
A Just-In-Time Modulo Scheduling for Virtual
Coarse-Grained Reconfigurable Architectures

Ricardo Ferreira∗§, Vinicius Duarte∗, Waldir Meireles∗, Monica Pereira†, Luigi Carro‡ and Stephan Wong§
∗Departamento de Informatica - Universidade Federal Vicosa, CEP 36570000, Vicosa, Brazil

Email: ricardo@ufv.br
† DIMAP, Univ. Federal Rio Grande do Norte, CEP:59078-970, Natal, Brazil

Email: monicapereira@dimap.ufrn.br
‡Univ. Federal do Rio Grande do Sul, CEP 91501-970 Po Box: 15064, Porto Alegre, Brazil

Email: carro@inf.ufrgs.br
§ EEMCS, Computer Engineering, TU-DELFT

P.O. Box 5031, 2600 GA Delft - The Netherlands
Email: j.s.s.m.wong@tudelft.nl

Abstract—In the past decade, most solutions concerning the
mapping of the compute-intensive loop kernels to accelerators
have used heuristics and compiler-based strategies. These facts
require that most of the decisions be taken at design time, thus
precluding efficient solutions that can take run-time information
into account. Any success in accelerating such applications greatly
depends on two steps, extracting the loops and mapping them
into the architecture. This last step is a challenge in itself since
it is a NP-complete problem. In this paper, we propose a run-
time solution that can provide speed ups of 3 to 6 orders of
magnitude for the mapping step when compared to the state-of-
the-art at minimal performance degradation, by the combined
usage of 3 distinct mechanisms: 1) a simple and efficient modulo
scheduling heuristic, 2) a crossbar network, which simplifies the
placement and routing, 3) a virtual coarse-grained reconfigurable
architecture (CGRA). Additionally, since the CGRA is a virtual
layer on top of an FPGA, it is possible to use any off-the-shelf
FPGA without the need of special tools or IP solutions. Although
the mapping is NP-complete even for crossbar-based CGRAs,
experimental results demonstrate a huge reduction in compilation
time, as opposed to previous solutions that require seconds to
map the applications, our solution requires only microseconds to
find near optimal schedules. Besides the speed up, the proposed
solution enables the use of just-in-time compilation, hence it is
intrinsically adaptive to a changing scenario.

I. INTRODUCTION

Reconfigurable computing emerged as a solution to bal-
ance the tradeoff between flexibility, achieved with software
programming of general-purpose processors, and high per-
formance of application specific circuits. A particular ap-
proach in reconfigurable computing entails Coarse-Grained
Reconfigurable Architectures (CGRAs), which have shown
that they can provide both power efficiency [1] and hardware
acceleration [2].

Accelerating software execution requires a detailed appli-
cation analysis to find data dependencies, extract parallelism
and map the application into the target CGRA. For this reason,
many software execution acceleration techniques found in the
literature use compile and design time strategies to analyze
and map applications [1], [2], [3], [4]. The drawback of these
techniques is the fact that no advantage can be taken from the

application behavior during its execution. In addition, porta-
bility is very important in the embedded system market, and
it is normally ensured by virtual machines, just-in-time (JIT)
compilers, and binary translation approaches, where a short
compilation time and/or dynamic mechanisms are important
issues.

In the last decade, a significant advance has been made in
techniques to accelerate software execution for CGRAs [2],
[3], [5], especially multimedia applications [1], [4]. These
applications are characterized by the large amount of software
pipelining loops, which have a potential speedup factor [1].
However, mapping them into a CGRA is a challenge in itself
since it is a NP-complete problem [2]. To cope with this, the
solutions found in literature attempt to improve the mapping
step through the use of heuristics and compiler-based strate-
gies. In spite of their efforts, the solutions present a significant
delay due to the complexity of the mapping step. Therefore,
they can only be used during compile time [2], [4], [6], [7].
Recently, a new formulation for the loop mapping problem
on CGRA was presented [2]. Although, this approach could
achieve near optimal mapping, the average compilation time
is 30 seconds, which makes its use difficult in JIT compilation
environments.

This work proposes a new solution to accelerate software
execution that combines three distinct mechanisms: a mapping
algorithm, a crossbar network, and a virtual coarse-grained
reconfigurable architecture. The mapping algorithm consists
of a simple and efficient modulo scheduling algorithm to
map loops into the virtual CGRA. The algorithm is a greedy
heuristic and its implementation is straightforward. The virtual
CGRA is a layer that runs on top of a commercial FPGA.
The main advantages of this strategy are the low configuration
overhead since the CGRA works at word-level instead of
bit-level, and the possibility to use any off-the-shelf FPGA.
As part of the strategy to reduce mapping delay, we also
propose a CGRA based on a crossbar network instead of mesh
topologies [1], [2], [3], [4]. In the experimental results, we
show that this interconnection model reduces the complexity
to map applications into the CGRA and consequently allows
a simpler and faster mapping step. Although using a crossbar
network reduces mapping complexity, the mapping problem

978-1-4799-0103-6/13/$31.00 ©2013 IEEE 188

is still NP-complete problem. For this reason, the proposed
solution is based on a heuristic approach.

Experimental results demonstrate compilation time reduc-
tion by about 3 to 6 orders of magnitude when compared
to other solutions [2], [4], [6], [7], [8]. Moreover, as op-
posed to previous solutions that require seconds to map the
applications, our solution is in the order of microseconds.
This enables the use of just-in-time compilation and in the
future, a complete dynamic solution. We also demonstrate
that there is no loss in scheduling quality when evaluating
the loop initial interval, the amount of extracted instruction
level parallelism, and the resource utilization. For a set of
15 benchmarks, the initial interval is on average 92% of the
optimal solution. Additionally, since 90% of multimedia data-
flow graphs have less than 100 operations [4], it is possible
to successfully map them into a CGRA with only 16 PEs.
Even though crossbar cost is O(N2), for N = 16 it has a low
cost in area for the proposed CGRA, which is emulated on
the top of commercial FPGAs. In addition, a crossbar network
significantly accelerates the mapping process. To complement
the solution, partial reconfiguration could also be used as a
mechanism to ensure performance gains for large loops.

