMaxInterval: int 
-NodelowA,NodeHighA: int 
-TasklowA,TaskHighA: int 
-TaskReqTimeLow,TaskReqTimeHigh:int 
-ConfigTimeLow,ConfigTimeHigh: int 
-NWDLow,NWDHigh:int 

+IncreaseTimeTick()
+DecreaseTimeTick()
+RunScheduler()
+MakeReport()

Scheduler

-NodeNo: int

+FindAnyIdleNode()
+FindBestNode()
+FindBestPartiallyBlankNode()
+FindBestBlankNode()

IdleList

-Item: Node *
-Next: IdleList *

+AddNodeToIdleList()
+RemoveNodeFromIdleList()
+SearchIdleList()

BusyList

-Item: Node *
-Next: BusyList *

+AddNodeToBusyList()
+RemoveNodeFromBusyList()
+SearchBusyList()

List

-Item: Node *
-Next: List *

Figure 4: UML model of DReAMSim

• Node: implements a typical reconfigurable node and

its capability is defined by TotalArea, AvailableArea,

family, and caps. Some important methods of this class

are described in the following:

– InitNodes(): initializes the number of nodes defined

by the user, and allots a TotalArea to each node

within the upper (NodeUpperA) and lower (Node-

LowerA) area limits.

– SendBitstream(): adds a configuration on the node,

adjusts the AvailableArea according to the

ReqArea of the new configuration, and increases

the reconfiguration count on the node.

– MakeNodeBlank(): removes all the configurations on

a particular node, and equates the AvailableArea
to the TotalArea.

– MakeNodePartiallyBlank(): removes one or more ex-

isting configurations on a particular node, and re-

adjusts the AvailableArea.
– AddTaskToNode(): adds a task to a particular node,

if it contains the required configuration of the task.

– RemoveTaskFromNode(): removes a task from a par-

ticular node.

• Task: this is used to represent a task, and is characterized

by trequired,Cpref , and data. It contains the following

methods:

– CreateTask(): creates a new task and its attributes,

such as tcreate, trequired, and its Cpref .

– SendTaskToNode(): sends a task to a particular node,

and calculates its start time (tstart), completion time

(tcompletion), and waiting time (twait).

– TaskCompletionProc(): it is invoked by the scheduler,

after a task finishes executing on a particular node.

It releases the node to make it available for succeed-

ing tasks. It also updates the corresponding idle and

busy lists. Additionally, it reports some statistics

after the completion of the task.

– FindPreferredConfig(): searches for the Cpref of a

particular task among all the configurations in the

configurations list. Currently, a simple linear search

is employed but it can be made more intelligent.

– FindClosestConfig(): searches for the CClosestMatch

of a particular task if its Cpref is not available in the

configurations list. The criteria for the CClosestMatch

is that its ReqArea is the minimum among all

configurations with a ReqArea more than the

ReqArea of the Cpref .

• Config: this class represents a typical configura-

tions with attributes such as, its ReqArea, Ptype,

parameters, BSize, and ConfigT ime. It consists of

the following method:

– InitiConfig(): initializes the configurations list and

assigns ReqArea and ConfigT ime to all the con-

figurations within a user-defined range.

• ConfigTaskPair: it is a dynamic data structure which is
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used to keep track of all tasks and their corresponding

configurations on a certain node.

• IdleList and BusyList: these classes maintain linked lists

for managing information corresponding to idle nodes

with a particular configuration. If a task finishes execu-

tion on a certain node, then it is added to the idle list of

nodes (and removed from the busy list of nodes) with the

configuration required by the task. These classes contain

the following important methods:

– AddNodeToIdleList() and AddNodeToBusyList(): adds

a node to the idle (or busy) list of nodes with a

particular configuration.

– RemoveNodeFromIdleList() and RemoveNodeFromBu-

syList(): removes a node from the idle (or busy) list

of nodes with a particular configuration.

