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Abstract Design for test is an integral part of any VLSI
chip. However, for secure systems extra precautions have
to be taken to prevent that the test circuitry could reveal
secret information. This paper addresses secure test for
Physical Unclonable Function based systems. It investigates
two secure Built-In Self-Test (BIST) solutions for Fuzzy
Extractor (FE) which is the main component of PUF-based
systems. The schemes target high stuck-at-fault (SAF) cov-
erage by performing scan-chain free functional testing,
to prevent scan-chain abuse for attacks. The first scheme
reuses existing FE blocks (for pattern generation and com-
pression) to minimize the area overhead, while the second
scheme tests all the FE blocks simultaneously to minimize
the test time. The schemes are integrated in FE design and
simulated; the results show that for the first test scheme, a
SAF fault coverage of 95 % can be realized with no more
than 47.1k clock cycles at the cost of a negligible area over-
head of only 2.2 %; while for the second test scheme a
SAF fault coverage of 95 % can be realized with 3.5k clock
cycles at the cost of 18.6 % area overhead. Higher fault cov-
erages are possible to realize at extra cost (i.e., either by
extending the test time, or by adding extra hardware, or a
combination of both).
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1 Introduction

Physical Unclonable Functions (PUFs) based systems are
becoming popular solutions for secure key storage against
physical attacks [12, 13, 25]; they use the unique, ran-
dom, uncontrollable and intrinsic physical properties of
Integrated Circuits (ICs) to derive a cryptographic key.
The robustness of a such system is evaluated by means
of its reproducibility (i.e., ability of the system to recover
the cryptographic key from the same IC) and its unique-
ness (i.e., the ability of the system to generate a unique
cryptographic key for each IC) [12, 25]. A Fuzzy Extrac-
tor (FE) is one of the main components of a PUF-based
system; its responsibility is to assure the system’s repro-
ducibility and uniqueness [10, 21]. Hence, FE flawless
operation is critical for the robustness of PUF-based sys-
tems. Testing a PUF-based system, and FE in particular, is
a challenge. Testability demands excellent accessibility and
observability, while security demands poor/no accessibility
and observability to the chip, especially during the operation
mode where an attacker could easily retrieve partial or com-
plete cryptographic key. The trade-off between testability
and security is a major challenge.

Design-for-Test and testability of secure devices have
recently gained a lot of attention [8, 9, 11, 15, 19, 29]. Over-
all, the published schemes can be classified into two classes:
enhanced scan-chains [6, 8, 15, 19, 29] and functional based
Built-In Self Test (BIST) [9, 11].

Enhanced scan-chains target the protection of chains
from being misused by attackers. In [29], B. Yang et al.
developed a test solution for crypto cores based on a type
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of register that cannot be scanned out during test mode until
being reset. In [8], A. Das et al. developed a test wrapper for
secure test that authenticates legitimate testers. In [15], D.
Hely et al. introduced spy flip-flops in the scan-chain that
detect malicious shifts. In [19], J. Lee et al. applied a tech-
nique that makes the scan-chain operate unpredictably for
untrusted users. In [6], J. Da Rolt et al. designed a smart
test controller that automatically discerns scan shift opera-
tions and blocks any scan-out leakage. However, industry
strongly believes that enhanced scan-chains cannot provide
100 % secure IC, as many researches have showed that
scan-based DFTs can be hacked [2, 4, 7, 23]. Therefore,
industry is reluctant to include them in designs targeting
secure applications.

On the other hand, functional test based BIST targets
the enhancement of security, although reaching a very high
fault coverage with these schemes is a major challenge. In
[11], M. Doulcier et al. presented a technique to reuse an
Advanced Encryption Standard (AES) for self-testing; the
work shows that AES cores have enough randomness to
be used as test pattern generators and built on this prop-
erty to seft-test the AES core in a loop fashion. In [9], Di
Natale et al. proposed a generic self-test scheme for crypto
cores; the work is an extension of the work presented in
[11]. It performs the same analysis but for Data Encryption
Standard (DES). However, both [11] and [9] are not suited
for testing PUF-based systems for two main reasons. First,
AES/DES crypto cores are not available in all PUF-based
systems and second, PUF-based systems comprise, on top
of the crypto cores, error correction blocks which make it
more challenging to test functionally.

Although the research in hardware security including test
is getting more attention due to the importance of the field,
there is almost nothing published on testing PUF-based sys-
tems. This topic is addressed in this paper. In particular,
this work targets testing of FEs, which are the main blocks
of such systems; FEs are challenging to test as they com-
prise not only a crypto core, but also error correction blocks,
being typically hard to test functionally.