The remainder of this paper is organized as follows.
Section II contextualizes the work and present some of the
work related to modulo scheduling algorithms, coarse-grained
reconfigurable architectures, and the computational complex-
ity. Section III presents the proposed solution, detailing the
algorithm and the virtual architecture. Experimental results are
presented in section IV. A comparison with previous solutions
is also presented in this section. Finally, section V presents
conclusion and future works.

II. BACKGROUND AND RELATED WORK

In order to contextualize this work, this section presents
a brief overview of the main techniques used: CGRAs and
modulo scheduling. We focus on a CGRA as a target archi-
tecture and the time to scheduling the loops. The quality of a
scheduling is measured by the minimum initial interval (MII)
between two successive ith and i + 1th loop iterations. Next
subsections present the main concepts behind the techniques
and the previous works that first proposed and other works that
implement the techniques.

A. CGRA Architectures

The interconnections of CGRA architectures are crucial to
simplify the scheduling, placement and routing steps (SPR).
Depending on the interconnection model, its complexity can
cause a significant impact on SPR time. One possible strategy
to reduce complexity is by adding routing resources. Therefore,
one must consider the tradeoff between architecture intercon-
nection cost and compilation time.

One of the first works to propose a CGRA was PADDI [9].
PADDI uses a crossbar network where the routing and place-
ment are straightforward steps. Nevertheless, PADDI CGRA
cannot be configured dynamically, as the configuration is
loaded in setup time. Recently, an approach proposed to re-
place the crossbar networks by using multistage network [10].
However, only medium and large architectures with 64 and
256 processing elements (PEs) has been evaluated due to the

Fig. 1. (a) Mesh (b) Mesh Plus (c) Cluster

register allocation strategy. In addition, multistage networks
are blocking and the routing could fail.

Concerning modulo scheduling in CGRA, the DRESC
compiler from the ADRES framework [3] is one of the
pioneer works, using simulated annealing to reach the best
scheduling [11]. Nevertheless, the DRESC compiler is very
time consuming, even for small loops. One goal of the ADRES
framework [3] was the design exploration of mesh CGRA
based topologies, as shown in Fig. 1(a-c), to evaluate the
tradeoffs between resources (interconnections, registers) and
scheduling quality. A large amount of modulo scheduling
approaches uses mesh-based topologies [12], [8], [6], [13], [1],
[2], [7], which reduces the interconnection costs, however the
challenge is how to reduce the compilation time.

Fig. 1(a) depicts a 4×4 CGRA where each PE has a direct
connection to its four neighbors (north, south, east, west). In
addition, each PE has a local register file to store temporally
values. Fig. 1(b) shows a mesh plus interconnection, which
adds connections that routes over the neighboring PEs. This
feature improves the routability and simplifies the placement
and routing which in turn, improves the scheduling quality and
reduces the compilation time.

Fig. 1(c) depicts a local cluster structure where each
2 × 2 tile is fully interconnected by a local crossbar. Since
the crossbar cost is O(n2), and for this reason, only small
values of N (2 or 4) and few crossbar-based CGRA has been
proposed [9].

We propose a simplification in both architectural support
and algorithm implementation. Moreover, as most of the loops
from multimedia applications has small size, they can fit into
a 16-PEs architecture [2]. In current solutions, a 32-bits width
16 in/out crossbar has a reasonable size in current commercial
FPGA, which is similar to 4x4 CGRA with enriched 4x4
mesh interconnection. In addition, the crossbar routing is
O(1), and there is no placement problem since any PE could
achieve any other PE. Therefore, the algorithm is simplified
without additional costs at architecture level as demonstrated
in following sections.

B. Modulo Scheduling Algorithms

Modulo scheduling (MS) [5] is a software pipelining
technique which overlaps different iterations of a loop to
exploit a higher degree of Instruction Level Parallelism (ILP).
This technique is based on the “schedule-and-move” approach
where a schedule for one loop iteration is originated and
repeated for the other loop iterations at regular intervals.

Fig. 2 shows an example of ADRES modulo scheduling
algorithm. Fig. 2 (a) depicts a dataflow graph (DFG) of a
loop section. For ease of explanation, it is considered a 2x2

189

Fig. 2. Mesh Modulo Scheduling: (a) Graph (b) TEC Initial Placement (c)
TEC Routing Fail (d) TEC Successful

mesh architecture or 4 PEs. As the graph has 12 nodes, the
scheduling will need at least (12 nodes/ 4 PEs) = 3 configura-
tions labeled as C0,C1, and C2. Fig. 2 depicts Time-Extended
CGRA (TEC) graph [2] where the CGRA is extended in time.
For this example, the CGRA is extended 3 steps in time, one
for each configuration. The DFG must be mapped into the
TEC. In the example of Fig. 2, the nodes a and b are placed
in PE0 and PE1 at C0. Then c and d should be scheduled at
C1 due to the data dependence on a and b. Fig. 2(b) shows a
placement for c and d in the same PEs where a and b have
been placed. For e, f, and g, a possible placement and routing
at C2 is shown in Fig 2(b). However, if h is placed in PE3 at
C0, it is not possible to route f from PE1 to h in PE3 since
there is no diagonal connection. The routing fails as shown in
Fig 2(c).