– SearchIdleList() and SearchBusyList(): used to tra-

verse the idle (or busy) list of a particular configu-

ration.

• Scheduler: implements various task scheduling policies

defined by the user and contains the following methods:

– FindBestNode(): it is invoked to search the best-

node match for a given task, among all the idle

nodes configured with its Cpref . The criteria for the

best-match depends on the scheduling strategies.

For instance, best-match can be the node which

possesses the minimum AvailableArea.

– FindAnyIdleNode(): search for any idle nodes con-

figured with a configuration other than the Cpref

of the task. It is explained in the Algorithm 1.

• DreamSim: it is the core class of the simulator and it

interacts with other classes to prepare the system to run

the user-defined simulations. Two important methods of

this class are given in the following:

– RunScheduler(): it simulates a certain task schedul-

ing policy implemented in the scheduler.

– MakeReport(): accumulates the statistical data dur-

ing the simulations.

• SusList: this class implements the suspension queue

data structure to hold suspended tasks and contains the

following methods:

– AddTaskToSusQueue(): implements a simple queue

data structure which holds the tasks, put in sus-

pension by the scheduler.

– RemoveTaskFromSusQueue(): each time a node fin-

ishes executing a task, the suspension queue is

checked using this method to determine if a suitable

task is waiting in the queue which can be executed

on the node. It removes the task from the suspen-

sion queue and sends it the node.

– SearchSusQueue(): traverses the suspension queue to

search a particular task.

• RNG: it is a random number generator class which is

based on the Ziggurat Method [17] using the algorithm

described in [18] for generating Gamma variables. It

provides several random number distributions, such as

Poisson, Binomial, Gamma, Uniform random, etc. The

simulator uses these random number distributions to

generate configurations, nodes, and task arrivals.

The method MakeReport() in the DReAMSim class accu-

mulates the statistical data at the end of each simulation.

Table I provides some important statistics generated by the

simulator. Total scheduler workload is the sum of search steps

taken by the simulator to schedule a task and to do different

house keeping activities, for instance, updating the idle, busy,

and suspension queue lists. A search step is a basic unit of

exploration to search a memory location. A scheduling step

counter SL is incremented after each search step that the

scheduler takes to schedule a task. The methods Increase-

TimeTick() and DecreaseTimeTick() simulate the progress of

time in terms of timeticks in a general manner, where timetick

is a unit of time on a target system. In this respect, the total

simulation time is calculated as follows:

Total simulation time = Total number of timeticks (5)

The total wasted area at any given time is calculated as

follows:

Total wasted area =
N ′∑
i=1

AvailableAreai (6)

Where N’ represents the total number of those nodes

which contain at least one configuration. Thus, the average

wasted area per task is evaluated as given:

Avgwastedareaper task = Totalwastedarea/Total tasks
(7)

The total waiting time for each task, twait is calculated as

follows:

twait = tstart − tcreate + tcomm + tconfig (8)

Where tcreate is the time when the task is created, tstart is

the time when the task is submitted to a node for execution,

tcomm is the communication time of the task to reach the

node, and tconfig is the time to configure the node, if any

configuration is required before task allocation. The average

waiting time per task for T tasks, is computed as follows:

Avg waiting time per task =
T∑

j=1

(twait)j/Total tasks (9)

Similarly, we calculate the total configuration time as fol-

lows:

Totalconfigtime =

C∑
k=1

(ReconfigCount)k.(ConfigT ime)k

(10)

In each class, various methods utilize data members in

an appropriate manner. For instance, NextTaskMaxInterval

defines the upper time limit during which a new task is

generated during a particular simulation run.
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Table I: Some important DReAMSim performance metrics.

Performance Metric Description

Average wasted area per task
Average reconfigurable area wasted during the scheduling of all tasks during a simulation
run. See Equation 7.

Average running time of each task Average time lapse from the arrival of the task to the system until its completion.

Average reconfiguration count per node Average number of reconfigurations performed by each node during the simulation.

