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ABSTRACT

Dynamic partial reconfiguration enables efficient use of hard-
ware resources by multiplexing system functionality in time.
However, many challenges arise from partial reconfigura-
tion implementation. The placement and routing (P&R) of
the hardware modules is a computationally intensive task,
and the state-of-art algorithms are not suitable to place and
route modules at run-time. This paper makes several con-
tributions: (1) Single Placement at run-time: we propose
a novel P&R algorithm based on greedy heuristic where a
single placement is performed at run-time in few millisec-
onds. (2) Implicit Graph Model: the FPGA is modelled as
an implicit graph with a direct correspondence to the phys-
ical FPGA, and the P&R is performed as a graph mapping
problem by exploring the node locality during the depth-first
traversal. (3) Polynomial Placement: we show that even a
single placement can be routed without critical path degra-
dation. (4) Fragmented Regions: the graph approach is flex-
ible, and it allows efficient placement even onto fragmented
FPGA areas. Compared with the most popular P&R tool
running the same benchmark suite our algorithm is on aver-
age 864x faster. Moreover, the bitstream for partial recon-
figuration is also reduced by a factor of 4.

1. INTRODUCTION

Field-Programmable Gate Arrays (FPGAs) can be partially
or fully programmed through configuration bitstreams. Par-
tial reconfiguration enables efficient allocation of logic re-
sources by adding more functionality using unused resource
or by sharing and/or multiplexing resource during the ex-
ecution time, depending on the current needs. In dynamic
partial reconfiguration (DPaR), the reconfiguration is per-
formed at run-time keeping non-reconfigured FPGA areas
running.

In practice, DPaR implementation involves a series of
challenges which are being treated by different techniques [1,
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2, 3, 4]. In this paper, we address bitstream placement and
routing (P&R), one of the most computationally intensive
and time-consuming DPaR procedures. When P&R maps a
new bitstream at run-time, an available region over the tar-
get architecture should be identified. This region should also
provide both sufficient hardware resources and minimize the
impact to upcoming DPaR procedures.

Traditionally, P&R is performed offline because hard-
ware resource re-arrangement is highly computationally in-
tensive. Traditional approaches [5] include recursive parti-
tioning, analytic, genetic algorithms, and simulated anneal-
ing. Unfortunately, because of their high computational re-
quirements none of the previous approaches is suitable for
run-time P&R algorithm. Recently, a Just-in-Time (JIT)
framework [4, 6] to support DPaR is introduced. This strat-
egy reduces the fragmentation for hardware resources (pre-
allocated FPGA area, etc.) in partial reconfiguration context.
The configuration bitstream for a virtual FPGA is computed
at run-time by performing technology packing, and P&R.
However, the P&R still takes few seconds to complete, and
hence run-time P&R remained impractical.

In this paper, we propose a novel P&R based on a graph
mapping model that performs nearly three orders of mag-
nitude faster in comparison to the state-of-the-art of P&R
algorithms [7]. In addition, our approach reduces the bit-
stream size by a factor of 4. The main contributions of the
work presented in this paper are: (1) A novel polynomial
P&R greedy heuristic based on graph mapping; (2) A lo-
cal routing for FPGA by exploring the graph locality and by
prioritizing the critical path; (3) An adaptable P&R for frag-
mented regions; (4) A run-time P&R suitable for dynamic
partial reconfiguration frameworks.

This paper is outlined as follows. Section 2 describes our
mapping approach. Section 3 presents the graph model used
to map the FPGA, and Section 4 describes how the graph
model is explored to produce the P&R. In Section 5, our
P&R algorithm is evaluated, while we present related work
in Section 6. Finally, we conclude our remarks and present
future work in Section 7.
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Fig. 1. An input LUT graph example.
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Fig. 2. (a) FPGA (b) First Path (c) Partial (d) Final.

2. GRAPH MAPPING

Our approach models the P&R as a graph mapping problem,
where an input graph is mapped onto an output graph. The
input graph is the circuit to be mapped. It is represented
by a k-input LUT graph. Fig. 1 depicts a simple example.
The external inputs are represented by black vertices and the
LUTs by white vertices. Since our algorithm is based on a
depth-first (DF) graph traversal, the vertex numbers follow
a DF order. During the DF traversal, the descendant ver-
tices are ordered by the depth the traversal can reach. For
example, vertex 1 has three descendants: 2, 13 and 20. The
deepest the traversal can go is through vertex 2, and hence
it will be the first to be visited. The goal is to prioritize the
critical path during the mapping.

The output graph is the FPGA. For ease of explanation,
we start with a simplified view of the FPGA graph as de-
picted in Fig. 2(a). We use the term vertex for the input
graph and the term node for the output graph. The output
graph is composed by four node types: LUT, switch box,
in/out, and segmented bus. The algorithm maps an LUT
vertex onto an LUT node, and an input vertex onto an in/out
node. The switch boxes and wiring segments are used for
routing the edges. An edge from the input graph is mapped
in one or more wiring segments onto the target FPGA graph.
For the rest of this paper, when we count a wiring segment
or track, it will also include a switch box connection.