This paper is an extension of our previous work presented
in [5]; it proposes two efficient scan-chains free secure test
schemes that realize high test quality based on pattern gen-
eration for stuck-at-faults using functional testing. The first
proposed solution reuses FE existing blocks (for pattern
generation and compression) to minimize the area overhead
[5], while the second solution tests all comprising FE blocks
simultaneously to minimize the test time. In addition, opti-
mization techniques to even further reduce the test time and
increase fault coverage are proposed. In addition to the main
contribution of [5], i.e.,

• a low area overhead secure test method with its inherent
concept, methodology, results and discussion,

this paper has the following contributions

• fast and secure test method with its inherent concept,
methodology, results and discussion;

• in depth discussion of the results, including comparison
between secure test methods, comparison with state-of-
the-art, security analysis and list of recommendations
on how to securely test FE;

• and classification of methods to improve test quality
and implementation of one of these methods.

The rest of the paper is organized as follows. Section 2
briefly reviews the background on PUF based-systems and
analyzes FE in detail. Section 3 defines the test require-
ments, proposes the two secure test methods and gives
means to further improve the quality of proposed meth-
ods. Section 4 defines the experiments and presents the
results. Section 5 discusses them, compares both test meth-
ods, analysis the methods security and provides a generic
list of step-by-step instructions to securely test FE. Finally,
Section 6 concludes the paper.

2 PUF-Based Secure Systems

We first briefly show how PUFs are deployed in a key stor-
age system. Thereafter, we describe the Fuzzy Extractor in
detail; it is the main block of such a system and the primary
focus of this work.

2.1 Key-Storage based on PUFs

Figure 1 shows the flow of a PUF-based key-storage system
[12, 25] implemented with a Fuzzy Extractor (FE) [10, 21],
which typically consists of two phases:

(a) Enrollment : a cryptographic key is generated from
a PUF. First, a PUF measurement is taken and used
as PUF Reference Response (PRR). Next, PRR and
Random Seed (provided externally) are processed by
the FE into a cryptographically strong Cryptographic
Key, and helper data is generated as an FE byproduct.

Fig. 1 PUF based Key Storage System
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Finally, the helper data is stored in an external Non-
Volatile Memory (NVM); hence, it becomes public
information.

(b) Reconstruction : the earlier enrolled Cryptographic
Key is reliably recovered. First, a PUF measurement is
taken and used as PUF Response (PR). Typically, some
bits of PR are different from the original PRR; hence,
PR is a noisy version of PRR. Next, PR is processed
by the FE in combination with the helper data which
is retrieved from the external NVM. If the noisy PR is
close enough to the PRR measured during enrollment
(i.e., the PUF response is reproducible up to a lim-
ited amount of noise), then the FE succeeds to reliably
reconstruct the enrolled Cryptographic Key.

2.2 Fuzzy Extractor

A Fuzzy Extractor (FE) is the fundamental component of
a PUF-based key storage system; it has two main func-
tions. (a) Error correction: it uses the helper data combined
with error correction to correct errors in the measured PUF
response; and (b) Privacy amplification: considering that the
helper data contains information on the PRR, privacy ampli-
fication is needed to make sure that the helper data does
not reveal any information on the derived cryptographic
key; the FE compresses the resulting data into a crypto-
graphic key with maximum entropy making it hard for the
attacker to retrieve the key [10, 21]. It also removes any
biasing (unequal distribution of zeros and ones) in the error-
corrected PUF response. Privacy amplification is realized
with Hash Function.

Figure 2 shows the six main blocks of a Fuzzy Extrac-
tor; this implementation is based on the one used for the
UNIQUE project [27]. The Peripheral Circuitry has two
main functions: (a) it selects between both functional modes
(enrollment versus reconstruction), and (b) it performs XOR
function either between the PUF response and the output of
the Repetition Encoder (RE O) to generate the Helper Data
during the enrollment or, between the stored Helper Data

and PUF response to generate the input of the Repetition
Decoder (RD I) during the reconstruction. The other five
blocks are mostly computation intensive and are responsible
for the enrollment and the reconstruction. Each of the five
blocks is explained next.

1) Golay Encoder: first block of the enrollment phase.
Its responsibility is to prepare the data for the error
correction. This block maps the input Random Seed
(12 bits per iteration × 86 iterations) to GE O (24
bits per iteration) by appending twelve parity bits
used for error correction. This makes it feasible for
the Golay Decoder in Reconstruction phase to cor-
rect up to three bits [16, 24]. The main core of this
block comprises a loop that generates the Golay space
(space of perfect code words). Our implementation
of the Golay Encoder has a latency of two clock
cycles and it comprises 6.5 % of the total number
of FE gates.

Repetition Encoder second block of the enrollment
phase. It adds extra robustness to the error capabili-
ties of the Golay Encoder. The block replicates each of
the GE O 24 bits 11 times resulting in 264 bits serial
output RE O; this enables the error correction up to
five bits for the Repetition Decoder in the reconstruc-
tion phase. The enrollment phase completes after 86
iterations, i.e., the computations described above are
performed 86 times. At each time, the 12 bits fraction
of the 1032 bit Random Seed are processed with a 264
bits fraction of the PUF response to generate Helper
Data. The total size of both PUF and Helper Data are
each 2.8kB (264×86). The main part of the block com-
prises two counters. The first counter loops over the 24
bits of GE O, while the second counter replicates each
bit of GE O 11 times. Our implementation of the Rep-
etition Encoder has a latency of 267 clock cycles and it
comprises 7.3 % of FE gates.