A possible solution to enable the complete routing is to
change the placement of e, f , and g at C2. Then, e and f can
route to h from C2 to C0, as well as the entire graph: g → i,
h→ j, i→ k, and k → l (see Fig 2(d)). Therefore, in general,
more than one placement and routing should be evaluated to
reach a valid mapping where all data dependencies between
nodes are preserved.

For this example, the optimal solution is found, where the
II=3 and the ILP is 4 as all PEs are used in all configu-
rations. It is important to highlight that the loop iterations
are overlapped. When the iteration i executes nodes h, . . . , l,
the next iteration i + 1 executes nodes a, . . . , g as shown
in Fig 2(a). Moreover, nodes from different iterations share
the same configuration, as for example a, b and h, i at C0.
The modulo scheduling executes instructions of different loop
iterations at the same time. For this example, two iterations
are overlapped.

Traditional scheduling approaches [12], [13], [14] assign
nodes to PEs during the placement step. For this reason,
they are called node-centric solution. In this case, routing
is done to verify if the assignment is feasible. On the other
hand, in an edge-centric approach the routing is the primary
objective, and the placement is done during the routing process.
An edge-centric solution was proposed in [4], called edge-
centric modulo scheduling (EMS). The main advantage of
EMS technique is the reduction of compilation time when
compared to ADRES algorithm [4]. In spite of that, the II is
increased in comparison to ADRES approach, which means
a performance penalty at execution time. Recently, a new

Fig. 3. Example of Crossbar Modulo Scheduling

approach called EPIMAP is presented in [2], which reaches
the optimal II by using recomputation and routing approaches.
Nevertheless, the compilation time is 6 times slower than
EMS [4]. The recomputation and routing are performed in
the multicast nodes. Although, the number of operators could
be increased, the II is minimized. EPIMAP presents the best
results for optimal II in comparison to others approaches.
Moreover, the EPIMAP presents a formal definition of the
modulo scheduling problem and proves its NP-Completeness.

In order to reduce routing cost, two approaches [10], [7]
propose the use of multicast and sharing connections. The first
approach, called MSPR, is based on a multistage network [10]
to simplify the placement and routing. This is achieved because
with the multistage all the PEs become fully connected. The
second approach [7] uses the register files as routing resources
and shares multicast connections, where the MS is modeled
as a graph mirror problem improving resource allocation and
reaching the same II compared to DRESC [11].

The algorithm proposed in this work reaches scheduling
near the optimal, such as EPIMAP [2]. It also handles effi-
ciently multicast to share connections, such as G-Minor [7],
and simplify the placement and routing like MSPR [10]. In
addition, the compilation time of the proposed approach is
significantly reduced in more than three orders of magni-
tude. Although the previous works present compilation time
improvements, they are not simple enough for an efficient
JIT implementation once their average time are measured in
seconds. In this work, we propose to use a crossbar network
as the placement and routing steps for a crossbar network
are O(1). Fig. 3(a) depicts the proposed CGRA drawn in two
dimensions. The crossbar CGRA graph is a complete graph.
Fig. 3(b-d) display the Crossbar TEC. Moreover, we propose
to place the nodes sequentially in a counterclockwise direction
as depicted in Fig. 3(b), where nodes a, . . . , g are sequentially
placed in PEi, PEi+1, . . . through the configurations C0, C1

and C2. Then Fig. 3(b) depicts the TEC, where nodes h and
i are placed at C0 by using the sequential placement without
routing conflicts. Finally, the final TEC is depicted in Fig. 3(d).
If there is a data dependency between x and y (ie:x → y),
and x is scheduled at Ci, then y should be scheduled at
C(i+1)moduloII , where II is the initial interval.

C. NP-Complete

The mapping process consists of three steps: modulo
scheduling, placement and routing. The placement and routing
itself is NP-complete for mesh interconnections [14], [8]. The

190

Fig. 4. Example: (a) DFG (b) Balanced (c) Valid Scheduling (d) TEC

mesh has a O(N) connection cost. When, a mesh is replaced
by a crossbar network, the connection cost increases to O(N2),
however the placement and routing become O(1). In spite of
the reduction in placement and routing complexity, the overall
complexity of the mapping process includes all three steps,
modulo scheduling, placement and routing. For this reason,
one of the key questions that must be answered is what is
overall complexity of the mapping process.

Only recently, the problem of mapping an input DFG into
a CGRA has been proved to be NP-Complete in [2]. Although
the CGRA in [2] is defined as an array of PEs interconnected
by a 2-D grid or a mesh interconnection, the prove is based
on a CGRA as a general graph. The mapping is described as
the problem of finding a subgraph in a minimally TEC graph
that is Epimorphic to the input graph. Therefore, since the
crossbar CGRA is also modeled as a TEC, where the schedul-
ing constraint should be satisfied, the problem remains NP-
complete. Since there are no placement and routing constraints,
it is still possible to accelerate mapping process, by investing
in scheduling strategies. Nevertheless, the problem is still NP-
complete and heuristic approaches should be applied to reduce
even more the solution space. These heuristics should balance
the tradeoffs between scheduling quality and time complexity.

Fig. 4(a) presents a DFG to be mapped into a 4-PEs CGRA.
First, the graph needs to be balanced as shown in 4(b), where
node h is inserted into the path b → e. The minimal II is 8
nodes/ 4 PE = 2 configurations. However, it is not possible
to map due to the scheduling depicted in 4(b). As can be
observed, the level or configuration constraint is violated in C1,
where 5 nodes are scheduled (d, h, c, f, g) and the maximum
is 4 PEs, even if a crossbar network is used. Nevertheless,
there is a valid scheduling with the Minimal II=2 as shown
in 4(c). Therefore, if the nodes are re-scheduled it is possible
to achieve MII=2. If b is scheduled at C1, since b’s sources
are external inputs, d is shifted to C0 and the node h is not
inserted to balance the path b→ e. Finally, the TEC graph has
at most 4 nodes in each configuration as shown in 4(d), and the
minimal scheduling is found. Although it is a simple example,
by using a threshold value to limit the maximum of external
inputs per configuration, the most efficient scheduling could
be found since the DFG nodes are better distributed across the
configurations.