We use DF traversal to map the input graph depicted in
Fig. 1. First, our algorithm maps the path from 1 to 5 as
shown in Fig. 2(b). The LUTs are labeled by the line and
column indexes. It is important to note that the FPGA graph
is also traversed in DF order. Then, the DF returns to vertex
4, placed at 𝐿𝑈𝑇0,2, and maps the edge 4 → 6 at an adja-
cent I/O. Next, the DF returns to vertex 3 to visit 7 and 8.
Fig. 2(c) presents a snap-shot when the DF returns to vertex
2, and places vertex 9 at 𝐿𝑈𝑇1,2 in order, adjacent to node
𝐿𝑈𝑇1,1 where vertex 2 was placed. Fig. 2(d) depicts the
final mapping. The time complexity is polynomial as each
edge is visited once. Previous work on CGRA has already
used graph mapping approach based on depth-first traver-
sal [8, 9]. However, an FPGA graph has nodes with high
fanout degrees. Moreover, the routing infrastructure as well
the lower FPGA granularity at the bit level results in a more
complex mapping in comparison to CGRAs.

3. IMPLICIT FPGA GRAPH

At compile time, the synthesis tool is responsible to generate
the input graph, which is stored as an edge list in depth first
order. However, the output FPGA graph is much more com-
plex, requiring an efficient and scalable representation. We
propose a novel implicit representation, which is different
from traditional graph structures like adjacency/incidence
list or matrix, which is detailed in the following sections.

3.1. Virtual FPGA

Since there are several commercial FPGA families, our ap-
proach is based on a virtual FPGA as proposed in [4, 6].
In spite of that, our model can be customized for a specific
FPGA family as the mapping is based on a graph approach.
Moreover, the virtual FPGA has several advantages: it is
independent to the underlying hardware; it can be directly
implemented upon a traditional off-the-shelf FPGA device,
and it allows partial configuration as shown in [4], even if
the target device does not have partial reconfiguration in-
frastructure.

3.2. Logic Block and Track Nodes

Fig. 3 depicts the LUT connections and its graph represen-
tation. Let us consider a 4-bit bidirectional channel FPGA.
Each 𝐿𝑈𝑇𝑖,𝑗 has 4 input multiplexers to connect to the chan-
nel tracks. Each LUT will be represented as a LUT node.
The directions west, north, east, and south are labeled as
0, 1, 2, and 3, respectively. The LUT output is connected
to the south tracks from left (bottom) to right (top) as de-
scribed in [6]. Each track multiplexer will be represented as
a T node and it will be labeled by 𝑖, 𝑗, and the track number.
Fig. 3(b) depicts 4 track nodes: 𝑇𝑖,𝑗,3, 𝑇𝑖,𝑗,2, 𝑇𝑖,𝑗,1, 𝑇𝑖,𝑗,0.
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3.3. Switch Box

The switch box (SW) is the key component in the FPGA de-
sign. The proposed implementation is based on the Wilton
SW [10]. All tracks should traverse at least one SW. The
number of in/out depends on the channel width. We propose
to represent a SW as a set of small multiplexer SW nodes.
Each SW node implements a single switch output, which
has a direct correspondence to a physical multiplexer. The
multiplexer receives four inputs tracks, one from each SW
direction (west, north,...). If there are 𝐶 channel tracks, then
one switch box will be represented by 4 ⋅ 𝐶 SW nodes. The
label 𝑖, 𝑗, 𝑑, 𝑐 identifies the SW node, where 𝑐 is the track
number, and 𝑑 is the direction (west,north,..). Fig. 3(b) de-
picts two SW nodes which are connected to the T node 𝑇𝑖,𝑗,1

and the 𝐿𝑈𝑇𝑖,𝑗 input 3. The 𝑆𝑊𝑖,𝑗,2,1 is from the east side
of switch box 𝑖, 𝑗 and 𝑆𝑊𝑖,𝑗,0,1 is from the west part of the
switch box 𝑖, 𝑗+1. The track 𝑘 = 1 for the switch 𝑆𝑊𝑖,𝑗+1

in Fig. 3(b) is implemented as multiplexer with the follow-
ing input tracks following Wilton pattern [10]: 𝑡𝑖,𝑗+1,0,𝑘,
𝑡𝑖,𝑗+1,1,𝑤−𝑘

𝑤
, 𝑡𝑖,𝑗+1,2,𝑘, and 𝑡𝑖,𝑗+1,3, 𝑘−1

𝑤
.

4. ALGORITHM

The proposed mapping algorithm is based on DF traversal
in both graphs. Therefore, in an optimal scenario, two ad-
jacent vertices 𝑎 → 𝑏 should be mapped in two adjacent
nodes 𝑥 → 𝑦. However, this assumption is not valid for all
vertices since there are physical routing constraints in the
FPGA graph. Moreover, two vertices could be placed onto
two nodes far away from each other. First, we present the
proposed algorithm for adjacent nodes. Then, we discuss
our strategy for non-adjacent nodes.