Average reconfiguration time per task Average reconfiguration time required per task during the simulation. See Equation 10.

Average waiting time per task
Average time elapsed from the time a task is submitted to the system until the time it is
assigned to a node. See Equation 9.

Average scheduling steps per task
Total number of search links explored by the scheduling system to assign a task to a proper
node. This metric closely reflects the quantitative value of the time taken by the scheduling
system to accommodate a task.

Total discarded tasks Total number of tasks discarded during the simulation.

Total scheduler workload
Total number of search steps taken by the resource information module to perform various
housekeeping jobs such as, maintaining the current states of nodes and configurations.

Total used nodes Total number of nodes utilized during a simulation run.

Total simulation time Total simulation time required to execute all tasks during the simulation. See Equation 5.
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Figure 5: The scheduling algorithm with support for partial

reconfigurability of nodes.

V. Task Scheduling Algorithm- A Case Study

As a case study, we tested our framework by implementing

a simple dynamic scheduling algorithm, which takes into

account the partial reconfigurability of the nodes. It was

implemented in the scheduler part of the framework. The

algorithmic process is mainly divided into four different parts,

as depicted in the Figure 5. Each incoming task is allocated

to a particular node by using one of these algorithmic parts

namely, allocation, configuration, partial configuration, partial

re-configuration. Initially, the scheduler decides whether the

exact-match configuration (or Cpref ) of the task is available in

the configurations list. If the Cpref of the task is not available,

then the algorithm searches for a closest-match configuration

(or CClosestMatch) of the task in the configurations list.

However, if CClosestMatch is also not available, the task is

discarded. We explain each part of the algorithmic process

in the following:

Allocation: If the Cpref ( or CClosestMatch) is available

in the configurations list, then the task is directly allo-

cated to one of the idle nodes already configured with the

Cpref ( or CClosestMatch). The algorithm chooses the best-

match among all the available idle nodes. The criteria for

the best-match is the node which possesses the minimum

AvailableArea among all those nodes which are configured

with the Cpref ( or CClosestMatch), so that the nodes with

larger AvailableArea are utilized for later re-configurations.

Configuration: If the direct allocation is not possible due

to the absence of idle node(s), then one of the blank nodes is

configured with the Cpref ( or CClosestMatch) and the task is

allocated. A blank node is defined as a node with no current

configuration.

Partial configuration: If allocation or configuration can

not be performed, the scheduler searches for a node which

contains a reconfigurable region with sufficient area to con-

figure the Cpref ( or CClosestMatch) of the task. In this

case, the scheduler chooses a node with minimum sufficient

region and configures it with the Cpref ( or CClosestMatch)

and allocates the task. If there are no nodes with sufficient

area are not available, then the scheduler performs partial

re-configuration, as explained below.

Partial re-configuration: In this case, the scheduler ex-

plores any idle nodes which are currently configured with

any configuration, other than the Cpref ( or CClosestMatch)

of the task. This phase is performed by the FindAnyIdleNode

method in the scheduler, which is presented by the algorithm

1. It takes the task as an input and returns a particular node

which can be re-configured for the scheduling of the task.

The method explores the entries of the idle configurations
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Algorithm 1 The FindAnyIdleNode Alogrithm

Require: task to be scheduled

nodeArea← 0
Entries← NULL
for all node ∈ NodeList do
accumIdleArea← node.AvailableArea
for all entry ∈ node.ConfigTaskList do
SearchLength← SearchLength+ 1
TotalSimWorkLoad← TotalSimWorkLoad+ 1
if entry is idle then

configArea← entry.config.RequiredArea
accumIdleArea ← accumIdleArea +
configArea
Entries← entry
if accumIdleArea ≥ task.ReqArea then
return node

end if

end if

end for

end for

return NULL

which can be removed to reconfigure the node with the

Cpref ( or CClosestMatch) required by task. In addition,

the method outputs a list of entries which can be utilized

for reconfiguration of the node. It returns NULL in case

no node with sufficient area, can be found for the re-

configuration.
If the scheduler is unable to allocate the task after going

through all four phases, then it explores the list of all busy

nodes to search at least one currently busy node with suffi-

cient TotalArea to configure the Cpref ( or CClosestMatch). If

one such node is found, the task is put in a suspension queue

to later re-allocate it to that node to become idle. Otherwise,

if no such node is found, the task is discarded.