Repetition Decoder first block of the reconstruction
phase and also the first stage of error correction. The

Fig. 2 Example of a Fuzzy Extractor
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reconstruction phase starts with performing a new mea-
surement of the PUF and XORing it with the Helper
Data. The result of this operation is the serial input
of the Repetition Decoder block. The block performs
majority voting on each of the 24 groups (each of 11
bits) scanned serially via RD I, and produce 24 bits at
the output GD I. This block performs the inverse oper-
ation of the Repetition Encoder and its main core com-
prises three counters: one counter, repetition counter
and destination counter. The one counter counts the
number of ones in a chunk of input RD I (see Fig. 2)
and its value is reset after the repetition counter pro-
cessed n=11 input bits. Next, a single output bit is
written on the index provided by the destination counter
which is subsequently incremented. The written output
bit presents the majority voting result of the processed
input chunk derived from the one counter. Our imple-
mentation of the Repetition Decoder has a latency of
290 clock cycles and comprises 6.5 % of FE gates.

Golay Decoder second block of the reconstruction
phase responsible for error correction. The block recov-
ers Random Seed, i.e., HF I (12 bits), as long as the
provided input GD I is within the error capabilities
of the error correction system. Also during the recon-
struction phase, the Repetition Decoder and the Golay
Decoder repeat their operations 86 times; each time,
they serially process 264 bits generated based on PUF
and Helper Data. The results of each iteration is a
12 bits buffered inside the Hash Function block. The
Golay Decoder is the most complex block of the FE;
it contains a Finite State-Machine (FSM) with nine
states for vector decoding. As stated previously, a Golay
Decoder can correct up to three errors. Its input GD I
comprises 24 bits (12 message bits combined with 12
parity bits). Figure 3 shows the states dedicated to
error correction; these are selected depending on the
location and number of errors in GD I. Error wise,
five different cases are possible, denoted in Fig. 3 as
case (i) till (v).

(i) GD I is error-free; thus, the four states where the
error correction takes place are skipped.

(ii) there are three or less errors in the message bits
of GD I and none in the parity bits.

(iii) there are one or two errors in the message bits of
GD I and exactly one in the parity bits.

(iv) there is exactly one error in the message bits of
GD I and two or less in the parity bits.

(v) there are no errors in the message bits of GD I
and three or less in the parity bits.

The Golay Decoder has a variable latency depending
on its input, with a maximum of 10 clock cycles and it
comprises 61.5 % of FE gates.

Fig. 3 Golay Decoder state-machine

2.2.1 Hash Function

last block of the reconstruction phase. It performs
privacy amplification. This block concatenates the
1032 bits (12×86 iterations) received from the Golay
Decoder and applies the hash function on it to calcu-
late the 128 bit Cryptographic Key. Our Hash Function
implementation comprises three main components: an
input buffer, a Linear Feedback Shift Register (LFSR)
and an accumulator register. First, the input HF I is
copied to the input buffer, which is then analyzed bit
per bit. If the bit is one, the current LFSR output (which
updates itself each cycle based on its polynomial func-
tion) is added (XORed) with the accumulator. However,
if the bit is zero, the accumulator keeps its value. When
all input bits are analyzed the value of the accumulator
register is propagated to the output. The Hash Function
has a latency of 32 clock cycles and it comprises 18.2 %
of FE gates.

It is worth noting that the Fuzzy Extractor presented
here is a generic construction of industrial implementa-
tions [27]; therefore, any test method developed for this
circuit can be applied also to any other implementation.

3 Test Methods

First we define test and security requirements considered for
the development of our test solutions. Then, we present our
test methods and thereafter give means that can be used to
further improve the quality of the proposed methods.
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3.1 Test versus Security Requirements

Efficient test solutions for FE must prevent compromis-
ing the system security. The following requirements and
assumptions apply:

(a) The signals of PUF measurement, Random Seed and
HF I (see Fig. 2) shall not be revealed at any time,
partially nor fully. An attacker learning this informa-
tion might derive the Cryptographic Key, breaking the
systems security.

(b) Helper data is assumed to be public knowledge and
does not have to be secured.

(c) Reverse engineering the Fuzzy Extractor is not an
issue. The Fuzzy Extractor uses algorithms that are
standard and publicly known.

(d) The PUF circuitry has its own internal test method,
therefore it is outside the scope of this work.

(e) Minimum fault coverage of 95 %. Extended test times
combined with methods to increase fault coverage are
supposed to compensate for the remaining 5 %.

3.2 Secure Test Methods for FE

Next, we propose two secure test methods for FE: daisy-
chain based and parallel test based methods. Both of them
are scan-chain free, which is a security requirement. The
two proposed methods will enable a good profiling of the
maximum and minimum test time and area overhead. In
an industrial application, a hybrid solution between these
methods might be preferential.

