
Communication-Aware HW/SW Co-design for
Heterogeneous Multicore Platforms

Imran Ashraf, S. Arash Ostadzadeh, Roel Meeuws, Koen Bertels
Computer Engineering Lab, TU Delft, The Netherlands

{I.Ashraf,S.A.Ostadzadeh,R.J.Meeuws,K.L.M.Bertels}@TUDelft.nl

ABSTRACT
QUAD is an open source profiling toolset, which is an in-
tegral part of the Q2 profiling framework. In this paper,
we extend QUAD to introduce the concept of Unique Data
Values regarding the data communication among functions.
This feature is important to make a proper partitioning of
the application. Mapping a well-known feature tracker ap-
plication onto the multicore heterogeneous platform at hand
is presented as a case study to substantiate the usefulness
of the added feature. Experimental results show a speedup
of 2.24× by utilizing the new QUAD toolset.

Categories and Subject Descriptors
F.3.2 [Logics and Meanings of Programs]: Program
analysis; B.8.2 [Performance and Reliability]: Perfor-
mance Analysis and Design Aids

General Terms
Performance, Measurement

Keywords
Multicore Heterogeneous Computing, Data Driven Applica-
tion Mapping, Dynamic Analysis, HW/SW Co-design

1. INTRODUCTION
Heterogeneous multicore platforms are becoming the dom-

inant architecture both for High Performance Computing
as well as for Embedded Systems. Examples are the Con-
vey supercomputer, Zynq by Xilinx and C66 by Texas In-
struments. The heterogeneous components can be DSPs,
FPGAs or GPUs. The main consequence of this trend is
that developers can no longer develop their applications in
a processor agnostic way and need to have appropriate tools
highlighting the architectural constraints.

One well-known design constraint deals with the memory
access and data transfer between the computing cores. Com-
munication bottlenecks can kill the anticipated performance

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
WODA ’12, July 15, 2012, Minneapolis, MN, USA
Copyright 2012 ACM 978-1-4503-1455-8/12/07 ...$10.00.

improvement. We extend the QUAD [1] open source toolset
that provides a detailed insight in how the data flows inside
the application and what memory access patterns result out
of it. The information generated by QUAD can be used to
support HW/SW co-design decisions.

In this paper, we focus particularly on a heterogeneous
platform containing FPGA based kernels and demonstrate
the usefulness of the information provided by QUAD for
making well founded design choices. The overall goal of
QUAD is to reduce the communcation overhead. We intro-
duce the concept of Unique Data Values (UnDVs) to QUAD
that quantifies the uniqueness of data values and how often
they are read/written. The main contributions of this paper
can be summarized as follows:

• the introduction of a metric that quantifies unique data
communication;

• the extension of the open source QUAD toolset to com-
pute this metric to provide the guidelines for HW/SW
Co-design;

• the application of these guidelines on a real feature
tracking application showing a speedup of 2.24× when
mapped onto the reconfigurable platform at hand.

The paper is organized as follows. Section 2 provides the
research context of our work. Section 3 introduces QUAD ,
with emphasis on the extension and the design choices which
can be made based on this extension. Section 4 discusses
the application of our work in a case study and presents the
obtained experimental results. Section 5 provides the related
work followed by Section 6 which concludes the paper.

2. RESEARCH CONTEXT
The work presented in this paper, although not restricted

to any specific architecture, has been developed in the con-
text of the Molen [2] polymorphic processor. The Molen
architecture is based on the shared memory, processor, co-
processor architectural paradigm [3]. It couples a General
Purpose Processor (GPP) and one or more Custom Comput-
ing Units (CCUs). Each CCU has its own set of registers
and local memory for processing. The GPP controls the
execution and (re)configuration of the CCUs.

