
A Survey on Low-Power Techniques
for Single and Multicore Systems

Mahroo Zandrahimi
Delft University of Technology

Delft, the Netherlands
m.zandrahimi@tudelft.nl

Zaid Al-Ars
Delft University of Technology

Delft, the Netherlands
z.al-ars@tudelft.nl

ABSTRACT
This paper surveys state of the art low-power techniques for
both single and multicore systems. Based on our proposed
power management model for multicore systems, we present
a classification of total power reduction techniques including
both leakage and active power. According to this classifica-
tion, three main classes are discussed: power optimization
techniques within the cores, techniques for the interconnect
and techniques applicable for the whole multicore system.
This paper describes several techniques from these classes
along with a comparison. For the whole multicore system,
we focus on adaptive voltage scaling and propose a com-
prehensive taxonomy of adaptive voltage scaling techniques,
while considering process variations.

1. INTRODUCTION
Power has been one of the primary design constraints and

performance limiters in the semiconductor industry such
that reducing power consumption can extend battery life-
time of portable systems, decrease cooling costs, as well as
increase system reliability.

The continuous progress in microprocessors has been main-
tained mostly by technology scaling, which results in ex-
ponential growth both in device density and performance.
However, as the technology scaling enters nanometer regime,
CMOS devices are facing many problems such as increased
leakage currents, large parameter variations, low reliability
and yield [1]. The inability to continue to lower the sup-
ply voltage halted the ability to increase the clock speed
without increasing power dissipation. Therefore, in order
to avoid encountering a stall in the future growth of com-
puting performance, high performance microprocessors had
to enter the multicore era [2]. However, the growth in the
number of cores causes super-linear growth in non-core area
and power; accordingly, the power dissipation problem did
not disappear in the new multicore regime [3, 4]. Therefore,
in addition to a focus on multicore design and parallel pro-
cessing, we need research and development on much more

GPM

LPM

Interconnect

Tile 2

LPMLPM

Tile 1Tile 0

Figure 1: System model block diagram

power-efficient computing systems at various levels of ab-
straction.

There are various power reduction techniques published in
the literature. This paper provides a survey of these tech-
niques. Fig. 1 displays a system model that will be consid-
ered in this survey. The model consists of a number of tiles
(either a processor or memory), each of which contains a lo-
cal power management (LPM) unit for local power optimiza-
tions. The model also contains a global power management
(GPM) unit, which aims to reduce power considering all tiles
and interactions among them. The figure also shows the in-
terconnect, which is used for the interaction among tiles and
GPM. Notably, techniques used for LPM are applicable to
both single and multicore systems. Based on Fig. 1, power
reduction techniques can be applied to either the tiles or the
interconnects, whether inside or outside the cores.

A high-level taxonomy of the power reduction techniques
for both single and multicore systems is illustrated in Fig.
2. Many techniques have been proposed to achieve power
reduction at different levels of abstraction, some of which
require modification of the process technology, achieving
power reduction during fabrication/design stage. Others are
run-time techniques that require architectural support, and
in some cases, technology support as well. Based on Fig. 2,
there are different techniques which aim to reduce power ei-
ther during fabrication/design or runtime in the tiles. Power
consumption of single and multicore systems can also be re-
duced in the interconnects or through adaptive voltage scal-
ing techniques in the local and global power management
units to dynamically manage power during run-time. The
contributions of this survey are as follows:

• We propose a comprehensive taxonomy of power reduc-
tion techniques for both tiles and the interconnect as well as
run-time techniques for adaptive voltage scaling.

Power reduction techniques

Tile-based 
power reduction

Interconnect
power reduction

Adaptive
voltage scaling

Fabrication/design 
techniques

Run-time
techniques

Local power 
management

Global power 
management

Figure 2: Taxonomy of total power reduction



• We discuss several techniques from each class in the
taxonomy along with examples as well as reported power
reduction values.

• We address various design and manufacturing issues,
which degrade the effectiveness of power reduction tech-
niques such as process and environmental variations and de-
scribe several low-power techniques considering these effects.