4.1. Adjacent LUT Nodes

Initially, let us consider an edge 𝑎 → 𝑏. At least one track
and one switch node should be traversed in the FPGA graph
as depicted in Fig. 3(c). This mapping example is the best
local situation for an edge. However, it could be impossible
even for adjacent line and/or column LUT. Therefore, we
introduce a novel concept for FPGA adjacent nodes.

Let us consider the node 𝐿𝑖,𝑗 at line 𝑖 and column 𝑗,
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Fig. 4(a) depicts the routing costs for an 8-neighborhood.
Since 𝐿𝑖,𝑗 has four inputs, there are four routing costs. The
costs are depicted inside each neighbor. For example, the
right node 𝐿𝑖,𝑗+1 traverses 2, 3, 1, and 2 SWs to connect
to the 𝐿𝑖,𝑗 input west, north, east, and south, respectively.
Fig. 4(b) depicts the two lowest cost possibilities. The first,
from 𝐿𝑖−1,𝑗 to 𝐿𝑖,𝑗 north input uses only one switch con-
nection because the output LUT port is always in the south
side (see Fig. 3). The second case is from 𝐿𝑖,𝑗+1 to the east
input of 𝐿𝑖,𝑗 . Therefore, these are only two routes that use
only one switch. It is important to note that the target is a
virtual FPGA presented in [4], however, our approach can
be modified to different FPGA architectures.

The mapping will first try to P&R the south and east
neighbors. Let us again consider the graph example from
Fig. 1. For ease of explanation, we only consider the internal
nodes. The first path in DF order is 1 ← 2 ← 3 ← 4. The
mapping of this path is depicted in Fig. 2(b). Four vertices
are placed and routed with minimal routing cost. Edges 2←
9 and 1 ← 13 are also placed and routed with the minimal
cost. However, vertice 14 could not be placed in an adjacent
position next to vertex 13, as shown in Fig. 2(d), since vertex
13 is placed at the bottom-right corner, and there is no free
node among its 8 neighbors.

We propose to extend the concept of adjacent node to
routing costs greater than one. Fig. 4 depicts three adjacent
nodes with routing cost two to connect to three different 𝐿𝑖,𝑗

inputs. If the routing cost three is considered, all nodes in
Fig. 2(c) are placed and routed as adjacent nodes, even the
edges 14→ 13, 17→ 13, and 20→ 1.

4.2. Non-Adjacent LUT Nodes

Fig. 1 depicts an example composed by only 9 vertices. Nev-
ertheless, there are non-adjacent nodes which should still be
routed. Let us now consider the input vertices. Some input
vertices could be handled as adjacent nodes as such vertices
5 and 6. However, edge 21→ 20 should be routed by a non-
adjacent routing algorithm, since there is no place for the
source vertex in the neighborhood of the target node. We
find the closest node by using a breadth-first search around
𝐿𝑖,𝑗 . Then, the source vertex is placed, and a routing al-
gorithm is performed. Another situation occurs when the
source node is already placed, but it has multicast edges such
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as input vertices 6 and 7 in Fig. 1. Since these vertices have
been already placed as adjacent nodes of 4 and 3, when the
edge 6→ 20 is visited in DF order and the routing algorithm
handle these connections.

4.3. XY Routing and Multicast

For multicast edges, we propose to use a simple and greedy
routing algorithm. Our algorithm is based on Network-on-
Chip (NoC) XY routing [11, 12]. The routing path starts
from the source node, moving through switch boxes until
target node final X (line) and Y (column) are reached. We
adapted the algorithm to an FPGA architecture considering
switch box track channels and LUT side inputs.

Fig. 5(a) depicts a simple source to target routing exam-
ple. First, the algorithm tries to route in the X direction.
However, since the output track in the X direction is already
used, the algorithm routes in the Y direction. The next two
steps are accomplished in the X direction, and finally, the
routing reaches the target at the north input.

Fig. 5(b) depicts a multicast routing to three target des-
tinations: 𝑇1, 𝑇2, and 𝑇3. Multicast routing strategy reduces
the overall switch cost by sharing routing resources. When
using multicast strategy, the routing should observe track di-
rections. For example, south track is connected from left to
right. Therefore, since 𝑇3 input is in the south side, our al-
gorithm uses one extra switch box to perform the routing.

Our P&R is based on DF order edge visit. When a source
vertex is visited more than two times, our algorithm does not
route its edges on the fly. A list of target vertices is created
during the traversal for each multiple fanout source node.
Finally, when all edges have been visited, all multicast edge
lists are processed. In most circuit functions, control signals
are connected to several destinations as a multicast signal.
The routing cost of these signals strongly contributes to the
total routing cost.