3.2.1 Daisy-Chain Secure Test Method

We propose to (a) reuse the Linear Feedback Shift Regis-
ter (LFSR) of the Hash Function block to create a random

generator and, (b) test the FE in a loop-chain fashion, i.e.,
the outputs of each block are directly provided as inputs to
next (connected) block as depicted in Fig. 4a. This approach
results in a negligible area overhead. However, a high fault
coverage for the Golay Decoder cannot be guaranteed. This
is because the Golay Decoder receives error free input mes-
sages as provided by the Golay Encoder, which prevents the
correct checking of all the decoder’ states (see Fig. 3); e.g.,
in case the input vector of the Golay Decoder is error free as
in case (i) of Fig. 3, the remaining four cases will be skipped.
Hence, reusing LFSR of hash function with daisy-chain
approach alone will not provide the required test quality for
Golay Decoder. To solve this problem, the randomness of
the patterns provided at the Golay Decoder inputs have to be
improved in order to trigger all states of the Golay Decoder
FSM. This can be done by inserting a Multiple-Input-Shift-
Register (MISR) at the input of the Golay Decoder as shown
in Fig. 4b. However, as the blocks are connected in a loop,
the desired effect of randomness improvement can also be
achieved by placing a MISR in any location between the
Golay Encoder output and the Golay Decoder input (such
as at the output of Golay Encoder in Fig. 4c), or a Single-
Input-Shift-Register (SISR) if the location is just a serial
line as it is the case in Fig. 4d). Moreover, a combina-
tion of MISR and SISR could be also used as shown in
Fig. 4e and Fig. 4f. Comparing the area overhead and ran-
domness of the several constructions presented in Fig. 4
reveals that:

1 Construction (d) results in the smallest area overhead.
2 Constructions (e) and (f) could lead to higher fault cov-

erage, as the combination of using SISR and MISR
could improve the randomness.

3 Constructions (b) and (c) as well as (e) and (f) are
equivalent, reducing the number of constructions to
four.

Fig. 4 Daisy-chain for a Fuzzy Extractor - different constructions
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3.2.2 Parallel Secure Test Method

One way that can be used to reduce the overall test time
and potentially increase the fault coverage of each FE block
is to add a Random Test Pattern Generator (RTPG) at the
input of each FE block. Increasing the randomness of the
input patterns of each block will potentially increase the
fault coverage as well. We will explore this approach while
testing all FE blocks simultaneously (parallel test); the total
test time is then the test time required by the largest block
(in this case the Golay Decoder). In addition, a SISR/MISR
is inserted at the output of each block for test data com-
pression; see Fig. 5a. Starting with the first block, Golay
Encoder, an LFSR is added at its input for random pattern
generation and a MISR is added at its output for output test
compression. The second block, Repetition Encoder, can
reuse the MISR for pattern generation, reducing area over-
head; a SISR is used for output compression as the output
of the Repetition Encoder is a serial line. The same idea is
applied for the remaining blocks. An LFSR is used as RTPG
for the Repetition Decoder and a MISR is used to compress
its test response. This MISR is reused as pattern generator
for the Golay Decoder; a new MISR is added at the output
of the Golay Decoder for output compression and reused for
test pattern generation for the Hash Function. Finally, a last
MISR is added at the output of the Hash Function for output
compression.

Figure 5b shows the scheme implementation details for
the Golay Encoder block; the remaining blocks have similar
implementations. First, a MUX selects between the func-
tional mode and the test mode by forwarding either the
functional input (i.e., Random Seed) or the output of the

RTPG (i.e., LFSR) to the input of block under test (i.e.,
Golay Encoder). In the functional mode, the output of the
Golay Encoder is forwarded to the Repetition Encoder,
while in the test mode the output of the Golay Encoder
(test response) is compressed (MISR) and at the same time
being sent as input test stimuli for the next block (Repe-
tition Encoder). Once the test is concluded, the results are
compared against a hardwired golden reference by means
of XOR gates. The result of this comparison is a pass/fail
signal. This approach results in a small test time, as the
maximum test time is the test time of the most time consum-
ing block to be tested. However, when compared with the
daisy-chain approach, it has a larger area overhead.

Considering a golden reference with defects, one of two
cases may happen: either (a) a faulty device is not detected
or (b) a good device is rejected. While both cases are costly,
case (a) is more damaging but also very improbable. For a
faulty device to pass the test, the faulty circuit would need
to generate a MISR signature such that would match per-
fectly the also faulty golden reference. Moreover, the faulty
MISR signature would serve as input to other blocks, which
would cause the fault to be detected. However, if we want
to increase the robustness of the golden references, some
options are; e.g., comparing the test signatures against not
one but two golden references (costly in area) or including a
parity bit comparison of the test signature (cheaper as only
1 bit per golden reference is required).