The rest of this paper is organized as follows. Section 2
presents low-power techniques that are applied either during
fabrication/design or run-time stage to the tiles. Section 3
discusses interconnect low-power techniques that are applied
dynamically during run-time. Section 4 specifically focuses
on adaptive voltage scaling, which is widely used for run-
time power optimization under process variations. Finally
Section 5 concludes the paper.

2. TILE-BASED POWER REDUCTION
In this section we discuss the fabrication/design as well

as run-time techniques for power reduction in the tiles for
both single and multicore systems from architecture level to
circuit level.

Power consumption of the tiles of single and multicore sys-
tems can be diminished at different levels of abstraction from
system to layout, among which we will investigate various
techniques at architecture, gate, and circuit levels in details.
Fig. 3 illustrates a taxonomy of techniques for power reduc-
tion in the tiles from architecture to circuit level.

Based on Fig. 3, the tile power at architecture level can be
cut back through low power control logic designs, low power
memory hierarchies, and low power processor architectures.
To explain low power control logic designs, assume the con-
trol logic of a processor as a finite state machine (FSM),
which activates the appropriate circuitry for each state. Ac-
cordingly, optimizations in FSMs can be done for power re-
duction. Encoding FSM states to minimize the switching
activity, or decomposing the FSM into sub-FSMs and acti-
vating only the circuitry needed for the currently executing
sub-FSM are some examples of FSM optimizations through-
out the processor [6]. A summary of attainable power re-
duction from this and other techniques is given in Table 1.
Applying both of these techniques at the same time reduces
power from 30-90%, while increasing area from 20-120%.

Another architecture level solution could be designing low
power memories and memory hierarchies. Power dissipation
in memories can be diminished in two ways, either by reduc-
ing the power dissipated in a memory access, or by reduc-
ing the number of memory accesses [5]. Moreover, splitting
memory into smaller sub-systems is an effective way to re-
duce power consumed in a memory access. This can be done
by partitioning memory into smaller, independently acces-
sible components in different granularities so that only the
needed circuitry is activated in each memory access [7]. A
combination of subbanking, multiple line buffers and bit-line
segmentation can reduce the on-chip cache power dissipa-
tion by as much as 75% in a technology-independent manner
without compromising the processor cycle time. Augment-
ing the memory hierarchy with specialized cache structures
is another popular method to save power by reducing mem-
ory hierarchy accesses. A simple example is a trace cache,
which stores traces of instructions in their executed order
rather than their compiled order. Hence, if an instruction
sequence is already in the trace cache, it does not need to be
fetched from the instruction cache and can be decoded di-

Tile-based power 
reduction

Architecture level

Gate level

Circuit level

Low power control logic design
Low power memory hierarchies
Low power processor architectures

Logic gate restructuring
Low power flip-flops
Clock gating

Transistor sizing
Transistor reordering
Low power clocks

Figure 3: Taxonomy of tile-based power reduction

rectly from the trace cache [8]. However, conventional trace
caches (CTC) may increase power in the fetch unit because
of the simultaneous access to both the trace cache and the
instruction cache. Dynamic direction prediction-based trace
cache (DPTC), which avoids simultaneous accesses to the
trace cache and the instruction cache achieve 38.5% power
reduction over CTC, while only trading a 1.8% performance
overhead compared to CTC [8].

Another method to save power at architecture level is
through adaptive processor architectures, which aim to save
power by activating minimum hardware resources needed
for the code that is executing. Adaptive caches and adap-
tive instruction queues are two examples. In an adaptive
cache, storage elements (lines, blocks, or sets) can be selec-
tively activated based on the workload. One example of such
a cache is the drowsy cache whose lines can be placed in a
drowsy mode where they dissipate minimal power, but re-
tain data during drowsy mode and can be activated instantly
[9]. In adaptive instruction queues, only the partitions that
contain the currently executing instructions are activated at
any time. For example, the heuristic proposed in [10], peri-
odically measures the IPC (instructions per cycle) over fixed
length intervals. If the IPC of the current interval is smaller
than the previous interval, the size of the instruction queue
is increased to enhance the throughput. The drowsy cache
technique reduces power up to 53% with a performance over-
head of 4.06-12.46%. Also, the adaptive instruction queue
method achieves up to a 70% power reduction, while the
complexity of the additional circuitry needed to achieve this
result is almost negligible.

