Automated Hybrid Interconnect Design for FPGA
Accelerators Using Data Communication Profiling

Cuong Pham-Quoc, Zaid Al-Ars, Koen Bertels
Computer Engineering Lab, Delft University of Technology
Email: {P.PhamQuocCuong,Z.Al-Ars,K.L.M.Bertels} @tudelft.nl

Abstract—In this paper, we introduce an automated intercon-
nect design strategy to create an efficient custom interconnect for
kernels in an FPGA-based accelerator system to accelerate their
communication behavior. Our custom interconnect includes an
NoC, shared local memory solution or both. Depending on the
quantitative communication profiling of the application, the in-
terconnect is built using our proposed custom interconnect design
algorithm and adaptive mapping function. Experimental results
show that our system achieves an overall application speed-up
of 3.72x compared to software and of 2.87x compared to the
baseline system - a conventional FPGA bus-based accelerator
system. Moreover, our proposed system achieves 66.5% energy
reduction due to the reduced execution time.

Index Terms—FPGA-based accelerator, communication profil-
ing, custom interconnect.

I. INTRODUCTION

Although FPGAs offer a high-performance and energy-
efficient computing compared to a general purpose processor
(GPP), it is not easy and not straightforward to develop a com-
plex application using only FPGAs. FPGA-based accelerators
represent an approach to use the advantages of both the FPGA
and the GPP. In such system, there is often one GPP that func-
tions as a host processor and one or more FPGA-based kernels
that function as co-processors to speed-up the processing of
special kernels of the application running on the host. FPGA-
based accelerators are used in many application domains such
as image processing [1], autovision driver assistance [2], bio-
informatics applications [3], etc.

While many different interconnect techniques have been
developing for communication between processing cores, most
FPGA-based accelerator systems use a bus for the interconnect
between the host and the kernels (the processing cores).
With the rising number of cores, communication between
cores increases the requirements on interconnect parameters
such as low-latency and area-efficiency. Although bus systems
have their advantages [4], they become inefficient when the
number of cores rises. On the other hand, Networks on Chips
(NoCs) [5] have been proposed as an efficient communication
infrastructure in large systems to allow parallel communication
and to increase the scalability. However, the major drawback
of NoCs compared to bus systems is the increased delay and
implementation costs [4].

In this work, we introduce an automated strategy using
a communication profiling to design a custom interconnect
of kernels in an FPGA-based accelerator system. The main

purpose of our work is to improve the communication be-
havior of the kernels in an existing accelerator system while
keeping the amount of hardware (HW) resource usage for the
interconnect as low as possible. In state-of-the-art approaches
in the literature, input data required for kernel computation is
fetched to its local memory (cache) when the kernel is invoked,
which delays the start-up of kernel calculations until the data
is available. In contrast to these approaches, our approach
uses communication profiling to create a custom interconnect
for the kernels. The interconnect, then, helps deliver data
from one kernel to the others as soon as possible, thereby
hiding the data communication time needed for the kernel.
The ultimate goal is to have a tailored interconnect infrastruc-
ture which is dynamically configured. A custom interconnect
design algorithm and an adaptive mapping function using
a quantitative data communication profiling of application
are proposed to build the interconnect. Our results using
four experimental applications show that the proposed system
achieves a speed-up of up to 2.87x compared to a baseline
system (a conventional FPGA bus-based accelerator system).
We also managed to save up to 66.5% energy consumption.

The main contributions of the paper can be summarized as
follows: (1) introducing an efficient communication model for
FPGA-based accelerator kernels; (2) proposing an automated
design algorithm to define a custom interconnect for each
specific application with low HW resource usage using data
communication profiling.

The rest of this paper is organized as follows: Section
IT gives a summary of FPGA-based accelerator systems in
the literature as well as state-of-the-art data communication
optimization techniques. Section III gives an overview of the
proposed custom interconnect. Section IV presents in detail
the mathematical modeling of system components and our
proposed design strategy. In Section V, experimental results
show the benefit of the custom interconnect architecture using
four experimental applications. Finally, Section VI concludes
the paper.

II. STATE-OF-THE-ART

This section analyzes FPGA-based accelerator systems in
the literature based on their interconnect. State-of-the-art data
communication optimization techniques for such systems are
summarized also in this section.

A. State-of-the-art HW accelerator systems

In recent years, many FPGA-based accelerator systems have
been proposed for general purpose computing as well as for
specific applications (domains). Figure 1(a) presents a generic
architecture of an FPGA-based accelerator system. In such
system, the host processor can be a general high-performance
CPU (e.g., x86 Intel CPU) or a hardwired embedded processor
(e.g., Xilinx PowerPC) or a soft processor (e.g., MicroBlaze
or Nios). The kernels are implemented in the reconfigurable
area. While the host processor has the main memory to contain
application data, the kernels have their local memories to store
local data (data cache). These local memories help improving
the parallelism between cores. The core communicates with
the host, other cores and I/Os through a communication
infrastructure.

The following review classifies HW accelerator systems
presented in the literature into four different groups based on
their communication infrastructure (the interconnect).

1) Bus-based interconnect: Molen [6], Warp processor [7],
LegUp [8], IMORC [9] and the experimental systems in [10],
[11], [12] use only a bus as the communication infrastructure.
The host delivers data input to the kernel when it is invoked
and collects the result when the kernel finishes computation
through the bus. Other modules such as I/O, DMA, interrupt
controller, etc. are also connected with the bus.

2) NoC-based interconnect: MORPHEUS system [13],
[14] uses an NoC for data communication of kernels and
memory modules. In the MORPHEUS architecture, the control
infrastructure is done via an AMBA AHB bus while an
exotic Spidergon NoC is used to transfer data among the
kernels, the main memory, and the off-chip memory. Although
the platform shows very good simulation results, the NoC
takes a huge resource toll up to 944,000 ASIC gates. The
experimental system in [15], [16] uses an NoC to connect
the kernels and the memory modules together. A CoRAM
element in each kernel collects data input from the memory
modules and sends data output back to them through the NoC.
The P2012 architecture [17] uses an asynchronous NoC for
data communication among the kernels while communication
between the host and the kernels is done by direct memory
access (DMA).