5. EXPERIMENTAL RESULTS

We compare our results with the VPR tool and benchmark
suite [7, 13], which are publicly available. The experiments
are performed in an Intel i3 370M, 2.4 GHz, 3MB L2 cache.
For a given circuit, depending on the selected P&R options,

Table 1. Execution Time for performing P&R.
VPR DF Long Wire

Bench CLB sec t msec t gain 1 2 3

fir16 47 0.04 4 0.1 3 400 3 3 3

apex7 153 0.21 10 1.2 14 175 12 12 12

9symml 179 0.19 9 1.29 9 147 9 9 9

alu2 241 0.27 9 1.28 12 210 12 12 12

Alu4 415 0.52 12 0.74 12 702 11 11 11

Apex2 966 1.7 17 1.53 19 1111 15 15 15

Apex4 885 1.4 19 1.18 21 1186 16 12 12

too large 992 1.62 10 1.58 15 1025 15 15 15

term1 261 0.33 10 0.492 15 670 15 15 15

k2 447 0.64 15 0.72 19 888 14 12 12

Misex3 771 1.2 16 1.05 19 1142 14 12 12

Ex5p 646 1.01 16 0.88 21 1147 16 11 11

Ex1010 964 1.68 20 1.54 23 1090 18 13 13

spla 2730 7.27 21 4.74 37 1533 32 27 22

pdc 2857 7.49 22 4.87 39 1537 34 29 24

the placement operation time can vary from a few millisec-
onds (msec) to several minutes. Explanation of the VPR
configuration options is beyond the scope of this paper. More
details can be found in [7].

Regarding the experimental setup, we use a target virtual
FPGA similar to the one proposed in [4]. The virtual FPGA
is composed by an array of 100x100 slices, each channel
containing 50 routing tracks. These architectural definitions
do not affect the generality of our solution, since JIT algo-
rithm [4], and our DF algorithm are performed onto the same
device. Since our objective is to reduce P&R execution time,
we have set VPR to fast mode. The selected parameters are:
-innernum 1 -placealgorithm boundingbox -routechanwidth
50 -routeralgorithm directedsearch. The innernum 1 option
speeds up the placer by a factor of 10, and the bounding box
placement focuses purely on minimizing the bounding box
wirelength, not focusing on the critical path delay optimiza-
tion. The directed search router is routability-driven based
on A* heuristic to improve run-time.

5.1. Execution Time

The proposed tool takes only 2.67𝜇sec per CLB while the
JIT tool requires about 3.59 msec per CLB, and VPR per-
formance1 is 26.35 msec per CLB. Table 1 depicts P&R ex-
ecution time for our DFS approach and VPR tool [7] consid-
ering a set of 15 MCNC benchmarks [13]. Our DFS algo-
rithm is 864x faster than VPR in fast mode. Moreover, the
run-time improvement can reach up to 1537x for the Pdc
benchmark.

5.2. Simultaneous Mapping

Our proposed approach could also map more than one ap-
plication at run-time. Fig. 6(a) depicts the FPGA mapping

1The VPR parameters are not detailed in [4]



spla ex1010spla ex1010Empty

(a) (b)

Fig. 6. Spla+ex1010 Occupancy: (a) LUT (b) SW box.

in a 62x62 CLB array of two benchmarks: ex1010 and spla.
The white boxes show empty LUTs, the spla is placed on the
left black boxes, and the ex1010 is placed on the right grey
boxes. The granularity of the mapping at LUT level signif-
icantly reduces the fragmentation of the partial reconfigu-
ration, which is also an advantage presented in [4]. There
are no rectangular constraints, and the border line is wavy to
maximize the occupance.

Fig. 6(b) depicts the number of tracks per channel occu-
pied for a successful routing. A greyscale is used to show
the switch box occupancy, whereas the white color repre-
sents low occupancy, and the hotspots are shown in black.
The spla benchmark uses more tracks near the inputs while
ex1010 is more uniformly distributed.

5.3. Wiring Segments, Tracks and Long Wires

Our placement is a greedy heuristic, and each edge is only
visited once. Therefore, we achieve higher speedups in larger
circuits. Although the placement could generate a routable
solution, the number of wire segments per edge and the max-
imal track occupation in each channel increase as a function
of circuit size. Table 1 depicts the maximal track usage in
VPR and in our DFS P&R. For medium size circuits, with
up to 1000 4-input LUT or 4000 equivalent gates, the max-
imal track is close to the VPR solution. However, for larger
circuits, our P&R can use up to the double of maximal track
usage in smaller circuits. A simple strategy to reduce routing
resource usage with no P&R time degradation is to add long
wires. In commercial FPGAs, long wires are used to speed
up connections and to avoid channel and switch box con-
gesting. They are similar to single wires, except that each
one spans two or more LUTs, imposing lower routing de-
lays.