At gate level, logic gate restructuring is one simple method
for power reduction. The idea is that since there are many
ways to build a circuit out of logic gates, thus, how to ar-
range the gates and their input signals is important to power
consumption [5]. Another possible solution is using low
power flip-flops. Power consumption in flip-flops consists
of the power dissipated in the clock signal, internal switch-
ing, and output transitions. Most of these low power designs
for flip-flops reduce the switching activity or the power dis-
sipated by the clock signal. Another method, which is very
effective for power reduction at gate level is clock gating.
Since clock is always active, and makes two transitions per
cycle, it consumes about 40% of total processor power, so
clock gating which inhibits clock to unused blocks is useful
for power reduction.

Transistor sizing reduces the width of transistors based
on the fact that reducing the width of transistors causes an
increase in transistor delay, which leads to dynamic power
reduction. Thus, the transistors that lie away from the criti-
cal paths of a circuit are usually the best candidates for this
technique. Algorithms for applying this technique usually
associate with each transistor a tolerable delay, which varies
depending on how close the transistor is to the critical path.
These algorithms then try to scale each transistor to be as



Bus encoding: reducing switching activity

Interconnect power 
reduction

Self-shielding codes: reducing crosstalk

Low-swing buses: transmitting at a lower voltage

Bus segmentation: splitting a bus into multiple segments

Adiabatic buses: reducing total capacitance

Figure 4: Taxonomy of Interconnect power reduc-
tion

small as possible without violating its tolerable delay [11].
Up to 15.3% power reduction can be achieved when 20% of
the transistors are resized.

At circuit level, transistor reordering rearranges transis-
tors to minimize their switching activity as their arrange-
ment in a circuit affects power consumption [13, 14]. An-
other method is using low power clocks such as half-frequency
and half-swing clocks, which reduce frequency and voltage
respectively. Traditionally, hardware events such as regis-
ter file writes occur on a rising clock edge. Half-frequency
clocks synchronize events using both edges, and they tick at
half the speed of regular clocks, thus cutting clock switching
power in half. Reduced-swing clocks also often use a lower
voltage signal, and hence reduce power quadratically [12].
As can be seen in Table 1, with transistor reordering, power
can be reduced by up to 18% with minimum area and no
performance overhead. The half-swing clocking scheme cuts
power back by up to 67% in the whole chip and 75% in the
clocking circuitry with minimal speed degradation.

3. INTERCONNECT POWER REDUCTION
Interconnects dissipate power due to switching of inter-

connect capacitances. Since efforts to improve chip perfor-
mance lead to smaller chips with more transistors and more
densely packed wires carrying larger currents [15], there arise
additional sources of power consumption such as crosstalk.
Therefore, power dissipating in interconnects has become
one of the important contributors to total chip power con-
sumption. Several methods have been proposed to cut back
power consumption in interconnects, each of which tries to
reduce power by focusing on a different aspect of power dis-
sipation in the interconnect as depicted in Fig. 4.

A popular way to diminish interconnect power consump-
tion is to reduce switching activity using intelligent bus en-
coding systems such as bus-inversion, which ensures that at
most half of the bus wires switch during a bus transaction
[16]. However, because of the cost of the logic required to
invert the bus lines, this technique is mainly used in exter-
nal buses rather than the internal chip interconnect. For
every data transmission, the number of wires that switch
depends on the current and previous values transmitted. If
the Hamming distance between these values is more than
half the number of wires, then most of the wires on the bus
will switch current. To prevent this, bus-inversion transmits
the inverse of the intended value and asserts a control signal
alerting recipients of the inversion. For example, if the cur-
rent binary value to transmit is 110 and the previous was
000, the bus instead transmits 001, the inverse of 110. This
technique decreases the I/O peak power dissipation by 50%
and the I/O average power dissipation by up to 25%.