III. MODULO SCHEDULING HEURISTIC

This section details the proposed modulo scheduling
heuristic considering a crossbar CGRA design. In addition,

Fig. 5. Pseudo Code for the Basic Algorithm

two register saving techniques are presented which improves
the scheduling quality.

A. Basic Algorithm

Our proposed algorithm is based on a greedy heuristic
composed of simple data structures (vectors) and with time
complexity O(N). The pseudo-code is described in Fig. 5. It
is important to note that the pseudo-code closely resembles
C code, and its implementation is straightforward and very
efficient. Similar to others approaches [2], the graph is tra-
versed in topological order. However, the input graph is not
balanced, and registers are inserted on-the-fly during the graph
traversing. In this work, we assume that the starting point is
the dataflow graph (DFG), similar to others approaches [2],
[4], [6], [7], [8], [13]. Moreover, our approach is based on
a greedy heuristic where the DFG is traversed just once for
a given initial interval (II), which leads to a huge reduction
in the compilation time. In contrast, others approaches try
different schedules, placements and routings for each II. If the
scheduling is not feasible, the II is increased and the scheduling
is performed again until a feasible solution is found. Although
we just try once for each II, we achieve the optimal solution
in the first try for 10 of 15 DFGs.

The graph traversal is performed per node. The code uses
six vectors: Place maps nodes into PEs, Scheduling keeps
track of scheduling time; Cfg stores the configuration; Free PE
is used to point to the next free PE; RouteA and RouteB
store the routing per configuration. Let t be the target node,
and s1 and s2 are the source nodes. If t has external inputs
(lines 2-4 in Fig. 5), the scheduling, placement and routing is
straightforward. It is important to note that the placement is
performed sequentially by using a simple assignment (line 3),
which is an O(1) operation. If s1 or s2 have been already
scheduled, there are two possibilities. First, s1 and s2 has
the same scheduling and no balance is needed (lines 6-10).
t is scheduled in the next configuration by using the modulo
operation (line 7). The routing is also a single assignment as
shown in line 10. The second possibility occurs when s1 and
s2 has different scheduling. Then, one or more registers are
inserted (line 12), and finally the scheduling, placement and
routing is performed.

B. Sharing Registers

Fig. 6(a) depicts an example of reconvergent paths, very
frequent in multimedia algorithms. These paths could have

191

Fig. 6. (a) Original Balance (b) Sharing Registers

Fig. 7. (a) Bypassing A (b) Using both Input Registers

different lengths. If the edges are not balanced, it is necessary
to insert temporary registers or nodes for balancing, which in
turn increases the cost [2], [7]. In case of multicast edges,
they will be balanced separately (see Fig. 6(a) for a → d
and a → e), as proposed in previous approaches [3], [4],
[6]. Recently, a shared multicast routing was presented in [7]
for the ADRES based architecture to minimize the number
of temporary registers. Although, our approach is based on
a different target architecture, we propose a simple technique
to reduce the number of registers in presence of multicast, as
depicted in Fig. 6(b). When node d is processed, two registers
are inserted. An additional vector will keep track of the last
node connection per configuration, which is implemented by
the function insert register (line 12) in Fig. 5. When the node
e is being processed, the source node a is checked. Since the
last source node a is scheduled at time 3, only one register is
needed to balance the path from a to e.

C. Local Registers

The CGRA architecture presented in this work is based on
the target architecture proposed in [10], where the multistage
interconnection network is replaced by a crossbar network.
Each PEi has one internal functional unit (FU) and two input
registers: A and B. The FU’s output is connected to the two
crossbar networks. This enables the inputs A and B to receive
data from different FUs at the previous configuration. When
a register is needed at PEi, either the register Ai or Bi is
used. Moreover, the FUi is bypassed. Therefore, the register
Bi and the FUi are idle, and only the register Ai is used to
implement a register operator as shown in 7(a).

We propose to use both local registers by adding multiplex-
ers as shown in Fig. 7(b). Although the basic algorithm should
be changed, the modifications are simple and do not cause a
major impact. First, a vector is needed to store the first free reg-
ister (free REG) in addition to the vector free PE, which keeps
track of the first free PE of each configuration. The free REG
vector will be updated by the function Insert Register at line
12. In addition, only line 15 should be modified if the last
allocated register uses the B crossbar network to route.

TABLE I. NUMBER OF PES USED AS REGISTERS FOR THREE
STRATEGIES: BASIC (BA), SHARING REGISTERS (SH), AND LOCAL

REGISTERS (LO)

Name BA SH LO
arf 13 13 7
motion 17 17 10
ewf 51 34 18
fir2 9 9 5
fir 6 6 4
Cplx8 34 31 16
Fir16 28 28 15
h2v2 52 51 27
feedback 24 23 13
FilRGB 33 31 16
collapse - - 20
cosine1 16 8 5
cosine2 - - 25
DCT 27 17 12
write - - 20

IV. EXPERIMENTAL RESULTS

To evaluate the effectiveness of the proposed greedy heuris-
tic solution, a set of dataflow benchmarks from [15] were se-
lected. These DFGs are derived from Mediabench benchmarks.
In addition, six DFGs are extracted from DSP algorithms:
FIR16 and FIR64 are an 1-D finite-impulse response filter
(versions with different number of taps are used), CPLX8 is
a FIR filter using complex arithmetic, FDCT is a fast discrete
cosine transform implementation, and The FilRGB is an image
filter to highlight an image by brightening or darkening the
pixels in the images. The DFGs range in complexity from 28
to 196 nodes, and from 1 to 48 inputs.