3) Shared memory: Convey [18] uses a hybrid-core glob-
ally shared memory for data communication of the host and
the kernels as well as among the kernels. In [19], Garcia
et al. proposed a scalable memory interface for a multicore
reconfigurable computing system in which the kernels and
the CPU cores communicate through a shared memory hierar-
chicy. A controller is responsible for issuing memory requests,
translating the virtual memory address and guaranteeing the
cache-coherence. Shared memory mechanism is used also
in [20] through a remote memory access infrastructure. In this
system, the CPU and the kernels, connected together via an
NoC, have their own local memories. However, through Global
Address Space cores (GAScores) (each kernel has a GAScore),
the CPU and the kernels can access data stored in the local
memories of other kernels.

4) Crossbar: The research in [21] proposed a framework
for accelerating large graph problems. The experimental sys-
tem includes graph processing elements (GPEs) connected
with memory modules through a full crossbar. The crossbar
contains three different components: FIFOs, an arbiter and
multiplexer. The round-robin algorithm is used to schedule
communication between the GPEs and the memory.

While the prototype version of [6], [7], [8], [10], [11], [12],
[16], [20] implements the host and the kernels in the same
chip (embedded hardwired or soft processor as the host), the
implementation of [9], [14], [17], [18], [21] uses different
chips for the host and the kernels. The research in [19] has
not had any prototype version yet.

In most FPGA-based accelerator systems presented above,
data input required for computation of the kernels is loaded to
the corresponding local memory when the kernel is started,
while the result is sent back to the host after the kernel
computation finishes.

B. State-of-the-art data communication optimization tech-
niques for FPGA-based accelerator systems

Data communication of an FPGA-based accelerator system
can be optimized at two different levels: software (SW) and
HW. The following sections present the techniques in the
literature to optimize data communication of an FPGA-based
accelerator system at those levels.

1) Software optimization: SW optimization is a generic
approach and can be applied for an existing FPGA-based
accelerator system without any HW modification. However,
SW optimization depends on the communication behavior of
the running application. Additionally, some SW optimizations
require specific modules/functions supported by HW platform.

Transferring data input/output between the host and the local
memory of the kernel in parallel with the kernel computation
was one of the optimization for data communication reported
in [1]. Research in [10] developed an operating system service
to establish a direct memory map to the address space of
kernels and to enable arrays of data to be copied in a single
access. However, this approach also needs to transfer data
input from the main memory to the local memory of the
accelerator through the system bus when the accelerator is
invoked. Curreri et al. [22] proposed a visualization tool
to detect data communication bottleneck in an FPGA-based
accelerator system using DMA in order to make a decision on
increasing or decreasing the DMA block size and bandwidth to
improve the system performance. Pouchet et al. [23] proposed
a framework to optimize data reuse for a class of programs.
Because of the data re-utilization, data communication over-
head can be reduced.

2) Hardware optimization: Standard interconnect tech-
niques such as point-to-point, bus and NoC can be used as
the communication infrastructure in FPGA-based accelerator
systems. However, they have their own limitations such as
latencies in bus, routing problem in point-to-point or high area
overhead in NoC.

In recent years, some efficient interconnect architectures
dedicated for FPGAs have been proposed such as DESA
NoC [24] or low-cost and specific-application crossbar in [25],
[26]. However, they are not targeting HW accelerator sys-
tem. Meanwhile, other interconnect techniques have been
proposed to accelerate the communication behavior of the
kernels in an FPGA-based accelerator system because data
communication is usually a primary anticipated bottleneck for
system performance [27]. Research in [28] proposed a multi-
ported cached design for shared memory communication of
multiple accelerator kernels. However, this proposal is system-
dependency since they assume that the on-chip memory can
work at 2x the system clock (clock for kernels). Another
interesting work is the CORAM architecture [29]. In this work,
CoRAM modules are used to efficiently collect data input
required for kernel computation and to deliver the result back
to the memory. A SW control task manages the execution
of the CoORAM modules and informs the kernels when data
input is ready. In the IMORC architecture [9], asynchronous
FIFOs are inserted into the communication channels between
the cores and the memories to provide a sufficient bandwidth
as well as to help improving the system performance by
decoupling core execution and memory accessing.

However, all the above approaches have not taken the
actual data communication pattern between the kernels into
consideration yet. Moreover, they are proposed for specific
systems rather than for a generic one. Different from those
approaches, our work uses data communication profiling in-
formation of each application/domain to define an efficient
custom interconnect for the kernels. Additionally, our generic
approach can be used for an existing FPGA-based accelerator
system.

III. OVERVIEW OF OUR APPROACH

This section presents a baseline system that we use to
compare with our proposed system and shows an overview
of our approach.

A. Baseline system

Similar to most presented FPGA-based accelerator systems
in Section II-A, we implement a baseline system that contains
one host processor and some FPGA-based accelerator kernels
processing some computationally intensive functions of the
application. The input data required for kernel computation is
fetched to the local memory of the kernel and the result is
sent back to the host after the finishing of the kernel. Data is
transferred through the communication infrastructure.

Consider a system with n FPGA-based kernels; a kernel @
(with 0 <7 <n —1) is defined as in Equation 1
HWi(Ti7 Dz?L(Iin)7 DzK(m)7 le([out)’ DiI((out)) ey
in which
- 7; is the computation time of the kernel;

- Df{m) and D{fm) are the total amount of input data for HW;
generated by functions in the host and by other kernels,
respectively;

- Df{ out) and D{(((mt) are the total amount of output data
of HW, consumed by functions in the host and by other
kernels, respectively.