VI. Simulation Environment and Results

We performed a number of experiments based on the

scheduling algorithm implemented in the scheduler part

of DReAMSim. We used several simulation parameters to

compute various performance metrics. The experiments were

conducted on 64-bit Intel Core 2 Duo CPU E8400 machine

running at 3.00GHz. It is installed with openSUSE 11.3 with

the Linux kernel 2.6.34. The implementation of DReAMSim

has been described in C++ and compiled using gcc v.4.5.0 for

the above-mentioned target processor.

Simulation parameters: Table II presents various simula-

tion parameters and their values, used in our experiments.

Total number of nodes and configurations are set as 200

and 50, respectively. The task arrival interval is set between

[1..50] time-ticks with uniform distribution. The total number

of tasks in each experiment varies between [1000...100,000]

and their trequired changes between [100...100,000] time-

ticks randomly. Furthermore, the TotalArea of each node

ranges between 1000 to 4000 area units (e.g., area slices).

Similarly, all the configurations require a reconfiguration area

Table II: Different simulation parameter values.

Simulation parameter Value

Total nodes 100, 200

Total configurations 50

Total tasks generated 1000...100, 000
Next task generation interval [1...50]

Configurations ReqArea range [200...2000]

Node TotalArea range [1000...4000]

Task trequired range [100...100,000]

tconfig range [10...20]

CClosestMatch percentage 15%

Reconfiguration method with/without partial reconfiguration

(ReqArea) which is set between 200 to 2000 area units. For

15% of the total tasks, we assign a preferred configuration

(Cpref ) that can not be found in configurations list. Therefore,

these tasks are assigned to the nodes with CClosestMatch by

the scheduler, dynamically.
We conducted experiments which are based on two differ-

ent scenarios. In one scenario (without partial configuration),

the nodes can be configured for only one configuration at

one time. As a result, each node can execute only one task

at one time. In the 2nd scenario (with partial configuration),

each node is able to accommodate as many configurations as

possible, depending upon its AvailableArea.

A. Results Discussion

Simulation results for both scenarios mentioned above, are

presented and discussed for some key performance metrics

such as, average waiting time per task, the average scheduling

steps required per task, and average reconfiguration count per

node.

The average wasted area per task: Figures 6a and 6b depict

the average wasted area per task results against a set of tasks

varying between [1000...100, 000] for 100 and 200 nodes,

respectively. All the other parameters are set according to the

values in Table II. First, it can be noticed from both figures

that the average wasted area per task is less for the scenario

with partial reconfiguration. This is due to a possibility of

adding more tasks on an already operative node, if it contains

sufficient AvailableArea to accommodate the incoming task.

In case of the scenario without partial reconfiguration, only

one task can be executed at one time. As a result, when the

node is reconfigured with the Cpref ( or CClosestMatch) of

the task, the remaining area is wasted and can not be utilized

for another incoming task until the node finishes executing

the current task. Secondly, the quantitative values of average

wasted area per task for 100 nodes are far less (10-50 area

units) as compared to 200 nodes ( 200-1600 area units). The

reason is that the scheduler has a choice of more number of

nodes (200 nodes) for each incoming task. As a result, the

total accumulated wasted area is more.
For a fixed set of parameters and 100 nodes, it is expected

that the waiting time of each task will be high as compared

to 200 nodes. Similarly, it is expected that fewer number of

nodes (100 nodes) will be reconfigured more. These results

are explained in the following.
The average reconfiguration count per node: Figures 7a

and 7b depict that, with partial reconfiguration, a typical node
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Figure 6: Average wasted area per task results for (a) 100 nodes and (b) 200 nodes.
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Figure 7: Average reconfiguration count per task results for (a) 100 nodes and (b) 200 nodes.