A. Register Saving

Table I shows the results for the amount of PEs used as a
register to balance the loop graphs. This result is based on
the three strategies described in Section III. To obtain the
amount of required PEs, 15 benchmarks were evaluated, rang-
ing in complexity from 28 to 106 nodes (without considering
balancing registers). The target architecture consists of a 16-
FUs CGRA with a crossbar network. Each configuration could
receive at most 4 external inputs. Similar assumptions are made
in EMS [4], and EPIMAP [2].

Column name depicts the benchmark name. The other
columns are labeled according to the register strategies: ba-
sic (BA), sharing registers (SH), and local registers (LO).
Considering that the basic strategy (BA) uses an entire PE
as a bypassing register, in specific configurations, there is
no enough register or PE. For this reason, the scheduling
fails for 3 of 15 benchmarks. On the other hand, the sharing
register strategy (SH) reduces the number of registers in 7
of 15 benchmarks. However, this strategy also fails in 3 of 15
benchmarks. The reduction is more effective in three cases: ewf
(33%), cosine1 (50%), and DCT (37%). For these benchmarks,
there are multicast edges. The local register strategy is simple
and effective, where both input registers could be used as a
bypassing resource. In the best case, this strategy reduces up
to 50% the number of bypassing PEs. This approach saves on
average 42% of bypassing PEs for 12 benchmarks. In addition,
3 benchmarks which could not be scheduled (with one trying
per II) for the others strategies are successfully mapped by the
local register approach.

192

TABLE II. INITIAL INTERVAL FOR THREE STRATEGIES:BASE (BA),
SHARING REGISTERS (SH), AND LOCAL REGISTERS (LO)

Achieved II
Name In Op MinII BA SH LO Op+R
arf 8 28 3 3 3 3 35
motion 14 32 4 4 4 4 42
ewf 2 34 4 6 5 4 52
fir2 16 40 4 4 4 4 45
fir 22 44 6 6 6 6 48
Cplx8 1 46 4 6 5 4 62
Fir16 1 49 4 5 5 5 64
h2v2 16 51 5 10 10 6 78
feedback 21 53 6 6 6 6 66
FilRGB 2 57 5 6 6 5 73
collapse 6 59 5 - - 6 79
cosine1 16 66 5 7 7 7 71
cosine2 31 81 8 - - 8 106
DCT 1 92 7 11 11 11 104
write 38 106 10 - - 10 126

B. Initial Interval

Table II depicts the achieved initial interval (II) for the
three register strategies. The columns In, OP and MinII depict
the number of external inputs, the number of graph operators,
and the minimum II, respectively. The MinII is computed
by Max((OP + R)/FU, In/MaxIn) where OP + R (last
column in Table II) is the number of bypassing PE plus the
number of graph operators, In is the number of external
inputs and MaxIn is the maximum number of external inputs
allowed per configuration. To enable a comparison with recent
works [2], [7], [4], we make the same assumption about the
amount of external inputs or memory operations, Maxin = 4.
Furthermore, graph size definition was based on the fact that
most loops for multimedia applications has less than 100
operations. As demonstrate in [4], for 214 loops from H.264,
ACC, 3D and MP3 codes, 90% of loops has less than 100
operators. Based on this, we defined the graph size of the
benchmarks ranging from 35 to 126 nodes for the balanced
graphs.

The quality of scheduling results were measured by com-
paring the minimum II with the achieved II for the three
strategies. The local register strategy achieves the minimum
II in 10 of 15 benchmarks. To evaluate the scheduling quality,
we performed a comparison between the initial intervals of
the proposed solution and EPIMAP [2] solution. EPIMAP
proposed a solution based on smart exploration of solution
space, and it is considered one of the most efficient modulo
scheduling solutions. In the solution proposed in this work,
only one scheduling is performed per II, and even in this case,
the achieved II is closed to the optimal solution Moreover, the
proposed approach achieves 92% of MinII for 15 DFG with
on average 70.1 nodes. On the other hand, the EPIMAP results
show on average 93% of MinII for 14 DFG with an average
57.6 nodes. Therefore, the scheduling quality is similar even
considering larger DFGs. Our DFGs are available in [15]. BA
and SH strategies fails (represented by a dashed line -) for
three benchmarks with more than 79 operators and bypassing
registers.

C. Architecture Size

Table III depicts the initial interval (II), the instruction level
parallelism (ILP) and the occupancy for three architecture sizes
with 16, 20 and 24 PEs. The DFG sizes range in complexity