Please note that, all input data (D;(;n) = Df{m) + Df(i.n))

required for kernel computation is fetched from the host

and all output result (D;(ous) = D{({Om) + Df((out)) is sent
back to the host following the presented model. However, we
distinguish data of the host (Dgn Jout)) @nd of the other kernels

((Ifn Jou t)) to do a comparison with our proposed model later.
The total execution time of n kernels is shown in Equa-

tion 2 in which 6 is the average time for transferring one

byte of data through the communication infrastructure. In
this equation, Z?:_Ol 7; is the total computation time while

Z;L:_Ol(Di(m) + Dj(out))f is the total communication time.

While the computation time depends on the kernels, the

communication time depends on the data movement.

n—1

n—1
Ty, = Z i + Z(Di(m) + Di(out))? 2
i=0 i=0

Although the fetching phase can be done in pipeline with
the computation phase, this mechanism depends on the actual
behavior of the application. Therefore, we use a general model
that is compatible with most applications (domains) as a
baseline system.

B. Data communication profiling tool

In this work, we use the QUAD toolset [30] as the data
communication profiling tool. The toolset provides a com-
prehensive overview of the data communication behavior of
an application. QUAD measures the actual data transferred
between producer function and consumer function. The ex-
act amount of byte transfers and the number of Unique
Memory Addresses (UMAs) used in the transfer process are
also measured. The output of QUAD is data communication
profiling information shown as a graph in which the amount
of data transfer among functions is shown. Based on this
measurement, we can recognize which data communication
should be and can be optimized for achieving speed-up.

C. Our approach

An important challenge in FPGA-based accelerator system
is to get the data to the computing core that needs it. The
goal is of course to hide the communication delay such that
a performance improvement can be observed. The resource
allocation decision requires detailed and accurate information
on the amount of data that is needed as input and what will
be produced as output. Evidently, there exists dependencies
between computations and data produced by one kernel will
be needed by another kernel. In order to have an efficient
allocation scheme where the communication delays can be
hidden as much as possible, a detailed profile of the data
communication patterns is necessary for which then the most
appropriate interconnect infrastructure can be generated. Such
communication patterns can be specific for each application
(domains) and could therefore lead to different interconnects.

Hardware kernel
Core

Hardware kernel
Core

NoC
Hardware kernel |
Core

\

|

Hardware kernel
Core ‘

Hardware kernel
‘ Core ‘ ‘

Hardware kernel
Core

SRR

3

SETTTTETETTNTTTTNNS

§

Shared local memory

[interface | [interface |
Jl /]
‘ Communication Infrastructure ‘
I I

interface ‘ ‘ ‘ ‘
V0. Shared e,

Main Mem.
(a) (b)

—|_interface |~ —|_interface |~

Communication Infrastructure

[interface | v

Host processer Host processer

Fig. 1. (a) The generic HW accelerator architecture; (b) The generic HW
accelerator system with our custom interconnect for the communication of
kernels

Using the detailed profile of the data communication pat-
terns, a kernel knows exactly which kernels will consume its
output. Therefore, the kernel can deliver its output (foout))
directly to the consuming kernels when the output is available.
This approach is different from the approaches presented in
Section II which collect data for a kernel whenever it is
invoked. To support this model in a conventional FPGA-
based accelerator system, beside the existing communication
infrastructure which is usually used for data communication
between the host and the kernels, a custom interconnect for
the kernels is implemented. The custom interconnect, then,
helps the kernel deliver its output. The custom interconnect in
our work includes an NoC, shared local memory mechanism
or both. We share the local memories of two kernels that
only communicate together while NoC is used for a group of
communicating kernels (more than two kernels). Figure 1(b)
depicts our concept system in which a custom interconnect is
implemented to improve data communication of kernels in a
generic FPGA-based accelerator system (Figure 1(a)). Using
only the NoC as the custom interconnect is an alternative
solution. However, the more kernels connect to the NoC, the
more routers are needed. This, in turn, increases the size of
the custom interconnect. Another solution is to use only shared
memory mechanism as the interconnect as proposed in [28].
However, when the number of kernels increases, the overhead
for competition to access the shared memory is increased also.

IV. AUTOMATED INTERCONNECT DESIGN

In this section, the design strategy using the data commu-
nication profiling is introduced in order to define a custom
interconnect of kernels for an existing FPGA-based accel-
erator system with optimized execution time and resource
usage. To derive a mathematical model for performance es-
timation, we denote communication between two Kkernels as
[HW; — HW; : D,;;] in which HW; sends D;; byte to
HW;. This communication behavior can be extracted from
data communication profiling of the application.

A. Modeling system components

1) Modeling shared local memory: In this model, we
consider to share the local memories of two kernels in which
one kernel (HW;) sends its output Df((w £ to another kernel

(HW;) only and HW); receives input data Dﬁm) from HW;
only (ie., [HW; — HWj : Dyj] and Dff,,,, = D,y =

D;;). With the shared local memory, D;; byte of data can
be used without any transferring. Hence, compared to the
baseline model, the communication time for this data segment
is reduced by A, = 2D;;0 (one time from the local memory
of HW; to the host and one time from the host to the local
memory of HW).

When implemented on FPGAs, most accelerator systems
use block RAM (BRAM) as the local memory. BRAM in
modern FPGA usually has two ports. Therefore, in a general
case, we use a crossbar to share the local memories of two
communicating kernels because one port is usually used for the
host communication (Dgn Jou t)) (the same situation is reported
in [28]). The crossbar switches data from the cores to the
corresponding local memory based on the address of data.
The crossbar does not introduce any communication overhead
because it does not change the structure of data. In other
words, we do not need to encode and decode data format.
In a special case in which HW; does not communicate with
the host and other modules connected to the system com-
munication infrastructure, i.c., Db([m = Dﬁout) =0, HW;
and HW; can share the local memory without the crossbar.
Figure 2 illustrates the shared local memories solution with
the crossbar (kernel 1 and kernel 2) and without the crossbar
(kernel 3 and kernel 4).