The Delft Workbench (DWB) [4] is a semi-automatic tool
platform for integrated HW/SW co-design, targeting hetero-
geneous computing systems containing reconfigurable com-
ponents. DWB addresses the entire design cycle from pro-
filing [1, 5] and partitioning [6] to synthesis [7] and compi-
lation [8] of an application. QUAD is an integral part of Q2

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
WODA’12, July 15, 2012, Minneapolis, MN, USA
Copyright 2012 ACM 978-1-4503-1455-8/12/07 ...$15.00

36

Partitioning FrameworkProfiling Data
(XML)

Quantitative Data
Usage Graph

Dynamic ProfilingStatic Profiling

Code Revision

R
es

ou
rc

e
U

sa
geK
er
n
el

Li
b
ra
ry

Figure 1: The Q2 profiling framework within the
DWB.

profiling framework (see Figure 1) which provides a com-
prehensive overview of the memory access behavior of an
application. The QUAD toolset is based on PIN Dynamic
B inary I nstrumentation (DBI) framework [9].

3. DATA COMMUNICATION QUANTIFICA-
TION

QUAD traces each memory read and write access to record
necessary information regarding the data communication
among functions. The function writing to a memory lo-
cation is called the producer and the one reading from it is
known as the consumer of this data. The QUAD core tool
reports the amount of data communication between a pro-
ducer and a consumer in Bytes. Memory adresses are also
analyzed to calculate the number of unique locations used
in data communication. This information is reported at the
end as Unique Memory Addresses (UnMAs).

3.1 Unique Data Values
In an application, there exist several production/consump-

tion patterns among functions. As an example, consider an
array of 100 bytes initialized by a function f1, which is then
read 50 times by a function f2. The amount of data com-
munication reported between f1 and f2 will be 5000 bytes.
On the initial read, new values are read by f2, whereas suc-
cessive reads involve the same old data. So, in this case, the
unique data values communicated between f1 and f2 are
100.

In the context of HW/SW co-design, if f1 is mapped onto
CCU1 and f2 is mapped onto CCU2, then the data commu-
nication between the two CCUs can be reduced by making
a local copy of this array after its first transfer, reducing the
communication from 5000 bytes to 100 bytes. In order to re-
alize how much data communication is unique, the concept
of a new metric known as UnDVs is introduced to QUAD .

3.2 Communication Classes & Design Choices
With the current extension, Bytes, UnMAs and UnDVs

are the three metrics measured by QUAD for each data com-
munication binding among the functions in an application.
For the sake of simplicity, if we classify each quantity as
having high and low values, there can be eight (23) possible

combinations. For instance, high Bytes, low UnMAs and
low UnDVs is one such combination.

However, the combinations where Bytes < UnMAs and
Bytes < UnDVs are not possible. This is because the ad-
dress of each byte recorded in the communication will be
counted at most once in UnMAs, which implies that Bytes ≥
UnMAs. Similarly, each byte will be counted at least once
in UnDVs as it will be a unique value when accessed for the
first time, hence, Bytes ≥ UnDV s. This eliminates 5 com-
binations, leaving us with only three combinations of Bytes,
UnMAs and UnDVs as described below.

• Case 1- High Bytes, Low UnMAs and Low UnDVs:
In this case, there is intensive communication going
on between the producer and the consumer on lower
number of addresses. Low UnDVs in this case suggests
that not most of the data being communicated is new
and it is very much like reading some constant values or
some initialized data by the producer, over and over
again without data being modified. An example is
an array of coefficients which is initialized once in the
producer and same values of array are read by the
consumer multiple times.
Design choices: A boundary condition of this can
be when UnMAs = UnDVs, in which case the data
on all UnMAs is same for multiple reads. This means
that the data can be placed locally on the HW. In
other cases, we need to place the producer and the
consumer close to each other and if possible have them
share some local memory. A small local buffer close to
the consumer, containing the data is another design
option.