TABLE III. INITIAL INTERVAL, ILP AND OCCUPANCY FOR THREE
ARCHITECTURE SIZE: 16, 20 AND 24 PE

Name II ILP Occ (%)
16 / 20 / 24 16 / 20 / 24 16 / 20 / 24

arf 3 / 2 / 2 9.3 / 14.0 / 14.0 72.9 / 87.5 / 72.9
motion 4 / 4 / 4 8.0 / 8.0 / 8.0 65.6 / 52.5 / 43.8
ewf 4 / 3 / 3 8.5 / 11.3 / 11.3 81.3 / 86.7 / 72.2
fir2 4 / 4 / 4 10.0 / 10.0 / 10.0 70.3 / 56.3 / 46.9
fir 6 / 6 / 6 7.3 / 7.3 / 7.3 50.0 / 40.0 / 33.3
Cplx8 4 / 4 / 3 11.5 / 11.5 / 15.3 96.9 / 77.5 / 87.5
Fir16 4 / 4 / 3 12.3 / 12.3 / 16.3 100.0 / 81.3 / 88.9
h2v2 5 / 4 / 4 10.2 / 12.8 / 12.8 97.5 / 96.3 / 80.2
feedback 6 / 6 / 6 8.8 / 8.8 / 8.8 68.8 / 55.0 / 45.8
FilRGB 5 / 4 / 4 11.4 / 14.3 / 14.3 91.3 / 91.3 / 76.0
collapse 5 / 4 / 4 11.8 / 14.8 / 14.8 98.8 / 98.8 / 82.3
cosine1 5 / 4 / 4 13.2 / 16.5 / 16.5 88.8 / 88.8 / 74.0
cosine2 8 / 8 / 8 10.1 / 10.1 / 10.1 82.8 / 66.3 / 55.2
DCT 7 / 6 / 5 13.1 / 15.3 / 18.4 92.9 / 85.0 / 85.0
write 10 / 10 / 10 10.6 / 10.6 / 10.6 78.8 / 63.0 / 52.5
interpol 12 / 12 / 12 9.0 / 9.0 / 9.0 75.0 / 60.0 / 50.0
matmul - / 7 / 6 - / 15.4 / 18.0 - / 92.1 / 88.9
jpgfast - / - / 14 - / - / 11.9 - / - / 99.1
jpgslow - / 15 / 12 - / 11.5 / 14.4 - / 93.7 / 96.9
idctcol - / - / 15 - / - / 12.4 - / - / 96.4
TFir64 19 / 15 / 13 10.2 / 12.9 / 14.8 96.1 / 96.3 / 92.9
smooth - / 16 / 16 - / 12.3 / 12.3 - / 82.5 / 68.8
aver. 10.3 / 11.9 / 12.8 82.8 / 77.5 / 72.2

from 28 to 196 nodes. The DFGs are ordered by size in
Table III. The ILP is computed by the number of effective
operations divide by the II not counting the bypassing registers.
The occupancy represents the percentage of used resources
during execution (100−OCC indicates the percentage of idle
resources).

In this experiment, the results allows performing a set of
different analysis. Firstly, the quality of the scheduling for 7
in 22 DFGs does not improve when more PEs are added.
For instance, the II for interpol benchmark remains 12 for
all the architecture sizes. In this case, a large number of
external inputs limits the maximum parallelism. Moreover,
the 16 PEs have a better occupancy, as well as reduce the
amount of idle resources, as shown in last three columns
in Table III. The second analysis is related to the last row,
which depicts the average ILP of 10.3, 11.9, 12.8 for 16,
20 and 24 PEs, respectively. The results demonstrate that
the 20-PEs architecture only improves in 15% the ILP but
it uses 25% more PEs. Furthermore, the 24 PEs architecture
increases the number of PEs in 50%, however the ILP is
only 24% better than the 16-PEs architecture. For most cases,
the 16-PEs architecture shows a good tradeoff in quality and
ILP even for a small architecture. However, for larger DFGs
(last fives line in Table III), due to the greedy heuristic
(just one scheduling per II) and the small number of local
register, the scheduling for 16-PEs architecture may fail, and
for this reason, larger architectures with 20 or 24 PEs are
needed. For these cases, partial reconfiguration could be used
to dynamically reconfigure the CGRA when larger DFGs are
executed.

The second experiment is used to measure the area of the
proposed CGRA implemented on the top of a commercial
FPGAs. Most modulo scheduling solutions does not report any
results regarding physical implementations [12], [8], [6], [13],
[2], [7], only the scheduling quality and compilation time are
reported. For this reason, a detailed comparison among area
results was not possible. Nonetheless, in Table IV, we present
area results of the proposed solution in comparison to ADRES

193

TABLE IV. PERCENTAGE OF FPGA RESOURCES FOR CROSSBAR AND
ADRES BASED CGRA IN A XILINX XC6VLX75T

Feq Clk
Size FF (%) LUT % RAM % Mhz ns
Crossbar 16 PEs 2.7 17.6 4.5 90 11.1
Crossbar 20 PEs 3.4 30.1 6.4 72 13.8
Crossbar 24 PEs 4.0 39.5 7.7 57 17.5
ADRES 4x4 2.5 14.7 16.0 110 8.8

architecture.

Table IV depicts the FPGA resource used for all three
architecture sizes with 16, 20 and 24 PEs in comparison
to ADRES architecture. We select a medium size FPGA
xc6vlx75t from XILINX. This FPGA has 93,120 FlipFlops,
46,560 6-input LUTs, and 156 embedded RAM blocks. In this
work, we assume homogeneous PEs, which implement 32-bits
logic and arithmetic operations (including multiplication). The
ADRES architecture has a global register file with 64 registers,
4-write and 8-read ports, meshplus interconnections and 8 local
registers as described in [16].

The number of registers or FF (shown in Column FF)
is negligible for all architectures. Moreover, the number of
LUTs for the 16-PEs architecture and ADRES are very similar.
The 16-PEs architecture uses more LUTs, since crossbar
interconnections is more expensive than mesh-local connec-
tions. Therefore, although 16-PEs architecture is feasible with
a small area overhead, since the complexity is O(n2), the
required LUT for 20 and 24 PEs increases significantly as well
the clock cycle (Column Clk in Table IV). Nevertheless, it is
still feasible in medium size FPGAs. Regarding the number of
RAM used to store the configuration bits for all architectures
and the global register file for ADRES, the 16-PEs architecture
uses very few resources, only 4.5% or 7 RAMs compared to
ADRES, which uses 9 RAMs to store the configuration bits
plus 16 RAMs for the global register file.

D. Compilation Time

The proposed solution presents a significant reduction in
compilation time. The substantial reduction enables the use of
Just-in-Time implementation, which is a technique not feasible
in previous solutions. Since the previous approaches [12], [8],
[6], [13], [2], [7] use a desktop general-purpose processor
(CPU) to measure the compilation time, we have also executed
the proposed heuristic in a commercial CPU. In addition,
we evaluated the proposed heuristic in two FPGA softcore
processors. Softcores could be one solution for future complete
dynamic approaches.