3.3 Test Quality Improvement Using RTPG

Random-pattern-resistant faults might increase the test time;
due to the specificity of the input test vector that detects such

Fig. 5 Parallel secure test method for a Fuzzy Extractor
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faults, random test pattern generators might take a large
number of clock cycles to generate the required test vector.
In literature many methods targeting the reduction of the test
time by means of reconfiguration of the random test pattern
generator parameters can be found. We identify three main
classes of reconfigurable parameters that affect random test
pattern generation: output, state and structure. Moreover,
these methods can be combined. They are explained next.

• Output reconfigurability: are methods where one or
more original generated random test patterns being not
able to detect any fault are mapped into other test
vectors that detect one or more faults. Known exam-
ples of this method are bit-flipping/fixing [28][26] and
reconfigurable network [22].

• State reconfigurability: are methods where one or
more states (seed) of the random test pattern genera-
tor LFSR are changed to skip a sequence of random
patterns that do not detect additional faults. Known
examples of this method are full reseeding, partial
reseeding [18] and encoded reseeding [3].

• Structure reconfigurability: are methods where one or
more random test pattern generator feedback networks
are dynamically reconfigured; hence, the generated ran-
dom test pattern sequence is also changed. A known
example of this method is multi-polynomial [14].

• Combined reconfigurability: to even optimize fur-
ther the results, some of the previous methods can be
combined together; e.g., in [14] the authors combined
state (reseeding) and structural (multi-polynomial)
reconfigurabilities.

Note that optimizing the Daisy-chain secure test method
using the above scheme is not allowed as the circuitry of
the random test pattern generator (i.e., the circuitry of the
hash function) cannot be manipulated; this is because other-
wise an attacker could use this feature to gain access to the
cryptographic key during operation mode.

4 Experiments Results

We first define the experiments. Thereafter, we present and
discuss the results. Finally, we investigate the impact of
reconfigurable RTPG on test quality improvement.

4.1 Experiments Performed

We synthesized the Fuzzy Extractor, described in VHDL,
using 0.35μm technology node and Synopsys Design
Compiler. The design compiler outputs a verilog netlist
that is used to extract a fault list with Synopsys Auto-
mated Test Pattern Generation (ATPG) tool TetraMAX.

We used LIFTING fault simulator optimized for func-
tional BIST to analyze the fault coverage [17]. The results
are analyzed thereafter with MATLAB. The experiments
performed to evaluate each of the proposed schemes
are described next.

Daisy-chain secure test method: To evaluate the quality of
the proposed solutions in Fig. 4 in terms of fault cover-
age (FC), test time and area overhead, we performed the
following six experiments:

1) Default: we simulated the circuit as in Fig. 4a for 15 ×
104 clock cycles and analyzed the FC. This number of
clock cycles is assumed to be our test time budget for
all remaining experiments.

2) MISR: we simulated the circuit as in Fig. 4b (equiva-
lent to Fig. 4c).

3) SISR: we simulated the circuit as in Fig. 4d.
4) SISR + MISR: we simulated the circuit combining

SISR and MISR as in Fig. 4e (equivalent to Fig. 4f).
5) Default + SISR: we simulated the circuit in two stages.

First, as in Fig. 4a, we simulated the FE using the
default loop-chain for 25 % of the test time budget. Sec-
ond, as in Fig. 4d, we included the SISR in the chain
flow (between the Repetition Encoder and Repetition
Decoder blocks) and analyzed the FC over the remain-
ing 75 % of the test time. The goal of this experiment is
to analyze the impact of combining the default scenario
as in Fig. 4a with that of SISR in Fig. 4d.

6) Default + MISR: in this experiment, we repeated the
procedure (5), but replacing the SISR with a MISR.

Parallel secure test method: To determine the impact that
the state (seed) and the structure (polynomial) reconfig-
urability have on the FC and test time, we performed
nine experiments per FE block; each FE is tested using
three polynomials, each combined with three seeds. Each
of the three used seeds and polynomials are described
next. Note that conceptually, output reconfigurability and
state reconfigurability are very similar; hence, the influ-
ence of the output reconfigurability can be easily derived
from the results of the experiments carried out for the state
reconfigurability.

(1) State reconfigurability: we tested each FE block with
a random test pattern generator (primitive polynomial)
using three different initial seeds; these are:

(i) Seed 0: all bits are zero except the last bit, which
is a one (e.g., ‘0...00001’).

(ii) Seed 1: a randomly chosen starting state (e.g.,
‘10...0110’).