• Case 2- High Bytes, Low UnMAs and High UnDVs:
In this case of high communication between the pro-
ducer and the consumer, less number of addresses are
involved. High UnDVs point out that this data is writ-
ten again and again by the producer and also the con-
sumer is reading this data in an interleaved manner.
This means that mostly unique data is read by the
consumer resulting in high UnDVs. An example of
this communication is an array which is modified, for
instance, 10 times by the producer. After each modi-
fication, the consumer reads this array multiple times.
Design choices: A boundary condition in this case
can be when Bytes = UnDVs, in case unique data is
read each time by consumer. Mapping the consumer
alone onto a CCU will cost high communication over-
head, as the consumer has to get data from the pro-
ducer to process. The design choice which can be made
based on such an observation, is to merge the producer
with the consumer and map this new merged function
onto the HW, resulting in the reduction of communi-
cation overhead.

• Case 3- High Bytes, High UnMAs and High UnDVs:
This case involves a large amount of data being com-
municated between the producer and the consumer. A
large number of addresses are involved, for instance, a
large image data which is first processed by the the
producer and later processed by the consumer.
Design choices: The design decision which can be
made based on this information is to merge the two
functions together like the previous case. However,

37

this merging may not be feasible because of high mem-
ory requirements. Another solution can be to transfer
the data in parallel to the computation, for instance,
by the double buffering technique.

3.3 Implementation Details
In this section, we provide the implementation details of

our extension to QUAD . In order to find out the unique data
values, corresponding flags and counters are associated with
each location. When a value is written to a location, flags
associated with the location are set. Later, when the loca-
tion is read, associated UnDV counter is incremented and
the flag is cleared. Successive reads from the same location,
without the values being re-written, notice the cleared flags
and the UnDV counter is not incremented. A simplified logic
of this implementation1 is shown in Algorithm 1.

Algorithm 1 Pseudo-code for UnDVs in QUAD .

if location is seen for first time then
location · Flags = newFlags()

end if
if write then

location · SetF lags()
else

if location · IsNew(consumer) then
location · IncrementUnDV s()
location · ClearF lag(consumer)

end if
end if

We have implemented this feature as a dynamic array with
an initial size picked as 5 elements to reduce the execution
time overhead caused by the memory allocations for each
element individually. The number was decided based on
empirical results. The size of the array is increased by 5 in
case more consumers are found for a location. Although, a
penalty will be caused in this case, but, mostly there are no
more than 5 consumers of any location. Furthermore, this
fixed size may be passed as an argument by the user to the
QUAD , which makes it customizable for each application.

4. CASE STUDY: KLT
In this section, we present a detailed discussion of a use

case involving Kanade-Lucas-Tomasi Feature Tracker (KLT)
application [10]. This application detects interesting fea-
tures in a frame and tracks those features in the subsequent
frames. We have used version 1.3.4, which is the latest ver-
sion of KLT [11]. This C implementation has 102 functions
in 17 source files. The focus of this case study is on the uti-
lization of information provided by QUAD to map the ap-
plication onto the Molen heterogeneous reconfigurable plat-
form.

4.1 Experimental Setup
All the experiments were performed on two different plat-

forms. The general profiling of the KLT application with
gprof was done on an Intel 32-bit Core2 Duo E8500 @3.16GHz
with 4GB of RAM, running the Linux kernel v2.6.34.10-0.6-
pae. The application source code was compiled with gcc
v4.5.0 with level two optimizations and without function
inlining. The target platform is the Molen heterogeneous

1Source on: http://sourceforge.net/projects/quadtoolset

Table 1: gprof flat profile for the KLT application
on the Intel x86 architecture.

Kernel %time
self

calls
self total

sec ms/call ms/call

interpolate 48.5 0.97 26.26M 0.00 0.00
convolveImageHoriz 16.0 0.32 183 1.75 1.75
convolveImageVert 16.0 0.32 183 1.75 1.75
KLTSelectGoodFeat. 6.0 0.12 1 120.0 141.14
computeGradientSum 5.0 0.10 17249 0.01 0.04
computeIntensityDiff. 2.5 0.05 23871 0.00 4.02

reconfigurable platform on Xilinx ML510, Virtex5 FX 130T
with 2 MB BRAM FPGA board. A PowerPC 440 @400
MHz with 512 MB DRAM, is used as a GPP, and CCUs
are implemented as HW modules on FPGA. 30 K slices are
available for (re)configuration and there can be a maximum
of 5 RUs on the FPGA, where each CCU has 64 KB of lo-
cal Memory. A number of design choices can be made in
mapping applications onto Molen, which are guided by the
information provided by the Q2profiling framework.