The next experiment evaluates the maximal track usage
for the larger MCNC benchmarks in the presence of long
wires that span 5 LUTs. The last three columns of Table 1
depict maximal track usage for VPR and for our approach
considering the use of 1, 2 or 3 long wire tracks per channel.
For medium size circuits the addition of one or two long
wire tracks strongly improves P&R resource usage. If more
lines are added, the improvements are marginal. However,
when we consider larger benchmarks, the addition of three

Table 2. Edge Distribuition and Configuration Memory.
Local % Internal Input % Mem

Bench Adj Near Multi Single Multi DF Virtual

fir16 67 5 26 2 0 342 2505

apex7 19 5 32 10 33 2166 8640

9symml 26 6 24 2 42 2618 10020

alu2 29 8 30 2 30 3010 13088

Alu4 30 5 39 1 25 5378 22546

Apex2 27 5 45 1 21 13916 52352

Apex4 30 5 57 0.5 6 11528 46012

too large 27 9 9 1 54 13968 52352

term1 26 3 8 4 58 3930 14775

k2 29 4 43 3 20 5806 24744

Misex3 28 5 46 1 19 10590 40082

Ex5p 31 3 62 0.5 3 8140 13088

Ex1010 27 5 65 0.3 2 13656 52392

spla 29 6 63 0.2 1 35568 143610

pdc 30 6 62 0.2 1 37294 149080

Average 30.3 5.3 40.7 1.9 21 10445 40328

long wire tracks promotes a significant reduction maximal
track usage.

For the evaluated benchmarks, when VPR timing driven
P&R is selected, wire usage increases 1.15× achieving a
1.6× critical path performance degradation. Moreover, the
P&R is 10× slower. Our proposed approach requires on av-
erage 3.27×more wiring segments than VPR for the bench-
marks shown in Table 1. If 1, 2, and 3 long wires are added,
the required number of segments are 2.49×, 2.17×, 2.01×
bigger than VPR, respectively.

We believe there are three main reasons to explain why
our approach requires more wires. First, the placement pri-
oritizes the original critical path, which will result in at least
15% wire length increase, as shown by VPR P&R analysis.
Second, although placement is a NP-complete problem, our
algorithm tries only one placement based on DF order graph
locality. Traditional offline FPGA P&R algorithms evaluate
several configurations to reduce wire length. It is important
to note that we reduce the P&R time by a factor of 1000×
at the cost of spending 3× more wires. Nevertheless, those
extra wires are already there in the FPGA, so the question
that remains is whether this will impact performance, as it
will be discussed in Section 5.5.

5.4. Edge Distribution

Since placement quality directly impacts on routing cost,
we analyze edge distribution in the original graphs to bet-
ter understand our results. Table 2 depicts three edge types
in the original graph. The first two columns show the local
edges. As mentioned in Sections 4.1 and 4.2, our place-
ment performs a simultaneous traversal in both original and
FPGA graphs. Table 2 shows that 35% of edges are vis-
ited, placed and routed directly using less than 3 switch
boxes or wire segments. On average less than 2 segments



are used. The main challenge is to route the internal and
input edges because they correspond to 63% of the edges.
Most of these edges present large fanouts or multicast de-
grees. Moreover, although the fanout degree is on average
3, few nodes present a very high degree (the internal or in-
put control circuit signals). For the pdc benchmark instance,
10%, 4%, and 1% of nodes concentrate 48%, 34%, and
18% of the total edges, respectively. Further work include
a breadth-first traversal prioritizing these nodes instead the
local ones. The third reason of high wiring cost of our ap-
proach is the simple routing approach, as explained in Sec-
tion 4.3. Moreover in Section 5.5, we replace our routing by
the VPR routing to show that a better routing could signifi-
cantly reduce the wiring cost. Further work should be done
to include more low cost routing as local expansion wave-
front approach of VPR [7]. Despite of that, our DFS ap-
proach achieves very low P&R times, around milliseconds.

Table 2 also depicts the configuration memory size. Col-
umn DF presents the size to store the original graph in Kbytes.
Column Virtual shows the minimal square matrix to store
the configuration bits for the virtual FPGA (LUT and SW).
Our approach requires on average, 3.7× less bits, which can
reduce the size of the configuration memories in dynamic
scenarios.

5.5. Critical Path

Table 3 depicts the critical path, the execution time, and
the wiring segments for three placements. Our goal is to
evaluate the quality of our placement when a better routing
is used. We compare our depth-first (DF) placement with
VPR. The first VPR placement (FA) optimizes the execu-
tion time selecting the parameters: -innernum 1 bounding-
box. The second VPR placement (CR) optimizes the critical
path using the parameters: -innernum 10 timingdrive. Col-
umn Ratio Critical presents the critical path ratio in order
to compare our DF placement with VPR. On average, the
DF and FA are equivalent, and CR reduces critical path in
26%. Regarding the execution time, our DF placement is on
average 1024× and 13215× faster than FA and CR place-
ments. The critical path for all three placements is obtained
using VPR routing. Column Routing depicts the execution
time for VPR routing algorithm, which is almost the same
for the three placements, except for the last two benchmarks.
For the pdc and spla, 1% of the nodes have 15% of edges.
These edges will generate more than 40% of the wiring seg-
ments. However, our DF approach places these nodes by
using only one edge. Further work includes a local search to
better evaluate one edge positioning for these hotspot nodes.