(iii) Seed 2: a string of alternating zeros and ones
(e.g., ‘01...10101’).
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(2) Structure reconfigurability: we tested each FE block
with a random test pattern generator using three dif-
ferent polynomials; one primitive (’Poly 0’) and two
non-primitive polynomials (’Poly 1’ and ’Poly 2’).
The size of the polynomials depends of the number of
input bits of the block being tested. The polynomials
used for Golay Encoder, Repetition Decoder and Hash
Function are:

(i) Poly 0: x16 + x14 + x13 + x11 + 1.
(ii) Poly 1: x16 +x14 +x12 +x11 +x10 +x7 +x6 +

x5 + 1.
(iii) Poly 2: x16 + x13 + x12 + x8 + x4 + x3 + 1.

while those used for Repetition Encoder and Golay
Decoder are:

(i) Poly 3: x24 + x23 + x22 + x17 + 1.
(ii) Poly 4: x24 +x22 +x17 +x16 +x15 +x14 +x10+

x6 + x5 + x1 + 1.
(iii) Poly 5: x24 +x22 +x21 +x19 +x17 +x14 +x12+

x11 +x10 +x9 +x8 +x7 +x6 +x4 +x3 +x2+1.

All polynomials were used with ’Seed 0’.

4.2 Results for Daisy-Chain Secure Test Method

Figure 6 shows the FC (y-axis) versus the number of clock
cycles (x-axis) of the experiments; part (a) gives the results
for the first four experiments, and part (b) for the remain-
ing two experiments. From Fig. 6a we can observe the
following.

1) Default experiment realizes a FC of only 35.26 %. This
FC is quickly realized in the first 2.3k clock cycles
(ccs). The figure clearly shows that the FC remains
constant for the remaining clock cycles.

2) For the remaining three schemes, the targeted FC of
95.00 % is achieved after 4.71×104 ccs for SISR, after
4.56 × 104 ccs for MISR and after 4.33 × 104 ccs for
SISR+MISR. The remaining clock cycles until the end
of the experiment lead to an additional FC increment

of 1.29 % for SISR, 1.34 % for MISR and 1.43 % for
SISR+MISR.

3) Using SISR+MISR is relatively the best method in
terms of FC and test time; however, it has the largest
area overhead.

From Fig. 6b we can observe the following.

1) During the first stage of Experiment 5 (’Default +
SISR’) and Experiment 6 (’Default + MISR’), a FC
of 35.07 % respectively 34.16 % is realized. This is
a little less than the FC achieved with Experiment 1
(’Default’) due to the insertion of the extra hardware
(SISR/MISR).

2) In the second stage, the FC is significantly increased;
Experiment 5 realizes the targeted 95 % FC after
8.57 × 104 clock cycles, while Experiment 6 does
this after 9.80 × 104 clock cycles (first stage
included).

3) Making use of the entire test time budget of 15 × 104

results in a FC of 96.24 % for ’Default + SISR’ and
95.77 % for ’Default + MISR’.

Obviously the inserted blocks required additional area
overhead; this is 2.2 % w.r.t. the FE for SISR, 6.80 % w.r.t.
the FE for MISR and 9.0 % w.r.t. the FE for SISR combined
with MISR.

Inspecting the obtained simulation results clearly reveals
that testing FE in a loop chain fashion (Fig. 6a) will never
realize the required product quality; the FC realized in
our case study does not exceed 35 %. Additional DFT to
increase the randomness of the test patterns is essential.
E.g., introducing a SISR in the loop can increase the FC
up to 96.29 % at the cost of 2.2 % area overhead for the
predefined test budget.

4.3 Results for Parallel Secure Test Method

The target of this method is to optimize the test time
while realizing the targeted FC. The test time will be then

Fig. 6 Fault coverage of Fuzzy Extractor Daisy-chain secure test method versus clock cycles
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defined by the Golay Decoder which comprises 61.5 % of
the FE. The simulation results show that the test time is
3.5k ccs. Moreover, the realized FC by can be obtained by
combining the weighted FC of each block. In our case,
the FC can be calculated as follows. FCtotal = 4.5 % ×
FCGolayEncoder + 5.2 % × FCRepetitionEncoder + 5.2 % ×
FCRepetitionDecoder +53.1 %×FCGolayDecoder +32.0 %×
FCHashFunction.

4.3.1 Golay Encoder

Figure 7 shows the FC versus the number of clock
cycles for the nine experiments. Part (a) of the figure
shows the results of ’Poly 0’ for the three different seeds
and part (b) and (c) present similar results but then
for ’Poly 1’ and ’Poly 2’, respectively. The figure
clearly reveals that all experiments realize the targeted
FC (FCGolayEncoder ). Nevertheless, the impact of vary-
ing the polynomial and/or the seed on both test time
and FC cannot be ignored; e.g., after only six ccs ’Poly
0’ with ’Seed 2’ reaches FC of 82.30 %, while with
’Seed 0’ or with ’Seed 1’ this does not exceed 57.67 %
and 53.27 %, respectively. Note that ’Poly 1’ with ’Seed
1’ is the most efficient combination in realizing the
targeted FC.

4.3.2 Repetition Encoder

Figure 8 shows that all the nine experiments result in a con-
stant FC of maximum 90.7 % after circa 540 ccs. The impact
of the polynomials and the seeds is significant. ’Poly 4’ with
’Seed 0’ is the best combination realizing FC of 90.7% after
542 ccs.