In order to profile the application using the QUAD toolset,
the Pin Dynamic Binary Instrumentation (DBI) framework
is needed which does not support the PowerPC architec-
ture. As a result, the QUAD profiling information on Intel
x86 can be biased. However, the overall behavior of the
application regarding the data communication should stay
similar. We have used the DWARV C-to-VHDL compiler
[7] to generate the VHDL code for the reconfigurable part.
Simulations were performed using Modelsim 6.5f. We have
used Xilinx ISE 13.2 synthesis tools targeting the same Vir-
tex5 FPGA containing a Molen machine implementation.
The executable code for the PowerPC in the form of Exe-
cutable Link Format (ELF) and the synthesized hardware
modules in the form of bitstream files, were then used to run
the application on the Molen platform.

4.2 Mapping Steps
Table 1 shows the flat profile of the KLT application gen-

erated by gprof on the Intel x86 architecture. For this run,
30 frames have been used for feature tracking. The frame
size has been chosen as 80 × 60 to be able to satisfy the
memory requirement of the platform. It can be seen from
this profile that we can map the top three kernels, namely
interpolate, convolveImageHoriz and convolveImageVert

on each of CCUs in the platform. The combined execution
time of these three kernels is 0.805 p.u (80.5%). Using Am-
dahl’s law, the theoretical application speedup, assuming an
unlimited speedup for the kernel(s) in question, can be cal-
culated as follows:

lim
p→∞

p

1 − f(p− 1)
=

1

f
=

1

1 − s
=

1

1 − 0.805
= 5.13, (1)

where p is the speedup factor of the accelerated part, f is
the percentage contribution of the sequential part, and s is
the original percentual contribution of the accelerated part.

The mapping of the aforementioned kernels will result in
performance improvements, but this performance can be im-
proved by reducing the communication among all the com-
puting elements. gprof and other traditional profilers do
not provide information about the data communication in
an application. In simple applications, it may be easy to an-
alyze communication among various functions. However, in
a complex application as in this case study (102 functions),
it can be a tedious and time consuming task to manually un-

38

pgmRead

_KLTToFloatImage

148800 Bytes
 9600 UnMAs

 144000 UnDVs

8 Bytes
 8 UnMAs
 8 UnDVs

_convolveSeparate

248 Bytes
 16 UnMAs
 248 UnDVs

_convolveImageHoriz

4821368 Bytes
 38416 UnMAs
 595441 UnDVs

_KLTComputePyramid

_interpolate

3924000 Bytes
 13772 UnMAs
 96648 UnDVs

7459200 Bytes
 57600 UnMAs
 576000 UnDVs

_KLTCreateFloatImage

364 Bytes
 24 UnMAs
 340 UnDVs

720 Bytes
 32 UnMAs
 480 UnDVs

16232400 Bytes
 180 UnMAs
 2105 UnDVs

1216 Bytes
 56 UnMAs
 645 UnDVs

4144 Bytes
 172 UnMAs
 3217 UnDVs

_convolveImageVert

4392 Bytes
 252 UnMAs
 4315 UnDVs

19034880 Bytes
 148776 UnMAs
 2649600 UnDVs

576000 Bytes
 38400 UnMAs
 576000 UnDVs

11980800 Bytes
 41692 UnMAs
 316776 UnDVs

5792640 Bytes
 57600 UnMAs
 595200 UnDVs

Figure 2: QDU Graph of the original KLT applica-
tion.

derstand the intensity of the communication, the addresses,
and the amount of unique data involved in each communi-
cation. In short, an automatic tool like QUAD can provide
this information and guide us in the mapping process based
on the communication of functions with the top contributing
kernels. We describe the mapping process below.