Hardware kernel 1 Hardware kernel 2 Hardware kernel 3

Hardware kernel’ﬂ

Core (774747 ‘ Core ‘ ‘ Core }/ 7 ‘ Core >
‘><‘ T IT =
|EGcanviem ./ 7.,/ Jiccalivenmy = [Eocalviemy | . JEccalviemy & 2
interface [interface |~ | interface |]

1 1 1l

‘ Communication Infrastructure ‘
i "
interface ‘ H H

Mainvem, 10 Shared Mem.

Host processer

Fig. 2. Shared local memories with and without crossbar in an FPGA-based
accelerator system

2) Modeling NoC-based interconnect: NoCs are an estab-
lished and widely used as interconnect mechanism providing
parallelism and high performance. In this model, we use the
NoC as the interconnect of a group of kernels. The NoC is
used to transfer data from one kernel to the local memories
of other kernels. Figure 3 shows a group of kernels using
an NoC as their interconnect. An alternative solution is using
only the NoC as interconnect of the whole system, i.e., the
communication infrastructure part which is used for data
communication between the host, the shared memory modules,
the I/O modules and the kernels in Figure 3 is eliminated.
However, this solution will incur a higher HW overhead for
the network adapters at the host and the I/O. Moreover, most

FPGA-based accelerator systems have a predefined communi-
cation infrastructure for these components (the host, the shared
memory, the I/O, etc.). Additionally, in some HW accelerator
systems (such as the Convey architecture [18]), the commu-
nication infrastructure of these systems is not reconfigurable.
Therefore, ddding an NoC to accelerate the communication
behavior of the kernels in an FPGA-based accelerator system
is more suitable than modifying the whole system.

Hardware kernel 4 Hardware kernel 3

Core % % Core
NoC
Hardware kernel 1 Hardware kernel 2
Core % Core
W interface
interface

Communication Infrastructure

interface -
Manom, 10 Shaed e,
Host processer
%3 NoC adapter

Fig. 3. The NoC is used as interconnect of the kernels in an FPGA-based
accelerator system

With the NoC and data communication profiling informa-
tion, data communication of the kernels is done in parallel
with their execution. In other words, the output of one kernel
is sent directly to the local memories of the consuming kernels
through the NoC rather than stored in its local memory. Hence,
kernel ¢ does not need to collect data input Df((m) from the host
and send data output Df((ou £ back to the host. Consequently,
the communication time of the kernels is hidden. Compared
to the baseline model, the NoC reduces the execution time by
An = Z?;Ol (Dll(<1n) + Dil((out))e'

In this model, kernels and local memories are connected
to NoC routers through adapters. We consider a general NoC
in which each router supports either one kernel or one local
memory. Therefore, the number of routers is a sum of the
components connected to the NoC. The more routers are used,
the larger HW resources are required. That is the reason why
we consider the shared memory solution to have an optimized
resource usage.

Additionally for further optimization on HW resource us-
age, based on the communication topology of each specific
application, we define a different connection topology of the
kernels and the local memories to the NoC (not all the kernels
and the local memories which are not applied the shared local
memory solution are connected to the NoC). For example,
in Figure 3, kernel I and local memory in kernel 2 are not
connected to the NoC because we assume that Dﬁout) =0
and D§ in) = 0. A detail of this adaptive mapping is presented
in Section IV-B.

3) Modeling parallel processing: One of the main advan-
tage of the NoC is that it ensures the parallelism of process-
ing elements connected to it. In some specific applications,

especially in multimedia applications such as image or video
processing, data can be processed as streaming input [1]. Using
these concepts, the parallel processing can be applied in three
different cases to further optimize the system performance.

e Case 1: pipelining data communication between the
kernels and the host. Assume that the input data from
the host Dsz of kernel HW); is segmented into two seg-
ments S7 and So. The host fetchs 57 to the local memory
of HW,;. HW; then processes S; while the host fetches
So. The same way is applied for the output data Df(lwt).
Compared to the NoC rgodel, the executior}{ time is re-
duced by A = min(@@,) +min(7D“§“‘) 0,%)—
O, where O is the overhead in streaming processing.

e Case 2: pipelining the processing of kernels. Assume
kernels HW; can process the result of kernel HW;
in streaming and the data is segmented into S; and
So. HW,; processes S first. HW;, then, processes S
while HW; processes the first segment. Compared to the
NoC model, the execution time is reduced by Ay =
min(4t, %) — O, where O is the overhead in streaming
processing.

o Case 3: duplicating computationally intensive kernels. If
a time consuming kernel can be executed in parallel with
different data input segments with the overhead O, it
can be duplicated to reduce the execution time. Assume
kernel HW; is duplicated, compared to the NoC model,
the execution time is reduced by Ay, = g — O, where
O is the overhead for parallel processing.

B. Design strategy

In this section, an automated design strategy is proposed
to define an efficient custom interconnect for a specific ap-
plication in terms of optimized communication time and low
HW resource usage. Evidently, FPGA-based kernels and their
communication behavior are different from one application to
the others. Therefore, a specific application should have a spe-
cific custom interconnect to efficiently get data to the kernels
that need it. Algorithm 1 shows the pseudo code of the custom
interconnect design algorithm. The result of the algorithm is an
interconnect with the most optimized communication time and
HW resource usage using the presented modeling system com-
ponents. The algorithm, first, selects functions which are the
most computationally intensive and suitable for accelerating on
FPGA (i.e., those functions that can be implemented in HW)
(line 1). The most computationally intensive functions are
considered for HW duplication if acceptable (i.e., if the most
computationally intensive functions can be parallelized and
HW resource is available) (line 2-6). The algorithm, then, uses
the QUAD open source toolset [30] to generate the quantitative
data communication profiling of the application (line 7). Based
on this profiling, an efficient custom interconnect using the
presented solutions is built.