To reach the targeted FCtotal with no increase in the
test time there are two options. First, investigate and apply
the specific test vectors that detect the remaining faults.
Second, increase the FC of the other blocks, such that
it compensates for the lower FC of Repetition Encoder.
The first option is very expensive, as it requires storing
the extra vectors on the die. However, the second option
is cost-free; simply by extending the test time of one

or more of the other blocks, as long as still below the
test time budget.

In our case, we chose to extend the FC of
the Golay Encoder to 99.8 %, which is realized
in 27 ccs when using ’Poly 3’ combined with
’Seed 1’.

4.3.3 Repetition Decoder

Figure 9 shows the simulation results. The figure reveals
that all experiments realize the targeted FC in no
more than 600 ccs. Also here varying the polynomial
and/or the seed has a clear impact. ’Poly 2’ combined
with ’Seed 0’ is the most efficient pair realizing the
targeted FC.

4.3.4 Golay Decoder

Figure 10 shows the simulation results. All the
nine experiments realize the targeted FC. ’Poly
4’ combined with ’Seed 2’ is the most efficient
combination.

4.3.5 Hash Function

Figure 11 shows the simulation results for all the nine exper-
iments. The impact of varying the polynomial and or seed is
marginal. After circa 700 ccs, the FC (FCHashFunction) for
all cases is 95 %.

The results clearly reveal that an appropriate selection
of polynomial and or seed significantly increases the FC
and/or decreases the test time per FE block, except for
the Hash Function. This is due to the specificity of the
remaining test patterns required to detect the last remain-
ing faults. Additionally, the results reveal that the required
test time per FE block varies significantly (from 14 ccs
up to 3.5k ccs) as well as the realized FC. Finally, the
results also show that the remaining test time budget
is a useful resource to further increase the targeted FC.
The additional area overhead of this method is 18.6 %
w.r.t. the FE.

Fig. 7 FC of Golay Encoder with different polynomials and different seeds
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Fig. 8 Fault coverage of Repetition Encoder with different polynomials and different seeds

4.4 Impact of Reconfigurable LFSR/RTPG Parameters

To demonstrate the potential of reconfiguring RTPG param-
eters in improving FC and reducing the test time, we use
the Golay Encoder as a case study. The idea is to skip
test patterns without additional FC. For example, Figure
7a shows that during clock cycles 9 and 10 no faults are
detected. We skip all the clock cycles that do not con-
tribute to FC but that do consume test time by reseeding,
i.e., by changing the seed of the registers of the RTPG.
We stop the test when the 95 % FC target is realized.
Figure 12a shows the number of faults that each test vec-
tor detects (obtained using LIFTING tool [17]), while Fig.
12b shows the impact of skipping the test vectors that do
not contribute to FC such that the overall test time is min-
imized. Figure 12b shows that a speedup of 1.5× can be
realized by reseeding three times (speedup from 16 ccs
to 11 ccs).

On the downside, the area overhead required for the
implementation of the method is very large when compared
to the test without reseeding. Each seed requires 12 bits,
hence, a total of 36 bits (12 bits×3 seeds) has to be stored
on the die. Due to the small size of the Golay Encoder,
the extra area overhead that would be needed makes the
optimization methods prohibitively expensive for our case
study circuit. Moreover, depending on the implementation,
extra test time to load the seeds might be required; how-
ever, in [18] the authors present a reseeding solution that
does not increase the total test time. However, the goal is

to find trends to apply in larger circuits. When consider-
ing applying one of the test quality improvement methods,
the test designer must take into consideration the following
parameters: (i) the number of test vectors to anticipate, (ii)
the number of bits that need to be flipped from the orig-
inal RTPG to generate test vectors that detect faults and
(iii) the number of times that this operation needs to be
performed.

5 Discussion

First we compare both the efficiency of both secure test
methods. Second we compare our results with the prior
work. Thereafter we make a security analysis of the pro-
posed secure test methods. Finally we provide a list of
recommendations to secure test an FE.

5.1 Comparison Between the Secure Test Methods

Table 1 summarizes the main features of the two secure
test methods previously proposed. Testing the FE using
the parallel secure test method with dedicated RTPGs per
block for test pattern generation and for result compres-
sion has an area overhead of 18.6 % w.r.t the FE while
the area overhead of the daisy-chain secure test method is
of only 2.2 % w.r.t. the FE, i.e., the parallel secure test
method has 8.5× larger area overhead. Note that the addi-
tional area overhead represents a small value, as a typical

Fig. 9 Fault coverage of Repetition Decoder with different polynomials and different seeds
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Fig. 10 Fault coverage of Golay Decoder with different polynomials and different seeds

FE has a overall area of 1.4kGE, where GE (Gate Equiv-
alent) is a measure of area in any given technology; 1 GE
is the area of a NAND gate [20]. However, it realizes the
same fault coverage in 3.5k clock cycles, i.e., 13.46× faster
when compared with the 47.1k clock cycles of the daisy-
chain secure test method. In addition, having a dedicated
RTPG per block enables optimizing methods to achieve
higher FC in shorter test time, but again at the expense
of area overhead. Optimizing the daisy-chain secure test
solution is not feasible because the circuitry of the ran-
dom test pattern generator (i.e., the circuitry of the hash
function) cannot be manipulated as an attacker could use
this feature to gain access to the cryptographic key during
operation mode.