Step 1: In the original application, gprof shows that the
self contribution of interpolate per call is quite low (0.00
in Table 1). Mapping interpolate as it is onto a CCU will
result in performance degradation, due to the large number
of calls (about 24.2M) to this CCU. This is because the
overhead of each call to CCU will be more than the execution
time of this function. So, we modified interpolate to process
a complete frame per call, resulting in reduced number of
total calls.

Step 2: The complete Quantitative Data Usage (QDU)
graph [1] is quite complex due to the large number of func-
tions in this application. So, a reduced QDU graph of these
top contributing kernels (dark grey ovals) and the functions
communicating with these kernels is shown in Figure 2. The
amount of data communication is shown in bytes. Further-
more, the intensity of the communication is indicated by the
colour of the links in the descending order of red, brown,
dark green, green and blue.

Figure 2 depicts that the image is read by pgmread and
this image data is fed to KLTToFloatImage. The size of 30
frames equals 30x80x60 = 144000, which is accurately indi-
cated by the number of UnDVs for this communication link.
The number of bytes is 4800 bytes more than the number
of UnDVs, which indicates that 11 images are read. When
we look into the code, it becomes clear that the first image
is read twice, initially for the detection of features and later
for their tracking. UnMAs involved in this communication
are 9600. This is easily verified as it relates to the size of
2 images (2x80x60). As an initial improvement, based on

_interpolateImg

_computeIntensityDifference

2415600 Bytes
 5400 UnMAs

 2415600 UnDVs

_computeGradientSum

2995200 Bytes
 10800 UnMAs

 2995200 UnDVs

pgmRead

_convolveImageHoriz

148800 Bytes
 4800 UnMAs
 4800 UnDVs

4821120 Bytes
 57616 UnMAs
 595200 UnDVs

_convolveImageVert

19034880 Bytes
 144144 UnMAs
 2649600 UnDVs

_KLTComputePyramid

5846400 Bytes
 13344 UnMAs
 133440 UnDVs

7459200 Bytes
 57600 UnMAs
 576000 UnDVs

_KLTCreateFloatImage

51968 Bytes
 120 UnMAs
 1440 UnDVs

2804 Bytes
 140 UnMAs
 1909 UnDVs

720 Bytes
 36 UnMAs
 480 UnDVs

4392 Bytes
 300 UnMAs
 4242 UnDVs

_convolveSeparate

1216 Bytes
 64 UnMAs
 728 UnDVs

11692800 Bytes
 40888 UnMAs
 418080 UnDVs

5792640 Bytes
 57600 UnMAs
 595200 UnDVs

576000 Bytes
 38400 UnMAs
 576000 UnDVs

Figure 3: QDU graph of modified KLT application.

the information provided by QUAD , we modified the code
to not read the first image twice.

An interesting point to note here is that, the bytes trans-
ferred by KLTToFloatImage to convolveImageHoriz are
roughly 4 times higher than the image data input to KLT-
ToFloatImage, which shows some kind of expansion being
performed here. If we look into the code, it becomes clear
that the image data is converted from char to float data
type. As convolveImageHoriz is one of the top contribut-
ing kernels, to further reduce the communication, we can
transfer the char data to convolveImageHoriz and cast it
inside this function to reduce the external communication.
Figure 3 shows the QDU graph after this modification. It
can be seen that the image data is now fed directly to con-
volveImageHoriz, hence, reducing the communication from
4.82 MB to 1.44 MB. Another interesting observation is that
KLTToFloatImage completely disappeared after this mod-

ification, as this was the only place where it was being used.
Step 3: Figure 3 shows that convolveImageHoriz and

convolveImageVert are also communicating heavily with
each other, indicated by the high value of reported Bytes.
High UnDVs indicate that a high amount of unique data is
involved in this mutual communication, which is similar to
Case 2, Section 3.2. If we merge these two functions together
as a single convolveImage function, this communication will
be performed locally. Figure 4 shows the QDU graph with
the merged convolveImage, resulting in a reduction of about
24.8 MB of external communication.