In this algorithm, the shared local memory solution (line
8-13) is investigated first as explained in Section IV-Al. This
communication can also be done by the NoC. However, with

the NoC, we need four routers (two for kernels and two
for their local memories). Keeping in mind that the HW
resources usage for four routers is 5x larger than the HW
resources usage for shared local memory solution (using a
crossbar or directly sharing the local memory). The amount
of HW resources usage is shown in Section V-B for the
comparison. The shared local memory solution represents the
optimal solution compared to the NoC in term of HW resource
usage. Therefore, this solution is considered before the NoC
solution.

Algorithm 1 Custom interconnect design

Input: Application source code
QOutput: The most optimized interconnect

1: Lp, < List of the most computationally intensive func-
tions suitable to implement on HW;
2: for each HW in L;,, do
if HW satisfies the duplication solution (Ag, > 0) &
resource is available then
Duplicate HW in Ly,
end if
end for
G < Quantitative data communication profiling for func-
tions in Lp,;
for each communication [HW; — HW; : D;;] in G do
: if Df(fout) = Dﬁm) = D;; then
10: Apply the shared local memory solution for HW)
and HW;
11: Remove HW; from Ly,
12: end if
13: end for
14: Map all HW in Ly,, to the NoC using adaptive mapping
15: Check the parallel solution (Case 1 & 2) for all HW

(95}

Nk

o »

The next step is to map the remaining kernels which are
not connected using the shared local memory solution to the
NoC (line 14). As explained in the Section IV-A2, an efficient
mapping method to map the kernels and the local memories
to the NoC and the communication infrastructure reduces the
HW resource usage while keeping the communication time in
minimized. Therefore, we propose an adaptive mapping func-
tion to map the remaining kernels and their local memories to
the NoC and the system communication infrastructure. Finally,
the parallel processing solution is considered to further reduce
the execution time if acceptable (line 15).

The proposed adaptive mapping function is shown in Equa-
tion 3.

f: Communication — Interconnect 3)

where the Communication and the Interconnect values are
defined below.

There are three different cases in which a kernel receives
data input:

1) from other kernels only (R;);
2) from the host only (R>);

3) from both other kernels and the host (R3).
Similarly, there are three different cases in which a kernel
sends data output:

1) to other kernels only (S7);

2) to the host only (S5);

3) to both other kernels and the host (S3).
In total, for each HW accelerator, there are nine different data
communication topology cases as in Equation 4.

Communication = {Ry, Ra, Rg} x {S1,52,53} (@)

There are two options for a connection between a kernel
and the NoC

1) the kernel is not connected with the NoC (K7);

2) the kernel is connected with the NoC (K5).
Similarly, there are three options for a connection of a local
memory with the system communication infrastructure and the
NoC

1) the local memory is connected to the communication

infrastructure only (M);

2) the local memory is connected to the NoC only (Ms);

3) the local memory is connected to both (Ms).
In total, for each kernel and its local memory, there are six
different interconnect topology cases as in Equation 5.

Interconnect = {Ky, Ko} x {My, My, M3} 3)

Table I shows the mapping of the communication topology
to the interconnect topology. The interconnect value { K1, Ma}
(the kernel is not connected to the NoC while its local memory
is connected to the NoC only) is not feasible as the result of
the HW accelerator will be inaccessible by any other function.

TABLE I
ADAPTIVE MAPPING FUNCTION

Communication Interconnect
{R1,51} Ko, M2
{R1, 52}, {Rs, 52} K1, M3
{R1,S3},{R3, 51}, {R3, 53} K3, M3
{R2, 51}, {R2, S} Ko, My
{R2, 52} Ky, My

To reduce the NoC latency, a kernel and its communicating
local memories should be mapped to the NoC routers in such a
way that the distance of these routers is shortest. For instance,
if a kernel is mapped to a router at the coordination (z,y)
then the ideal location for the local memory to which it
communicates is either (z — 1,y), (x + 1,y), (x,y — 1), or
(z,y+1).

The objective of this mapping is to define the most opti-
mized mapping in terms of HW resource usage. An alternative
simpler solution is to map all the kernels and all their local
memories to both the NoC and the system communication
infrastructure. However, this mapping solution requires the
maximum number of routers as well as network adapters.
Different from other state-of-the-art mapping algorithms for
an FPGA NoC-based system such as [31], [32] which map
application tasks to NoC only, our work considers to map both

the kernels and the memory to both the NoC and the system
communication infrastructure of the FPGA-based accelerator
system.

V. EXPERIMENTAL RESULTS

In this section, we present our experimental results with
four different applications in both the baseline system and our
proposed system.

A. Baseline system setup

In order to validate our custom interconnect design as
well as show our advantages, we first implement the baseline
system as presented in Section III-A. A Xilinx ML510 [33]
board containing an xc5vfx130t FPGA device is used for our
experiments. The PowerPC - an embedded processor of the
FPGA device is used as the host (run at 400MHz), and the
kernels (run at 100MHz) are mapped onto the reconfigurable
area. The Xilinx PLB bus is used as the communication
infrastructure. The main memory for the host is the off-chip
SDRAM connected to the PowerPC. We use BRAM as the
local memories of the kernels. Other /O modules such as
UART, Flash Memory Controller, Timer, Interrupt, etc., are
also connected with the system through the communication
infrastructure. The execution of the baseline system follows
the model presented in Section III-A.

Four applications are used for the following experiments.
Those are the Canny edge detection application [34], jpeg
decoder application [35], KLT feature tracker [36] and Fluid
simulation [37]. The HW kernels for each application are
generated automatically by the DWARV compiler [38]. The
systems are synthesized with Xilinx ISE 13.2 without any
manual optimization.