Low swing buses transmit the same information but at a
lower voltage [17]. Traditionally, logic one is represented by
+5 volts and logic zero is represented by −5 volts. However,
in a low-swing system, logic one and zero are encoded using
lower voltages, such as +300mV and −300mV. The input

signal is split into two signals of opposite polarity bounded
by a smaller voltage range. The receiver sees the difference
between the two transmitted signals as the actual signal and
amplifies it back to normal voltage. This system has sev-
eral advantages in addition to reduced power consumption.
It is immune to crosstalk and electromagnetic radiation ef-
fects. Since the two transmitted signals are close together,
any spurious activity will affect both equally without af-
fecting the difference between them. However, the costs of
increased hardware at the encoder and decoder should be
considered. These buses decrease power from 62-78% with
approximately 45% performance overhead.

As mentioned above, another source of power consump-
tion in interconnects is crosstalk, which is false activity caused
by activity in neighboring wires. One way of reducing crosstalk
is to insert a shield wire between adjacent bus wires [18].
Since the shield remains deasserted, no adjacent wires switch
in opposite directions, however, this solution doubles the
number of wires. Another alternative is using coding sys-
tems which are resistant to crosstalk such as self-shielding
codes [19, 20]. Just like traditional bus encoding system, a
value is encoded and then transmitted. However, this sys-
tem avoids opposing transitions on adjacent bus wires.

Bus segmentation is another effective technique for inter-
connect power reduction. In a traditional shared bus archi-
tecture, the entire bus is charged and discharged upon ev-
ery access. Segmentation splits a bus into multiple segments
connected by links that regulate the traffic between adjacent
segments. Links connecting paths essential to a communica-
tion are activated independently, allowing most of the bus to
remain powered down. Ideally, devices communicating fre-
quently should be in the same or nearby segments to avoid
powering many links. There are different algorithms for par-
titioning a bus into segments to benefit from this property as
much as possible [21]. This technique achieves 24.6-37.21%
power reduction with 6% area overhead.

Another solution to reduce power in interconnects is to
reduce total capacitance, which is the principal behind adi-
abatic circuits [22]. These circuits reuse existing electri-
cal charge to avoid creating new charge. In a traditional
bus, when a wire becomes deasserted, its previous charge is
wasted. A charge-recovery bus recycles the charge for wires
about to be asserted. The saved power depends on transition
patterns. No energy is saved when all lines rise. The most
energy is saved when an equal number of lines rise and fall
simultaneously. The biggest drawback of adiabatic circuits
is the delay for transferring shared charge. This technique
can achieve 28% power reduction.

4. ADAPTIVE VOLTAGE SCALING
With the on going scaling of CMOS technologies, vari-

ations in process, supply voltage, and temperature (PVT)
have become serious concern in integrated circuit design.
Depending on their spatial correlation, process variations
can be divided into three groups. Die-to-die (D2D) varia-
tions have a correlation distance larger than the die size, i.e.,
all transistors on a chip are affected the same way. Within-
die (WID) variations have a correlation distance smaller
than the chip size. Random variations are not correlated
at all; every transistor is affected individually. Environmen-
tal variations such as power supply noise and crosstalk have
also gained significance with increasing current densities and
reduced geometric dimensions [32].



Supply voltage requirement under worst-case condition

PV margin VV margin TV margin Nominal minimum voltage

Figure 5: Schematic of the worst-case guard-
banding approach (PV, VV, and TV stand for pro-
cess, voltage, and temperature variations, respec-
tively)

Core

Performance 
manager

PLL

Voltage
regulator

Ftarget

Vtarget

VDD Vext

Figure 6: Architecture of an AVS system

Therefore, an individual safety margin for each variation
source is added on the top of supply voltage needed for the
nominal case as depicted in Fig. 5. However, this classical
worst-case analysis is quite pessimistic and leads to power
and performance be wasted. To overcome this problem, var-
ious adaptive design strategies have been proposed. The ba-
sic idea is to adapt the supply voltage to the optimal value,
based on the current operation conditions of the system so
that power is saved; variations are compensated, while main-
taining the desired performance.

In this section, LPM techniques which are used in both
single and multicore systems are explored. Specifically we
focus on adaptive voltage scaling, which is widely used for
run-time power optimization under process variations. In
addition, we discuss GPM techniques which are specialized
for multicore systems.