Step 4: According to Figure 3, KLTComputePyramid
is communicating heavily with convolveImage. In this case,
we cannot merge KLTComputePyramid together with con-
volveImage. The resulting UnMAs indicate that the mem-
ory requirements for the merged kernel will be increased by
57600 (56.25 KB), whereas, the maximum memory avail-
able for a CCU is 64 KB. Secondly, interpolateImg is also
communicating heavily with computeGradientSum as well
as with computeIntensityDifference. computeGradientSum
is consuming 2995200 bytes of data produced by interpo-
lateImg, and all of this data is unique as indicated by the

39

_KLTComputePyramid

_convolveImage

7459200 Bytes
 57600 UnMAs
 576000 UnDVs

_interpolateImg_OPT

3924000 Bytes
 13772 UnMAs
 96648 UnDVs

_KLTCreateFloatImage

720 Bytes
 36 UnMAs
 480 UnDVs

6092 Bytes
 312 UnMAs
 3729 UnDVs

48096 Bytes
 120 UnMAs
 1440 UnDVs

576000 Bytes
 38400 UnMAs
 576000 UnDVs

24827520 Bytes
 186384 UnMAs
 3244800 UnDVs

11980800 Bytes
 42100 UnMAs
 316776 UnDVs

pgmRead

148800 Bytes
 4800 UnMAs
 4800 UnDVs

Figure 4: QDU Graph of KLT with optimized inter-
polate.

fact that it is equal to UnDVs. Similarly, computeIntensity-
Difference is also consuming 2415600 bytes of data produced
by interpolateImg, and again equal number of UnDVs sug-
gests that all of these bytes are unique as discussed in Case
3, Section 3.2. The UnMAs required for these two commu-
nications are lower (maximum 10 KB in case of computeIn-
tensityDifference) compared to the above situation. So these
numbers suggest that we can merge computeIntensityDif-
ference and computeGradientSum with interpolateImg to
reduce both of these communications. In fact, when we look
at the code, we can see that at one time two complete in-
terpolated images are produced by interpolateImg. All the
pixel values in these two interpolated images are then added
or subtracted in computeGradientSum and computeInten-
sityDifference, respectively. Therefore, we can completely
eliminate this intermediate communication to the memory,
by calculating the interpolated pixel for each of the two im-
ages and adding/subtracting them on the fly and save only
the last single output image instead of keeping multiple in-
termediate interpolated images.

Figure 4 shows the result of merging the computeInten-
sityDifference and the computeGradientSum functions into
the interpolateImg which results in the elimination of 2.99
MB and 2.41 MB of data communication, respectively. The
interpolateImg is also consuming 48096 bytes of data pro-

duced by KLTCreateFloatImage, but the lower number of
UnDVs suggests that this is some kind of constant data, as
discussed in Case 1, Section 3.2. When we look into the code,
we see that these correspond to the number of rows and cols
of frames produced at the time of creation of the frame, and
later they are read multiple times without being re-written.
Finally, Figure 4 shows that we have two modified kernels
namely convolveImage and interpolateImg, which can be
mapped onto two CCUs.

4.3 Experimental Results
Table 2 shows the experimental results of the interme-

diate steps performed during the process of mapping the
KLT application onto the Molen platform. The third col-
umn contains the name of kernels under discussion in the
corresponding step, as shown in QDU graphs in Figures 2-4.

The first row is the original software implementation which
is provided here for comparison. It does not involve a HW

implementation, hence, mentioned Not Applicable (NA) in
HW execution times. The second row is the HW imple-
mentation based on the gprof information, giving a total
speedup of 1.71. The third row corresponds to Step 2 in
Section 4, where KLTToFloatImage was merged with the
convolveImageHoriz to reduce the data communication. It

can be seen that we have achieved a speedup of 1.73 by
this communcation reduction. Furthermore, compiler was
also able to optimize the code efficiently when most of the
functionality was placed in a single function.