Fig. 7 depicts a simple example of a hotpot. The position
of vertex 𝑏 shown in Fig. 7(a) will be defined during the first
traversal in the DF order when the edge 𝑎← 𝑏 is visited, 𝑏 is
placed adjacent to 𝑎, since the algorithm traverses the graph
from the outputs to the inputs. It is important to highlight
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that 𝑏 is not only placed, it is also routed with a minimal
local cost. For this reason, we apply the term P&R in this
paper. As mentioned before, 35% of the edges are included
in this case.

Let us suppose 𝑏 has fanout=4 as shown in Fig. 7(b).
When the edges 𝑐 ← 𝑏,𝑑 ← 𝑏, and 𝑒 ← 𝑏 are traversed, 𝑏
has been already placed, and these nodes are included in the
edge list of 𝑏 as mentioned in Section 4.3. Let us suppose
an optimal solution for the routing as depicted in Fig. 7(c).
The total wiring segments will be 2 ⋅ 𝑦 + 𝑥 + 1. However
the average distance between 𝑏 and its outputs will have a
cost of 5⋅𝑦+𝑥+1

4 wiring segments. However, if 𝑏 is move
to a new position close to 𝑒, the average cost is reduced to
3⋅𝑦+𝑥+1

4 . Future work will include the investigation of pos-
sible improvements on the hotspot placements. Moreover,
the critical path could be not affected directly when the con-
nections to 𝑐, 𝑑, and 𝑒 are routed from 𝑏.

Table 3 also presents the wiring segments. Our DF ap-
proach requires on average 46% more wiring segments, since
it is based on a greedy heuristic where we evaluate only
one single position for each node. Since routing resources
in modern FPGAs are not restricted, wiring usage is not a
problem. Nevertheless, the DF critical path is on average
the same in comparison with FA placement. In fact, it is
only 26% worse than the best VPR placement, which tries
multiple positions several times and takes 1222× to 36318×
longer in execution time. Finally, our initial results are very
promising since the proposed algorithm tries only once each
node connection.

5.6. Fragmentation

Considering a function set 𝑓 = 𝐴,𝐵, . . . to be used during
the execution of one application. If the bitstream for each
function is generated at compile time, the FPGA could have
a poor resource utilization. Moreover, it could be impossible
to place all functions, even if there is enough routing and
LUT resources. Fig. 8(a) depicts an example where function
D can not be placed due to fragmentation. Despite there
are two empty areas (white parts) with enough resources it
is not possible to place D, since it is generated as a single
rectangular region.



Table 3. Placement Execution Time and Critical Path by using VPR Routing.
Critical CPU Time CPU Time Wiring Ratio

Path Placement Routing Segments Critical Speedup
DF FA CR DF FA CR FA/ CR/ FA/ CR/

Bench DF FA CR msec sec sec sec sec sec DF FA CR DF DF DF DF

fir16 1.21 1.27 1.18 0.09 0.02 0.11 0.03 0.03 0.04 123 85 81 0.95 1.03 222 1222

apex7 0.74 0.68 0.62 0.31 0.12 1.77 0.16 0.17 0.18 1233 828 799 1.09 1.19 387 5710

9symml 0.97 0.87 0.77 0.39 0.11 1.3 0.17 0.2 0.19 1141 889 878 1.11 1.26 282 3333

alu2 2.31 2.53 2.05 0.53 0.16 1.78 0.23 0.23 0.21 1593 1176 1100 0.91 1.13 302 3358

alu4 2.42 2.58 2.02 0.62 0.31 4.45 0.44 0.36 0.4 3121 2322 2307 0.94 1.20 500 7177

apex2 1.68 1.58 1.16 1.04 1.24 16.6 1.18 0.98 1.18 12429 8184 8032 1.06 1.45 1192 15962

apex4 1.51 1.63 1.14 0.79 1.05 13.01 1.18 0.94 1.02 11249 7980 8151 0.93 1.32 1329 16468

too large 3.21 3.94 2.95 1.25 1.08 14.5 1.19 1.3 1.2 6522 5357 5197 0.81 1.09 864 11600

term1 0.87 0.89 0.73 0.44 0.22 2.41 0.28 0.24 0.32 1704 1357 1431 0.98 1.19 500 5477

k2 1.65 1.45 1.27 0.54 0.46 5.35 0.57 0.43 0.43 4961 2912 3012 1.14 1.30 852 9907

misex3 1.27 1.17 0.98 0.73 0.86 11.37 0.92 0.81 0.79 8845 5876 5853 1.09 1.30 1178 15575

ex5p 1.55 1.36 1.13 0.63 0.72 9.43 0.75 0.81 0.78 7229 4758 4846 1.14 1.37 1143 14968

ex1010 1.38 1.72 1.1 0.91 1.26 15.96 1.52 1.3 1.47 12450 9318 9976 0.80 1.25 1385 17538

spla 2.68 2.54 1.97 2.18 5.88 73.26 29.9 4.06 4.06 51150 28385 28370 1.06 1.36 2697 33606

pdc 2.66 2.6 1.79 2.2 6.24 79.9 21.1 4.32 4.4 53045 29897 31684 1.02 1.49 2836 36318