To verify the acceleration ability of the baseline system,
we first run the experimental applications on the PowerPC (at
400MHz) only to extract the SW execution time. Please note
that most FPGA-based accelerator systems presented in Sec-
tion II-A compare their systems to a host processor (SW time)
running at a low frequency (e.g. 85MHz in [7], 75SMHz in [8],
125MHz in [10], 100MHz in [11], etc.) while our comparison
is done against the host running at 400MHz. We run the
applications with the baseline system and get computation time
and communication time of kernels and overall application.
Figure 4 shows the speed-up of the baseline system compared
to the SW as well as ratio between communication time
and computation time in the baseline system. The baseline
system achieves speed-ups of up to 4.23 x for the kernels and
2.93x for the overall application. However, the performance
of the baseline system is slower than the SW in case of
the jpeg application because the large communication time
(we measured that communication time is 3.63x larger than
computation time). The same situation is also reported in [10]
even when their comparison is done against a SW running on
a host at 125MHz. Although the baseline system achieves a
speed-up of 1.62x for the overall application and of 1.98x for
the kernels compared to the SW in average, communication
time of the kernels is larger than computation time (the ratio is

about 2.09x). Therefore, reducing data communication time
leads to a significant improvement in system performance.

45
4 |— I App. Speed-up —

3.5 — [Kernel Speed-up™—
3

2.5
2

1.5 4
1 -

0.5 4

A=

Fluid Average

"~ [J comm./Comp.

Canny jpeg KLT

Fig. 4. The speed-up of the baseline system compared to the SW and the
ratio between communication and computation time

B. Proposed system setup

To do experiment with the proposed custom interconnect,
beside the Xilinx PLB bus used as the system communication
infrastructure we developed a 2 X 2 crossbar for the shared
local memory solution and adapted the NoC presented in [39]
into our system. The NoC adapters for both the kernels and
the local memories are also developed. Table II shows the
HW resource usage and maximum frequency for HW modules
used as interconnect. Please keep in mind that the crossbar
is not always used in the shared local memory solution as
explained in Section IV-Al. The crossbar does not introduce
any communication overhead because data does not need to be
encoded and decoded when transferred through the crossbar.

TABLE I
HW RESOURCE UTILIZATION (#LUTS/#REGISTERS) AND FREQUENCY OF
INTERCONNECT COMPONENTS

Component [[Resource | Max. frequency
Bus 1048/188 345.8MHz
Crossbar 201/200 N/A

NoC Router 309/353 150MHz
NA HW Accelerator 396/426 422 .5MHz
NA local memory 60/114 874.2MHz

NA: Network adapter for the communication between the HW module and
the NoC

The proposed system is implemented at the same frequency
with the baseline system. Here, we present the details of
the jpeg decoder from the PowerStone benchmark. The four
functions which are most computationally intensive and suit-
able for HW implementation are chosen to accelerate by the
HW kernels (L, = {huff_dc_dec, huff_ac_dec, dquantz_lum,
J_rev_dct} - Line 1 in Algorithm 1). The most computation-
ally intensive function huff _ac_dec is chosen to duplicate,
according to Line 3-4 in Algorithm 1. Other functions are
executed on the host (the PowerPC in this experiment). The
application is analyzed to extract the data communication
profiling information (depicted as a graph in Figure 5) by the
QUAD tool.

According to the graph, dquantz_lum sends data to j_rev_dct
only while j_rev_dct consumes data generated by the host and

13184 bytes (2466 UMA)

105984 bytes (2222 UMA) 21202 bytes (1202 UMA)

1220 bytes (1220 UMA)

151516 bytes (300 UMA)

75608 bytes (75608 UMA)

38404 bytes (68 UMA)

11200 bytes (1200 UMA) 4 bytes (4 UMA)

v
dquantz_lum)28 bytes (2 UMA)

116 bytes (44 UMA) 6808 bytes (76808 UMA)

Clrmic 2

6808 bytes (76808 UMA)

76842 bytes (76810 UMA)

jpeg_check

Fig. 5. Data communication profiling for the jpeg decoder

dquantz_lum; the shared local memory solution is applied to
these kernels (Line 9-10 in Algorithm 1). The NoC is used for
the interconnect of huff dc_dec, two kernels of huff_ac_dec
and dquantz_lum (Line 14 in Algorithm 1). As shown in
the graph, huff dc_dec consumes data from the host only
(case R5) and sends data to other kernels only (case S7),
the corresponding kernel for this function is connected to
the NoC while its local memory is connected to the sys-
tem communication infrastructure (the PLB bus in this case)
({R2,S51} — {K2, M;1}). The connections of the kernels of
other functions are deduced in a similar way. All the resulting
connections are shown in the Figure 6.

As stated above, we performed our experiment with the
BRAM as the local memories of the kernels. Each BRAM
has only two ports while local memories of two huff_ac_dec
kernels (kernel 1 and kernel 2 in Figure 6) are accessed by
three different components (the host, the NoC adapter and the
kernel core). Therefore, a multiplexer is used.

controller [Timer
T
Kernel 0 l
o"—~
<
z

PLB-Bus

]
'

local ||
Memory 1 |}

Kernel 1|

Kernel 4

Local j_rev_dct i
Memory 4 (Cored) ||
I

—*
el3 ¥

huff_dc_dec
(Core 0)

Local
Memory 0

-

huff_ac_dec_1
(Core 1)

Local
Memory 2
huff_ac_dec_2
(Core 2)
' E

Kernel 2

i

dquantz_lum
(Core3) |

Local
Memory 3

Fig. 6. The proposed system for the jpeg decoder application

C. Comparison and Discussion

Table III shows the speed-up of the overall application
(column 2 and 4) and of the kernels (column 3 and 5) of
the proposed system with respect to both SW and the baseline
system. As shown in the table, when the proposed custom
interconnect is exploited, it achieves a speed-up of the overall

application and of the kernels by up to 3.72x and 6.58x
when compared to SW, respectively. Figure 7 compares the
speed-up of the proposed system with both SW and baseline.
The first two chart bars illustrate the speed-ups of the overall
application and of the kernels with respect to SW while the
last two chart bars show speed-ups with respect to the baseline
system. Compared to the baseline system, speed-ups of up to
3.08x for the kernels and 2.87x for the overall application
are obtained (both in the case of the jpeg application).