The fourth entry corresponds to Step 3 where we achieved
an overall speedup of 1.79, by using merged convolveIm-
age and reducing external expensive communication. Row
5 corresponds to Step 4 in Section 4. The overall speedup ob-
tained is 2.24 which is considerably higher because of three
factors. At first, communication was completely eliminated
in this case, instead of making it local as in Step 2. Sec-
ondly, interpolateImg has an overall contribution of 50% in
the application as shown in Table 1. This contribution is fur-
ther increased because we have moved the functionality of
computeGradientSum and computeIntensityDifference to

this function, resulting in about 56% of the total contri-
bution. Therefore, improving this kernel resulted in higher
speedup. Furthermore, the additional computations con-
tained in interpolateImg OPT were mostly independent, re-
sulting in higher kernel speedup, and hence, a higher overall
speedup.

For this application, we have measured overhead increases
of 1.6% and 26.4% for the execution time and memory usage
respectively, when the UnDV concept was added to QUAD .

5. RELATED WORK
HW/SW partitioning has been an active field of research

in the last decade. Many approaches have been proposed
to address the problem in diverse ways. Generally, the pro-
cess can be carried out at various granularity levels, ranging
from fine-grained basic blocks or loops [12, 13] to coarse-
grained functions [14, 15]. Apart from the traditional par-
titioning methods, different heuristic and evolutionary ap-
proaches have also been investigated to address this prob-
lem [16]. Work on compiler-directed method for program
parallelization by exploiting fine-grain instruction level par-
allelism is discussed in [17]. However, this approach is not
scalable as is also discussed by the authors in their work.

Our partitioning methodology is similar to the one pre-
sented in [15], which supports the partitioning of an appli-
cation between several processing elements (SW/SW par-
titioning) at the function-level, as well as HW/SW parti-
tioning utilizing some profiling information. However, in
[15], as in most other approaches, partitioning is performed
based on the call graph, whereas we utilize the QDU graph
as the main reference. The quantitative information about
the data communication between functions in an applica-
tion is extracted automatically by our advanced profiling
toolset. In this way, complex data-flows between functions
can be made clear, enabling developers to find better par-
titions compared to the ones obtained using only the call
graph and general execution time profiling data. In [18],
QUAD has been used to map three applications onto molen
platform, however, no report on UnDVs requires the user to
perform extra manual analysis. In this work, we extended
QUAD to automatically provide this information.

40

Table 2: Results of various intermediate implementation steps performed in mapping.

Entry Implementation Kernel
SW Time(µsec) HWTime (µsec) Speedup

Kernel Application Kernel Application Kernel Application
1 Original SW interpolate 4.75 12154566 NA NA NA NA

interpolateImg 1310 831 1.58
2 Original HW convolveImageHoriz 16132 11786160 4007 7110129 4.03 1.71

convolveImageVert 16491 4016 4.11
3 Modified HW 1 convolveImageHoriz 16689 11654476 4013 7015287 4.16 1.73
4 Modified HW 2 ConvolveImg 32125 11154476 6683 6797151 4.81 1.79
5 Modified HW 3 intrpolate OPT 2747 11025172 957 5429859 2.87 2.24

6. CONCLUSIONS
In this paper, we presented an important extension to the

QUAD toolset which aims to quantify the unique data val-
ues in communication among functions of an application.
We demonstrated how this information can be used to make
better partitioning and mapping decisions while taking into
account the hardware constraints. We used Molen as the
the target heterogeneous platform which consists of a gen-
eral purpose processor and one or more application specific
hardware kernels. Using the QUAD extension, we are able
to eliminate power- and time-consuming shared memory ac-
cesses and change the code such the that information which
is produced locally can also be consumed locally. We man-
aged to obtain a 2.24× speedup. In the future work, we are
planning to develp a tool which can use the QUAD quanti-
tative information to automatically perform this communi-
cation aware HW/SW partitioning.