4.1 Local power management unit
Adaptive voltage scaling (AVS) systems are very efficient

in saving power since the supply voltage has a profound
impact on the operating frequency and power consumption
of an integrated circuit. Typically, logic delay increases as
VDD reduces and power consumption increases super lin-
early with VDD. Whenever maximum performance is not
required, supply voltage can be scaled so that power can be
saved while the system can still meet the timing constraints.
Fig. 6 shows the overall architecture of an AVS system
[28]. The performance manager predicts performance re-
quirements. Once performance requirement is determined,
the performance manager sets the voltage and frequency just
enough to accomplish the performance target of the system.
The target frequency is sent to the phase-locked loop (PLL)
to accomplish frequency scaling. Based on the target volt-
age, the voltage regulator is programmed to scale the supply
voltage up/down until target voltage is achieved.

Open-loop

Adaptive voltage 
scaling systems

Architecture level 
(variation-unaware)

Closed-loop

Circuit level 
(variation-aware)

Generic

1 monitor/critical path 1 monitor/variation source

Design-dependent

Figure 7: Taxonomy of adaptive voltage scaling sys-
tems

Thus, accurate circuit performance estimation is required
so that the actual performance of the core running under
the scaled voltage is monitored to guarantee a fail-safe op-
eration, while maintaining the required performance [28]. A
taxonomy of AVS systems is illustrated in Fig. 7. Based on
whether the performance estimation is done early in manu-
facturing or during run-time, these techniques can be clas-
sified as either open or closed-loop [25]. The following sub-
sections explore the commonly used AVS techniques.

4.1.1 Open-loop adaptive voltage scaling
A typical open-loop adaptive voltage scaling system cre-

ates a pre-characterized LUT to find the corresponding min-
imum voltage for a given frequency target. Conventionally,
the voltage levels for each domain, as well as the mapping
between frequencies and voltages are determined at archi-
tecture level without considering variations. One example is
the three domain dynamic voltage frequency scaling (DVFS)
power management scheme proposed in [26]. In this archi-
tecture level technique, the voltage and frequency of each
power domain are dynamically scaled according to the per-
formance requirement of each domain. They assumed that
each domain has a specific requirement of voltage and fre-
quency due to different workloads that they execute. Using
three power domains diminishes power by up to 65% com-
pared to a single domain, while imposes 2.6% area and 9.5%
power overhead on the system.

However, with the increasing effect of process variations
as a result of technology scaling, the research has become
more focused towards the variation-aware adaptive voltage
scaling techniques at circuit level. A technique proposed
in [27], utilizes a user and process driven dynamic voltage
and frequency scaling scheme to adapt voltage to the fre-
quency of a microprocessor in real-time according to proces-
sor needs. User-driven frequency scaling (UDFS) uses direct
user feedback to determine the processor frequency for in-
dividual users. Process-driven voltage scaling (PDVS) cre-
ates an LUT which maps frequency and temperature to the
operating minimum voltage considering process variations.
Using both of these techniques at the same time reduces
power by up to 50% for single task and 70% for multi-task
workloads compared to Windows XP DVFS. However, since
these techniques do not have a feedback mechanism, the
LUT is heavily guard-banded to ensure reliable system op-
eration which results in performance and energy wastes. At
the same time, characterizing the LUT is a time consuming
and expensive procedure. Thus, closed-loop schemes which
take advantage of feedback mechanisms during run-time are
more efficient in saving power.

4.1.2 Closed-loop adaptive voltage scaling
A closed-loop adaptive voltage scaling system adjusts sup-

ply voltage by probing actual chip performance using on-
chip monitors, thus, margin required by open-loop systems
can be recovered. To track timing performance of a chip,
many approaches have been proposed. Based on Fig. 7,
in terms of design point of view, performance monitors are
classified into design dependent and generic[24].