Average 1.46 1.46 1.00 1.26 1045 13215
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To evaluate the potential of our placement algorithm on
fragmented areas, let us consider two scenarios as shown
in Fig. 8(b). Let us use the black color for the area which
has been already allocated. In the first scenario (top), we
have two occupied disjoint areas while in the second sce-
nario (bottom), most part of the area has been already al-
located. There are three disjoint free areas in the second
scenario. For both scenarios, we map four MCNC bench-
mark circuits with around 1000 LUTs onto a target FPGA
array of 60x60 LUT slices with channel width 50. Fig. 8(c)
depicts the area where the function Apex2 is placed in grey
color. Fig. 8(d), 8(e), and 8(f) presents the area for Apex4,
Too large, and Ex1010.

Our algorithm executes the placement in less than 2 mil-
liseconds, even in fragmented areas. Since it is a graph
based approach, it is easily adaptable to fragmented regions.
The output of our placement is routed using VPR to obtain
the critical path. Fig. 8(g) depicts the VPR [7] screenshot for
Ex1010 benchmark routing and critical path. Most of wiring
segments are concentrated on the placement region. More-

over, wiring segments are also used to route through disjoint
areas. Table 4 shows the critical path and total wiring seg-
ments for both scenarios. Column Ratio depicts critical path
length increase compared with optimal critical path. The op-
timal critical path is obtained by using VPR at timing driven
mode mapped on a square contiguous area as shown in Ta-
ble 3. On average, the critical path increases 41% and 47%
for the scenario 1 and 2. On average, the routing resource
measured as wiring segments increases 57% and 79% for
the scenario 1 and 2.

6. RELATED WORK

The state-of-art in P&R algorithm is represented by the VPR
framework [7, 14]. The placement approaches are based
in three techniques: partitioning, simulated annealing (SA),
and analytic placement. In [15], a dynamically adaptive
stochastic tunneling algorithm to avoid the freezing prob-
lem in SA approach is proposed. However, only a marginal
reduction of 18.3% in run-time is obtained over VPR. A par-



Table 4. Wiring and Critical Path for Fragmented Regions.
Scenario 1 Scenario 2

Bench Wires Critical Ratio Wires Critical Ratio

too large 7846 3.08 1.04 7328 3.52 1.19

apex2 13328 1.67 1.43 15151 1.72 1.48

apex4 14002 1.62 1.42 17426 1.77 1.55

ex1010 13922 1.91 1.73 17713 1.86 1.69

average 1.41 1.47

allel approach for SA has been recently proposed in [5]. The
algorithm evaluates multiple SA moves in parallel, the ex-
perimental results achieve an average speedup ranging from
2× up to 7× in comparison to VPR. An analytic place-
ment based on a near-linear net model was proposed in [16],
which is 5× faster than VPR fast mode (i.e., with inner num=
1). Moreover, this placement obtains an 9% reduction in
critical-path delay. The routing is performed by using VPR
router. The reported CPU time is in the range of seconds for
the MCNC benchmarks.

Nowadays, P&R times of high density FPGAs (more
than 100K LUTs) can easily reach one day. Unfortunately,
the SA approach is not suitable for P&R of this magnitude.
An approach to investigate how to reduce the P&R time by
employing high-capacity logic blocks has been presented
in [17]. In [18], a placement based on a new problem formu-
lation of maximum-bipartite matching (MBP) is presented.
The MBP placement is 30× to 75× faster than VPR as long
run-time is associated with SA for very large circuits (more
than 100K CLBs). P&R time for each CLB is around 1 ms.

Regarding the routing step, a new approach is presented
in [19]. When combined with a low-cost architecture change,
this new approach results in a 34% reduction in router run-
time, at the cost of a 3% area overhead. The routing time is
around one second for the MCNC benchmarks.

Our work focus on P&R time reduction for partial re-
configuration. A similar work [4] proposes a JIT P&R that
is 7.34 faster than VPR. Moreover, our approach as well
the JIT approach leads to significant lower fragmentation of
hardware resources at LUT level. However, while JIT P&R
time is around seconds, our DF based algorithm executes
in few milliseconds, allowing its usage in run-time applica-
tions.

7. CONCLUSIONS AND FUTURE WORK

We proposed a novel run-time placement and routing (P&R)
algorithm for FPGA-based designs. Based on experimental
results, our P&R performance is on average 864× faster,
compared with the state-of-art VPR [7] tool. We perform
each P&R process in milliseconds, making run-time partial
reconfiguration feasible in practice. Moreover, we reduced
the configuration memory by a factor of 4. We also pro-
posed an implicit graph model to represent the FPGA. The

data structures have a direct correspondence to the physi-
cal and/or virtual configuration memories. Our approach al-
lows partial reconfiguration at LUT granularity level. This
feature reduces the fragmentation during the mapping and
remapping of several applications on the fly.