is reconfigured more times (on average) due to more options

for the scheduler to assign a task to a node. Hence, the

average reconfiguration count per node is high as compared

to the scenario when only one configuration (or one task) is

allowed at one time. In case of 100 nodes, as depicted in the

Figure 7a, the reconfiguration count is high. It is because the

scheduler has less options to schedule each incoming task. It

explores any idle nodes which are currently configured with

any configuration, other than the Cpref ( or CClosestMatch)

of the task. As a result, it reconfigures those idle nodes with

Cpref ( or CClosestMatch) and schedules the task. Hence, the

average reconfiguration count per node is high.

The average waiting time per task: Figures 8a and 8b

depict the average waiting time per task results for 100

and 200 nodes, respectively. In the scenario with partial

reconfiguration, the scheduler can immediately send a task to

a particular node if it has sufficient AvailableArea to config-

ure its Cpref ( or CClosestMatch). Therefore, each incoming

task requires less waiting time before it is scheduled to a

suitable node. In a scenario without partial reconfiguration,

the scheduler has no options to schedule multiple tasks on

a single node, so the average task waiting times are much

higher. In case of 100 nodes, as depicted in the Figure 8a,

the average waiting time per task is very high due to a fewer

number of nodes. Moreover, the tasks are arriving after a

very small interval of [1...50] time-ticks.

The average scheduling steps per task: The average

scheduling steps per task result comparison between the two

scenarios for 200 nodes, is depicted in Figure 9a. In the

first case with partial reconfiguration, the scheduler can even

search for a node region to map a task, which reduces the

scheduling effort to accommodate a task. This results in less

scheduling steps as compared to the case without partial

reconfiguration.

The total scheduler workload: Figure 9b depicts that the

simulator requires more workload in the scenario without

partial reconfiguration. This is because, the possibilities to

schedule a task are limited and more housekeeping is re-
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Figure 8: Average waiting time per task results for (a) 100 nodes and (b) 200 nodes.
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Figure 9: Average scheduling steps per task and total simulation workload results for 200 nodes.
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Figure 10: Average configuration time per task (nodes=200).

quired.

The average configuration time per task: Since the aver-

age reconfiguration count per node is much higher in scenario

with partial reconfiguration, so the average configuration time

per task is also higher as depicted in Figure 10.

Overall, it can be concluded that for a given set of param-

eters and with partial reconfiguration, the system utilizes less

area, less scheduling steps, and scheduler workload. On the

other hand, without partial reconfiguration, the scheduler has

to wait to schedule a task due to an absence of options to

accommodate multiple tasks on a node simultaneously.

From the above set of experiments, it can be noted that

the scheduler’s behavior depends on the reconfiguration

methods. Various metrics such as the average scheduling steps

per task, the average waiting time per task, and the average

reconfiguration count per node follow an expected behavior

for the two scenarios explained above.
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VII. Conclusions and Future Work

In this paper, we extended our simulation framework

to add partial reconfigurable functionality to the reconfig-

urable nodes in a large-scale computing system. With this

extension, each node in the system is able to execute more

than one application task simultaneously, depending on the

available node area. Based on a proposed dynamic scheduling

algorithm, we presented and discussed simulation results

obtained from our framework. Our results suggest that the

average wasted area per task in case of partial reconfiguration

scenario, is less as compared to full configuration. Hence,

the node utilization can be improved by adding more than

one reconfigurations on a node. The proposed simulation

framework can be used to test different scheduling poli-

cies for a given set of parameters, such as tasks, nodes,

configurations, and area bounds, etc. In future work, we

will implement load balancing manager to perform a better

load distribution among all the nodes. We will implement

scheduling policies to schedule task graphs on the distributed

system with reconfigurable nodes. We will test the simulation

framework with real workloads and realistic scenarios.
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