Table V shows the compilation time for the three different
platforms. First, we use a commercial superscalar processor: an
Intel i7, 1.7Ghz with 256Kb L1 cache. For this processor, the
algorithm was compiled using gcc 3.4.2 with -O3 optimization
option. The second processor is the softcore Xilinx Microblaze
running at 150Mhz, and the algorithm was compiled using
Cygwin make 3.79.1 with -O3 optimization option. The third
processor is ρ Vex, a VLIW softcore processor [17] at 100Mhz,
with 4-issue. The algorithm was compiled using HP VEX
compiler 3.41 with -fno-xnop and -O3 optimization option.

The results are presented in Table V. The first significant
result analysis is related to the time unit. While the previous
solutions uses seconds as time unit, the proposed solution

TABLE V. COMPILATION TIME IN µ SEC. FOR THREE DIFFERENT
PROCESSORS: I7, MICROBLAZE, AND ρ-VEX

Name i7 MicroBlaze ρVex
arf 7.20 232.79 107.23
motion 3.80 127.75 60.35
ewf 5.40 368.99 165.17
fir2 3.70 125.56 58.68
fir 3.80 120.54 56.52
Cplx8 8.80 339.37 153.86
Fir16 9.50 370.13 168.36
h2v2 14.20 570.02 261.17
feedback 4.30 163.60 75.86
FilRGB 9.70 387.17 175.27
collapse 14.60 610.13 274.04
cosine1 12.70 484.17 218.60
cosine2 5.60 246.49 111.82
DCT 33.30 1,460.56 628.74
write 5.60 246.43 111.83
Total Time 142 5854 2627
Time per Node 0.17 6.99 3.14
Number of Cycles per node 292.57 1047.80 313.54

TABLE VI. COMPILATION TIME AND CYCLES PER NODE

Time (sec.) Reduction Factor
Algorithm clk Graph Node Cycles i7 ρvex
DRESC 2.66 104 0.73 2.0 109 6.8 106 6.2 106

EPIMAP 2.66 30 0.17 4.5 108 1.6 106 1.4 106

RF 1.0 110 0.5 4.9 108 1.7 106 1.6 106

EMS 2.66 5.6 0.04 1.04 108 3.6 105 3.3 105

Gminor 2.66 3.4 0.04 1.04 108 3.6 105 3.3 105

RAM 2.66 3.9 0.01 2.7 107 9.3 104 8.6 104

MSPR 2.66 0.09 0.0002 4.6 105 1.6 103 1.5 103

presents results in µ seconds. These results show up to 6 orders
of magnitude in compilation time reduction. The last three
rows in Table V show average results for the 15 benchmarks
evaluated. First, the total time shows that the i7 is on average
41.2x and 18.5x faster than the softcore Microblaze and ρ Vex
processors, respectively. Moreover, the i7 clock is 11.3x and
17x faster than the softcore processors, respectively. Second,
we propose to normalize the results to compare the complexity
of the algorithm implementation. The row Time per Node
depicts the average time spent to scheduling one DFG node.
Finally, the row Number of Cycles per node depicts the
average number of processor cycles spent to map a DFG
node. This result shows that the complexity of implementation
(which depends on processor and compiler features) is similar
for i7 and ρ-Vex processor, and it is around 300 processor
clock cycles per node.

Table VI presents the compilation time, in orders of
magnitude, for seven modulo scheduling approaches found
in literature: DRESC [11]; EMS [4]; RF [18]; RAM [6];
MSPR [10]; G -Minor [7]; and EPImap [2], which the label is
used in Column Algorithm VI. The compilation time results
were obtained from the respective references, with exception
of DRESC, which time results were based on information
reported in [7], [6]. Column Clk displays the clock frequency
used to measure the compilation time. Column Graph shows
the average time required to compile an entire graph. In 6
of 7 algorithms, the time ranges from 3.4 to 110 seconds per
graph, which is feasible for offline or static compiler. However,
only the MSPR algorithm [10] presents a short time suitable
for Just-in-Time. Based on these data, we have computed
the average time spent per node, displayed in Column Node.
Furthermore, we have also computed the average number of
cycles to process one DFG node. Finally, the two last columns

194

depict the reduction factor in number of clock cycles per node
obtained by the proposed approach for the i7 and the ρ vex
execution. The results show that a massive reduction ranging
from three to six orders of magnitude was achieved.

To achieve the significant compilation time reduction pre-
sented in the experimental results, a set of design strategies
was adopted. Firstly, all previous works present high level
pseudo algorithms, and the implementation of some steps is
complex and not straightforward. The algorithm proposed in
this work is very simple and close to the final codification
in C language. Moreover in most solutions, several possible
schedules are evaluated per II and, for each scheduling, several
placement and routing steps are performed. On the other hand,
the proposed approach tries only one scheduling per II, and
each DFG node is visited only once. Additionally, a complexity
reduction is generated due to the use of a crossbar network
which simplifies the placement and routing to O(1) steps.

As a last possible comparison to previous solution, we have
also compared the proposed solution with the one proposed in
[10], called MSPR solution. MSPR uses a similar approach
based on multistage networks. However, there is a significant
difference in compilation time. The first reason for the MSPR
presenting worst compilation time is related to the routing
step. The routing step is O(lgN + 2E) for multistage, where
E is the number of extra levels. Moreover, there are routing
conflicts, since multistage are blocking networks. Secondly,
due to the routing conflicts, all available PEs are evaluated
during the placement. While in the approach proposed in
this work, sequential placement and direct routing are used
(single assignments). Finally the algorithm has a more complex
implementation and the quality of the results are worst since
MSPR does not save or use local register to achieve better II,
and therefore, more scheduling should be tried.