Apart from the virtual FPGA used in our experiments,
the proposed graph based approach is generic, and it will
be adapted for a specific physical FPGA architecture as fu-
ture work. On average, 35% of LUT connections are routed
with minimal routing resources during the DF traversal per-
formed by our algorithm.

Although our algorithm presents some penalties in terms
of the maximum number of tracks per channel and the to-
tal of wire segments, additional improvements are feasible.
Further work includes local optimization to replace a subset
of nodes to reduce the required routing resources. In addi-
tion, better routing strategies for multicast hotspot signals
should also be developed.

8. REFERENCES

[1] K. Papadimitriou, A. Dollas, and S. Hauck, “Performance of partial reconfigura-
tion in fpga systems: A survey and a cost model,” ACM Trans. Reconf. Technol.
Syst., vol. 4, Dec. 2011.

[2] M. Gericota, G. Alves, M. Silva, and J. Ferreira, “Run-time management of
logic resources on reconfigurable systems,” in Design, Automation and Test in
Europe Conference and Exhibition, 2003, 2003, pp. 974–979.

[3] M. Handa and R. Vemuri, “An efficient algorithm for finding empty space for
online fpga placement,” in Proceedings of DAC, 2004.

[4] H. Sidiropoulos, K. Siozios, P. Figuli, D. Soudris, and M. Hubner, “On sup-
porting efficient partial reconfiguration with just-in-time compilation,” in PhD
Forum (IPDPSW), IEEE, 2012.

[5] A. Ludwin and V. Betz, “Efficient and deterministic parallel placement for fp-
gas,” ACM Trans. Des. Autom. Electron. Syst., vol. 16, no. 3, 2011.

[6] M. Hubner, P. Figuli, R. Girardey, D. Soudris, K. Siozios, and J. Becker, “A
heterogeneous multicore system on chip with run-time reconfigurable virtual
fpga architecture,” in Workshops and Phd Forum (IPDPSW), 2011.

[7] VPR. (2009). [Online]. Available: http://www.eecg.toronto.edu/vpr/

[8] R. Ferreira, A. Garcia, T. Teixeira, and J. Cardoso, “A polynomial placement al-
gorithm for data driven coarse-grained reconfigurable architectures,” in ISVLSI,
2007.

[9] R. Ferreira, J. Cardoso, A. Damiany, J. Vendramini, and T. Teixeira, “Fast place-
ment and routing by extending coarse-grained reconfigurable arrays with omega
networks,” Journal of Systems Architecture, vol. 57, no. 8, 2011.

[10] S. J. E. Wilton, “Architectures and algorithms for field-programmable gate ar-
rays with embedded memory,” Ph.D. dissertation, University of Toronto, 1997.

[11] M. Dehyadgari, M. Nickray, A. Afzali-Kusha, and Z. Navabi, “Evaluation of
pseudo adaptive xy routing using an object oriented model for noc,” in Micro-
electronics, International Conference on, 2005.

[12] X. Lin, P. McKinley, and L. Ni, “Deadlock-free multicast wormhole routing in
2-d mesh multicomputers,” Parallel and Dist. Syst, IEEE Trans on, vol. 5, 1994.

[13] MCNC. (2010). [Online]. Available: http://cadlab.cs.ucla.edu/ kirill/

[14] V. Betz and J. Rose, “Vpr: a new packing, placement and routing tool for fpga
research,” in FPL, 1997.

[15] M. Lin and J. Wawrzynek, “Improving fpga placement with dynamically adap-
tive stochastic tunneling,” CAD of Integrated Circuits and Systems, IEEE Trans-
actions on, vol. 29, no. 12, 2010.

[16] M. Xu, G. Grewal, and S. Areibi, “Starplace: A new analytic method for fpga
placement,” Integration, the VLSI Journal, vol. 44, no. 3, pp. 192 – 204, 2011.

[17] S. Y. Chin and S. J. Wilton, “Towards scalable fpga cad through architecture,”
in Proceedings of FPGA, 2011.

[18] H. Bian, A. C. Ling, A. Choong, and J. Zhu, “Towards scalable placement for
fpgas,” in Proceedings of FPGA, 2010.

[19] M. Gort and J. Anderson, “Reducing fpga router run-time through algorithm
and architecture,” in FPL, 2011.



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles false
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize false
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo false
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Arial-Black
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /ComicSansMS
    /ComicSansMS-Bold
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FranklinGothic-Medium
    /FranklinGothic-MediumItalic
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Gautami
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /Impact
    /Kartika
    /Latha
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaConsole
    /LucidaSans
    /LucidaSans-Demi
    /LucidaSans-DemiItalic
    /LucidaSans-Italic
    /LucidaSansUnicode
    /Mangal-Regular
    /MicrosoftSansSerif
    /MonotypeCorsiva
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /MVBoli
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Raavi
    /Shruti
    /Sylfaen
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Tunga-Regular
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /Vrinda
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 200
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 200
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 400
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create PDFs that match the "Required"  settings for PDF Specification 4.01)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