7. ACKNOWLEDGMENTS
This research is partially supported by the Artemisia iFEST

project (grant 100203), the Artemisia SMECY project (grant
100230), the FP7 Reflect project (grant 248976) and Higher
Education Commission (HEC) Pakistan.

8. REFERENCES
[1] S. A. Ostadzadeh et al. QUAD - A Memory Access

Pattern Analyser. In ARC 2010, pages 269–281, 2010.

[2] S. Vassiliadis et al. The MOLEN Polymorphic Proces-
sor. IEEE Transactions on Computers, 53(11):1363–
1375, 2004.

[3] S. Vassiliadis et al. The Molen Programming Paradigm.
In A. Pimentel and S. Vassiliadis, editors, Computer
Systems: Architectures, Modeling, and Simulation, vol-
ume 3133 of LNCS, pages 1–10. Springer Berlin / Hei-
delberg, 2004.

[4] K. Bertels et al. Developing Applications for Polymor-
phic Processors: The Delft WorkBench. Technical re-
port, Delft University of Technology, January 2006.

[5] R. J. Meeuws et al. High level quantitative interconnect
estimation for early design space exploration. In ICFPT
’08, pages 317–320, 2008.

[6] S. A. Ostadzadeh et al. A Clustering Framework for
Task Partitioning Based on Function-level Data Usage
Analysis. In FPGA ’09, pages 279–279, 2009.

[7] Y. D. Yankova et al. DWARV: Delft Workbench Au-
tomated Reconfigurable VHDL Generator. In In Pro-
ceedings of the 17th International Conference on Field
Programmable Logic and Applications (FPL07), pages
697–701, August 2007.

[8] E. M. Panainte et al. The Molen Compiler for Reconfig-
urable Processors. ACM Trans. Embed. Comput. Syst.,
6(1), 2007.

[9] C. Luk et al. Pin: Building Customized Program Anal-
ysis Tools with Dynamic Instr. In PLDI ’05, pages 190–
200, New York, USA, 2005. ACM.

[10] B. D. Lucas and T. Kanade. An Iterative Image Regis-
tration Technique with an Application to Stereo Vision.
pages 674–679, 1981.

[11] KLT: An Implementation of the Kanade-Lucas-Tomasi
Feature Tracker. http://www.ces.clemson.edu/~stb/
klt/installation.html.

[12] Y. Li et al. Hardware-software Co-design of Embedded
Reconfigurable Architectures. DAC ’00, pages 507–512,
2000.

[13] M. Baleani et al. HW/SW Partitioning and Code Gen-
eration of Embedded Control Applications on a Re-
configurable Architecture Platform. CODES ’02, pages
151–156, 2002.

[14] M. Santambrogio et al. A Novel SoC Design Methodol-
ogy Combining Adaptive Software and Reconfigurable
Hardware. In ICCAD 2007, pages 303–308, November
2007.

[15] D. Gohringer et al. A Design Methodology for Ap-
plication Partitioning and Architecture Development
of Reconfigurable Multiprocessor Systems-on-Chip.
FCCM’10, pages 259–262, 2010.

[16] G. Wang, W. Gong, and R. Kastner. Application Par-
titioning on Programmable Platforms Using the Ant
Colony Optimization. Journal of Embedded Computing,
2(1):119–136, 2006.

[17] M. Chu, R. Ravindran, and S. Mahlke. Data Access
Partitioning for Fine-grain Parallelism on Multicore Ar-
chitectures. In MICRO 40, pages 369–380, Washington,
DC, USA, 2007. IEEE Computer Society.

[18] S. A. Ostadzadeh, R. J. Meeuws, I. Ashraf, C. Galuzzi,
and K. Bertels. The Q2 Profiling Framework: Driving
Application Mapping for Heterogeneous Reconfigurable
Platforms. In Proceedings of the 8th International Sym-
posium on Applied Reconfigurable Computing (ARC),
pages 76–88, March 2012.

41