V. CONCLUSION

This paper proposed a solution to accelerate software ex-
ecution by using modulo scheduling heuristic to map applica-
tions into a virtual coarse-grained reconfigurable architecture.
The virtual architecture runs on top of a commercial FPGA
and has 16 processing elements. A crossbar interconnection
network simplifies the placement and routing steps, which
becomes straightforward, as any PE can directly reaches any
other PE. Although, the crossbar networks are not scalable
as the cost complexity is O(N2), for N = 16, the CGRA
size is similar to the mesh-based CGRA. Experimental results
demonstrate gains around 3 to 6 orders of magnitude when
comparing compilation times of existing solutions. Moreover,
the results also show a high level of parallelism extraction
and an optimized initial interval in more than 92% of the
tested benchmarks for most data-flow graphs (DFGs) found
in multimedia algorithms with an average size of 70 opera-
tions per software pipelining loop. Therefore, by combining
a straightforward architecture with simple heuristic based on
greedy decisions, simple assignments and few vectors to store
the scheduling, placement and routing data, it was possible
to achieve high performance in order to allow a JIT compiler
as efficient as the static compilation time algorithms. Future
works include more investments on local register to allow
efficient execution of large DFGs in small size architecture.
As proposed in [2], recomputation could be used to explore

the scheduling solution space. However, the search mechanism
should be simple enough to keep algorithm simplicity and short
execution time.

ACKNOWLEDGMENT

This work was supported by TU Delft, Netherlands
and the Brazilian Institutions and Companies: Science with-
out Borders/CNPq, CAPES, UFV, UFRGS, UFRN, Funar-
pos/FUNARBE, FAPEMIG, and Gapso.

REFERENCES

[1] H. Park, Y. Park, and S. Mahlke, “Polymorphic pipeline array: a flexible
multicore accelerator with virtualized execution for mobile multimedia
applications,” in Proc. MICRO, 2009, pp. 370–380.

[2] M. Hamzeh, A. Shrivastava, and S. Vrudhula, “Epimap: Using epimor-
phism to map applications on cgras,” in Proc. DAC, 2012, pp. 1280
–1287.

[3] B. Mei, S. Vernalde, D. Verkest, H. D. Man, and R. Lauwereins,
“Exploiting loop-level parallelism on coarse-grained reconfigurable
architectures using modulo scheduling,” in Proc. DATE, 2003.

[4] H. Park, K. Fan, S. A. Mahlke, T. Oh, H. Kim, and H.-s. Kim, “Edge-
centric modulo scheduling for coarse-grained reconfigurable architec-
tures,” in Proc. PACT, 2008.

[5] B. R. Rau, “Iterative modulo scheduling: an algorithm for software
pipelining loops,” in Proc. MICRO, 1994, pp. 63–74.

[6] T. Oh, B. Egger, H. Park, and S. Mahlke, “Recurrence cycle aware
modulo scheduling for coarse-grained reconfigurable architectures,” in
Proc. LCTES, 2009, pp. 21–30.

[7] L. Chen and T. Mitra, “Graph minor approach for application mapping
on cgras,” in Proc. FPT, 2012.

[8] M. Ahn, J. W. Yoon, Y. Paek, Y. Kim, M. Kiemb, and K. Choi, “A spa-
tial mapping algorithm for heterogeneous coarse-grained reconfigurable
architectures,” in Proc. DATE, 2006, pp. 363–368.

[9] D. Chen, L. Guerra, E. Ng, M. Potkonjak, D. Schultz, and J. Rabaey,
“An integrated system for rapid prototyping of high performance
algorithm specific data paths,” in ASAP, 1992, pp. 134 –148.

[10] R. Ferreira, J. G. Vendramini, L. Mucida, M. M. Pereira, and L. Carro,
“An fpga-based heterogeneous coarse-grained dynamically reconfig-
urable architecture,” in Proc. CASES, 2011.

[11] B. Mei, S. Vernalde, D. Verkest, H. De Man, and R. Lauwereins, “Dresc:
a retargetable compiler for coarse-grained reconfigurable architectures,”
in Proc. FPT, 2002, pp. 166 – 173.

[12] H. Park, K. Fan, M. Kudlur, and S. Mahlke, “Modulo graph embedding:
mapping applications onto coarse-grained reconfigurable architectures,”
in Proc. CASES, 2006, pp. 136–146.

[13] A. Hatanaka and N. Bagherzadeh, “A modulo scheduling algorithm for
a coarse-grain reconfigurable array template,” in IPDPS 2007, 2007,
pp. 1 –8.

[14] J. Yoon, A. Shrivastava, S. Park, M. Ahn, R. Jeyapaul, and Y. Paek,
“Spkm : A novel graph drawing based algorithm for application
mapping onto coarse-grained reconfigurable architectures,” in Proc.
ASPDAC, 2008, pp. 776 –782.

[15] ExPRESS, “Electrical computer engineering dep., ucsb, usa,”
http://express.ece.ucsb.edu/benchmark/.

[16] F. Bouwens, M. Berekovic, A. Kanstein, and G. Gaydadjiev, “Architec-
tural exploration of the adres coarse-grained reconfigurable array,” in
Proc. ARC, 2007, pp. 1–13.

[17] S. Wong and F. Anjam, “The delft reconfigurable vliw processor,” in
17th International Conference on Advanced Computing and Communi-
cations (ADCOM), 2009.

[18] B. De Sutter, P. Coene, T. Vander Aa, and B. Mei, “Placement-
and-routing-based register allocation for coarse-grained reconfigurable
arrays,” in Proc. LCTES, 2008, pp. 151–160.

195