TABLE III
SPEED-UP OF THE PROPOSED SYSTEM WITH RESPECT TO SW AND THE
BASELINE SYSTEM

App w.r.t Software w.r.t Baseline

. Application | Kernels Application | Kernels
Canny 3.15% 3.88% 1.83 % 2.12x
peg 233% 25x% 287x 3.08x
KLT 3.72x 6.58 x 1.26x 1.55x
Fluid 1.66x 1.68x 1.59x 1.60x

App.: Application

W App. Proposed/Software

W Kernel Proposed/Software -
5 [JApp. Proposed/Baseline
[JKernel Proposed/Baseline

Speed-up

Canny jpeg KLT Fluid Average

Fig. 7. The overall application and the kernels speed-up of the baseline and
our systems

Table IV presents the HW resource utilization for the whole
system of the baseline, our system and the NoC-only system,
in terms of the number of FPGA look-up tables (LUTs) and
the number of FPGA registers. The NoC-only system is a
system in which the parallel solution is applied, but only NoC
is used for the interconnect of kernels (shared local memory
solution is not used). Our proposed communication model in
which data is sent through the NoC from the producing core
directly to the consuming core as soon as possible is used.
However, our adaptive mapping algorithm is also not applied
in this system. As shown in the table, our system saves up to
33.1% LUTs and 30.2% Registers compared to the NoC-only
system. This result validates our goal which is to optimize the
communication time while keeping the minimized resources
usage of the interconnect. Without our strategy, the system
is either only bus-based or only NoC-based. The bus-based
system (baseline) is a low performance system while the
NoC-only system uses more HW resources than our system.
Meanwhile, our system (both the shared memory solution and
the NoC are used as interconnect between kernels) achieves the
same performance and uses less resources than the NoC-only
system. Figure 8 presents the comparison of resources used for

interconnect and for the kernels in our system normalized to
the resources used for computing. The interconnect uses only
40.7% resources compared to the resources used for computing
at most.

TABLE IV
HW RESOURCE UTILIZATION (#LUTS/#REGISTERS)

App. || Baseline | Our system [NoC only [[Solution
Camy | ooy | iees | atoso || NoC:SM.P
R EEE A T
K|S0 | sea s || M
TR

App.: Application; SM: Shared memory; P: Parallel

120

Interconnect
LUT

M «ernels []

[] Interconnect Register
100

80 -

60 -

20

Canny jpeg KLT Fluid Average

Fig. 8.
kernels.

Interconnect resource usage normalized to the resource usage for the

Figure 9 presents the comparison of the energy consumption
between the baseline system and our system normalized to
the energy consumption of the baseline system. We used the
Xilinx XPower Analyzer 13.2 tool to estimate the power
consumption of each application in the two systems. The
energy consumption is given by the product of the power
consumption and the execution time. For both systems, the
power consumption is almost identical, with a minor increase
in our system (due to the increasing of resource usage for
the custom interconnect). Therefore, our system consumes less
energy consumption per application due to the reduction in ex-
ecution time. As shown in the figure, our system outperforms
the baseline in all applications in terms of energy consumption.
The maximum energy saved is 66.5% for the jpeg application.

VI. CONCLUSION

In this paper, we presented an automated design strategy to
define an efficient custom interconnect for kernels in FPGA-
based accelerator systems. The custom interconnect includes
an NoC or shared local memories solution (directly sharing
or using a crossbar) or both. We also presented an algorithm
to automate the design of the custom interconnect based
on quantitative data communication profiling of applications.
An adaptive mapping to map HW accelerators and their
local memories to the interconnect is also introduced. We
compared our proposed system with a baseline architecture -

120
. Baseline

D Our system
100 -

80 -

40 -

Canny jpeg KLT Fluid Average
Fig. 9. Energy consumption comparison between the baseline system and

our system normalized to the baseline system.

an FPGA bus-based accelerator system. The results show that
the proposed system achieves an overall application speed-
up of 3.72x with respect to SW and of 2.87x compared
to the baseline system. Due to the reduced execution time,
energy reduction of up to 66.5% was obtained, compared to
the baseline system. Runtime reconfigurability is the next step
in our work such that each application can dispose of its best
interconnect infrastructure leading to faster execution and less
overall energy consumption.

ACKNOWLEDGMENT

This work has been funded by the projects Smecy 100230,
iFEST 100203, REFLECT 248976 and Vietnam Ministry of
Education and Training.

REFERENCES

[1] J. Cong and Y. Zou, “Fpga-based hardware acceleration of lithographic
aerial image simulation,” Reconfig. Technol. Syst., pp. 1-29, 2009.

[2] C. Claus and W. Stechele, “AutoVision-reconfigurable hardware acceler-
ation for video-based driver assistance,” in Dynamically Reconfigurable
Systems. Springer Netherlands, 2010, pp. 375-394.

[3] S. Sarkar, T. Majumder, A. Kalyanaraman, and P. Pande, “Hardware
accelerators for biocomputing: A survey,” in IEEE International Sym-
posium on Circuits and Systems, 2010, pp. 3789-3792.

[4] P. Guerrier and A. Greiner, “A generic architecture for on-chip packet-
switched interconnections,” in DATE, 2000, pp. 250-256.

[5] L. Benini and G. De Micheli, “Networks on chips: a new SoC paradigm,”
Computer, pp. 70-78, 2002.

[6] S. Vassiliadis, S. Wong, G. Gaydadjiev, K. Bertels, G. Kuzmanov,
and E. Panainte, “The MOLEN polymorphic processor,” Computer, pp.
1363-1375, 2004.

[7]1 R. Lysecky and F. Vahid, “Design and implementation of a MicroBlaze-
based Warp processor,” Embedded Computing System, pp. 1-22, 2009.

[8] A. Canis, J. Choi, M. Aldham, V. Zhang, A. Kammoona, T. Czajkowski,
S. D. Brown, and J. H. Anderson, “Legup: An open-source high-level
synthesis tool for fpga-based processor/accelerator systems,” Embed.
Comput. Syst., Sep. 2013.