5.2 Comparison with Prior Work

No prior work focus on the same problem addressed by
this paper; hence, a quantitative comparison with prior work
is not possible. However, we compare the work qualita-
tively of the Daisy-chain secure test method to [11] and [9].
The fault coverage of the method is in line with the FC
reported in other self-test methods [11] and [9]. The area
overhead of the proposed method is negligible, which is
intrinsic to methods that reuse hardware. The parallel secure
test method can be seen as a test time optimization of the
daisy-chain method; realizing the same fault coverage but
in 14.3× less time at the cost of 8.5× more area, which is a
common trade-off.

5.3 Security Analysis

Ideally, the design of a secure device begins with identifying
which class(es) of attacks it should prevent. Several counter-
measure methods must be combined to deliver the required
level of security. In other words, no method alone is secure.
In this work we aim at the prevention of side-channel attacks
by means of the test infrastructure. Our BIST methods do
not allow data to be scanned-in nor do they leak information
on the test results (only pass/fail).

We make a brief analysis of the security of the
methods proposed considering the following vulnerabil-
ities. We consider that an attacker a) might use Hard-
ware Trojan to gain access to the switch between func-
tional and test modes to get knowledge on the full or
partial value of either PUF or key and b) might try
to attack the stored seeds to, e.g., decrease the fault
coverage.

With respect to attack a), during test mode, regardless if
activated by a legitimate source or by a Hardware Trojan, all
registers are reset. Therefore, any traces sensitive informa-
tion are destroyed. However, considering that the inserted
Hardware Trojan can circumvent this protection measure,
we would need to combine/enhance our methods with one
or several countermeasures proposed in the literature; e.g.,
[1].

Considering an attack on the stored seeds. Attacks aiming
the stored seeds would need to be invasive attacks. Typi-
cally, invasive attacks require the depackaging of the device

Fig. 11 Fault coverage of Hash with different polynomials and different seeds
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Fig. 12 Reseeding results for Golay Encoder

under attack and other destructive measures. Destroying a
device to change its test seeds to lower its fault coverage it is
not profitable. Therefore, stored seeds do not seem vulnera-
ble to this type of attack, as no information could be gained
from it.

5.4 Recommendations

We provide a generic step-by-step procedure for secure
testing of FE based on our findings. These steps are:

1) Identify each block and deeply understand its func-
tionality (which is critical for successful functional
testing).

2) Assess the characteristics of each block (e.g., its area
overhead, if the block comprises a state-machine or not
and state-machine complexity).

3) Identify possible challenges by testing a certain block
with a random input source.

4) Implement parallel secure test method for the shortest
test time and implement Daisy-chain secure test method
for lowest area overhead.

5) Identify if extra components are needed in order to
increase the fault coverage, such as a SISR. If so, ana-
lyze the trade-off of such components in terms of their
possible locations and of its impact on security, fault
coverage, test time and area overhead.

6) Explore further the two secure test methods; optimize
parallel secure test method by choosing an optimal
polynomial and seed or optimize Daisy-chain secure
test method by using a SISR to activate uncovered paths
in the state-machine.

Table 1 Test methods’ results

Test Method Area overhead Test time FC

Daisy-chain (+ SISR) 2.2% 47.1k clock cycles 95 %

Parallel (+ DFT) 18.6 % 3.5k clock cycles 95 %

7) Analyze the FC, test time and area overhead of all test
methods separately and when combined with comple-
mentary schemes.

8) Determine and select the best test method and
complementary schemes to meet the design
requirements.

6 Conclusion

We demonstrated two secure test methods for a Fuzzy
Extractor, both are scan-chain free. The first secure test
method is based on daisy-chains; it reuses Fuzzy Extrac-
tor blocks for test pattern generation and output com-
pression. The second method tests all the Fuzzy Extrac-
tor blocks simultaneously by adding dedicated test pat-
tern generation blocks. The results show that the first
method has an inherent low area overhead 2.2 %, while
it realizes a fault coverage of 95 % using only 47.1k
clock cycles. The second method realizes a similar fault
coverage with 8.5× more area overhead but 13.46×
faster, when compared with the first method. In addi-
tion, we identified and analyzed techniques to optimize
the previous methods, and provided a generic step-by-
step procedure to test any given Fuzzy Extractor based on
our findings.

This case study considers a small FE. Nonetheless, the
proposed approaches are still valid for any FE construc-
tion. Moreover, the two proposed methods provide upper
and lower bounds for both test time and area overhead. A
real system would benefit from a hybrid solution between
the two proposed methods.
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