[9] T. Schumacher, C. Plessl, and M. Platzner, “IMORC: An infrastructure
and architecture template for implementing high-performance reconfig-
urable FPGA accelerators,” Micropro. & Microsys., pp. 110-126, 2012.

[10] A. Ismail and L. Shannon, “FUSE: Front-end user framework for O/S
abstraction of hardware accelerators,” in FCCM, 2011, pp. 170-177.

[11] C. Pilato, A. Cazzaniga, G. Durelli, A. Otero, D. Sciuto, and M. San-
tambrogio, “On the automatic integration of hardware accelerators into
FPGA-based embedded systems,” in FPL, 2012, pp. 607-610.

[12] S. Neuendorffer and F. Martinez-Vallina, “Building Zynq® accelerators
with Vivado® high level synthesis,” in FPGA, 2013, pp. 1-2.

[13] A. Grasset, P. Millet, P. Bonnot, S. Yehia, W. Putzke-Roeming, F. Campi,
A. Rosti, M. Huebner, N. Voros, D. Rossi, H. Sahlbach, and R. Ernst,
“The morpheus heterogeneous dynamically reconfigurable platform,”
Parallel Programming, pp. 328-356, 2011.

[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

N. S. Voros and et al., “Morpheus: A heterogeneous dynamically recon-
figurable platform for designing highly complex embedded systems,”
Embed. Comput. Syst., pp. 70:1-70:33, Apr. 2013.

E. S. Chung, J. C. Hoe, and K. Mai, “Coram: an in-fabric memory
architecture for fpga-based computing,” in FPGA, 2011, pp. 97-106.
E. S. Chung, M. K. Papamichael, G. Weisz, J. C. Hoe, and K. Mai,
“Prototype and evaluation of the CoRAM memory architecture for
FPGA-based computing,” in FPGA, 2012, pp. 139-142.

L. Benini, E. Flamand, D. Fuin, and D. Melpignano, “P2012: Building
an ecosystem for a scalable, modular and high-efficiency embedded
computing accelerator,” in DATE, 2012, pp. 983-987.

Convey Computer, “Convey reference manual,” 2012.

P. Garcia and K. Compton, “A scalable memory interface for multicore
reconfigurable computing systems,” in FPT, 2011, pp. 1-8.

R. Willenberg and P. Chow, “A remote memory access infrastructure for
global address space programming models in fpgas,” in FPGA, 2013,
pp. 211-220.

B. Betkaoui, D. Thomas, W. Luk, and N. Przulj, “A framework for fpga
acceleration of large graph problems: Graphlet counting case study,” in
FPT, 2011, pp. 1-8.

J. Curreri, G. Stitt, and A. George, “Communication visualization for
bottleneck detection of high-level synthesis applications,” in FPGA,
2012, pp. 33-36.

L.-N. Pouchet, P. Zhang, P. Sadayappan, and J. Cong, “Polyhedral-based
data reuse optimization for configurable computing,” in FPGA, 2013, pp.
29-38.

A. Roca, J. Flich, and G. Dimitrakopoulos, “DESA: Distributed elastic
switch architecture for efficient networks-on-FPGAs,” in FPL, 2012, pp.
394-399.

J. Y. Hur, T. Stefanov, S. Wong, and K. Goossens, “Customisation of
on-chip network interconnects and experiments in field-programmable
gate arrays,” Computers Digital Techniques, pp. 59-68, 2012.

S. Murali, L. Benini, and G. De Micheli, “An application-specific design
methodology for on-chip crossbar generation,” Computer-Aided Design
of Integrated Circuits and Systems, pp. 1283-1296, 2007.

[27]

(28]

[29]
(30]
[31]
(32]
(33]
[34]
(35]
[36]
[37]

[38]

[39]

S. G. Kavadias, M. G. Katevenis, M. Zampetakis, and D. S. Nikolopou-
los, “On-chip communication and synchronization mechanisms with
cache-integrated network interfaces,” in Computing frontiers, 2010, pp.
217-226.

J. Choi, K. Nam, A. Canis, J. Anderson, S. Brown, and T. Czajkowski,
“Impact of cache architecture and interface on performance and area of
FPGA-based processor/parallel-accelerator systems,” in FCCM, 2012,
pp. 17-24.

E. S. Chung, J. C. Hoe, and K. Mai, “CoRAM: an in-fabric memory
architecture for FPGA-based computing,” in FPGA, 2011, pp. 97-106.
S. A. Ostadzadeh, R. J. Meeuws, C. Galuzzi, and K. Bertels, “QUAD:
a memory access pattern analyser,” in ARC, 2010, pp. 269-281.

A. K. Singh, T. Srikanthan, A. Kumar, and W. Jigang, “Communication-
aware heuristics for run-time task mapping on NoC-based MPSoC
platforms,” J. Syst. Archit., pp. 242-255, Jul. 2010.

H. Yu, Y. Ha, and B. Veeravalli, “Communication-aware application
mapping and scheduling for noc-based mpsocs,” in ISCAS, 2010, pp.
3232-3235.

Xilinx, “MI510 reference design,” 2009.

J. Canny, “A computational approach to edge detection,” Pattern Anal-
ysis and Machine Intelligence, pp. 679 —698, 1986.

J. Scott, L. H. Lee, J. Arends, and B. Moyer, “Designing the low-power
MeCORE architecture,” in Power Driven Microarchitecture, 1998.

J. Shi and C. Tomasi, “Good Features to Track,” in Computer Vision
and Pattern Recognition, 1994.

J. Stam, “Real-time fluid dynamics for games,” in the Game Developer
Conference, 2003.

R. Nane, V. Sima, B. Olivier, R. Meeuws, Y. Yankova, and K. Bertels,
“DWARYV 2.0: A CoSy-based C-to-VHDL hardware compiler,” in FPL,
2012.

J. Heisswolf, R. Koenig, and J. Becker, “A scalable NoC router design
providing QoS support using weighted round robin scheduling,” in
ISPAW, 2012, pp. 625 — 632.