Generic performance monitors
Generic performance monitors range from simple inverter-
based ring oscillators [29] to more complex process-specific
ring oscillators (RO) [30] and also alternative monitoring



Table 1: Reported power reduction values
Reference Section Technique Power reduction Comments
[6] II.A Encoding FSM & decomposition to sub-FSMs 30% to 90% 20% to 120% area overhead
[7] II.A Splitting memory into smaller sub-systems 75% sub-banking, bit-line segmentation, multiple-line buffers - no performance overhead
[8] II.A DPTC 38.5% 1.8% performance overhead over CTC
[9] II.A Drowsy cache 53% 4.06% to 12.46% performance overhead
[10] II.A Adaptive instruction queue 70% Complexity of additional circuitry is negligible
[5] II.A Clock gating up to 40% small area overhead
[11] II.A Transistor sizing up to 15.3% 20% of transistors are resized
[14] II.A Transistor reordering 18% minimum area overhead, no performance overhead
[12] II.A Half-swing clock 67%-75% small speed degradation
[16] II.B Bus inversion 50%-25% peak and average power reduction of I/O
[17] II.B Low swing bus 62% to 78% 45% performance overhead
[21] II.B Bus segmentation 24.6% to 37.21% 6% area overhead
[22] II.B Adiabatic bus 28% -
[26] III.A Three domain DVFS 65% power overhead: 9.5%, area overhead: 2.6% compared to single domain
[27] III.A UDFS-PDVS 50% to 75% compared to Windows XP DVFS
[33] III.A Universal delay line 13% to 27% area overhead: 0.01%, power overhead is negligible

[23] III.A In-situ delay monitoring (over-critical) 13.5% compared to the worst-case design, prediction error rate: 1.10−15

[32] III.A In-situ delay monitoring (regular) 14% power overhead: 0.5%, area overhead: 10%
[34] III.A Critical path replica 11% to 78% highly dependent on the benchmark
[36] III.A RCP 31% smaller guard-band than critical path replica, prediction error rate: 2.8%

structure such as PLLs [31]. Although generic monitors are
very simple to design and can be used in any product with-
out customizations, they are inadequate to capture design
characteristics, and there will be a large error in the mea-
surements due to the difference in gate structure between
the actual critical path and the delay monitor. So, delay
estimation using generic monitors is less accurate and some-
times incurs larger margins. However, the generic perfor-
mance monitor proposed in [33] tries to minimize the errors
due to gate structure difference by utilizing certain chain
of delay gates, as well as the errors due to the within die
variations by distributing monitors among the chip. Each
performance monitor, which is called a universal delay line,
contains a ring oscillator and a counter. The ring oscillator
is designed with double stacked NMOSs and PMOSs since
this gate structure is the most dominant component in the
critical path delay, which minimizes the error due to the gate
structure difference. This technique decreases power by up
to 27% with a negligible area overhead.

Design-dependent performance monitors
According to Fig. 7, some of the design-dependent tech-
niques implement one monitor per variation source, while
the others implement one monitor per critical path. One
group of methods that utilize one monitor per critical path
are based on in-situ delay monitors, which are special latches
or flip-flops, included at the end of critical paths to report
the timing behavior of the circuit in order to form a closed
loop configuration for voltage adaptation [32]. Circuit delay
characterization using in-situ delay monitors can be done
in two different ways. The first is by observing the regular
operation of a circuit and to detect timing errors in the cir-
cuit itself during operation. With the error information, the
critical supply voltage, that is the minimum supply voltage
which is needed for correct operation, can be determined.
The second possibility is to observe an over-critical system.
Here, a test module which is always slower than the most
critical part of the chip is observed, and as soon as the test
module fails, the system detects a late data transition called
a pre-error[23]. The regular in-situ method achieves 14%
power reduction using two power switches, while imposing
10% area overhead and 0.5% power overhead to the system.
The over-critical method compared to the worst-case design
reduces power to 13.5% with a negligible error rate of 10−15.

Another approach implements replica-paths, representing
the critical paths of the circuit, thus, with varying operating

conditions, the timing of the replica-path will change simi-
larly to the actual critical path. So, the timing information
of the replica-path can be used to control the supply voltage
adaptively. Alternatively, the critical path replica can be
replaced by fan-out of 4 (FO4) ring oscillator [34] or a delay
line [35]. A safety margin is added to account for any mis-
match between the ring oscillator (or the delay line) and the
actual critical path. The FO4 technique achieves 11% power
reduction for compute-intensive code; the power decreased
by up to 78 % for non-speed-critical applications compared
to operating at a fixed supply voltage.

Several methods have been proposed which implement one
monitor per variation source. For instance, the method pre-
sented in [36] synthesizes a single representative critical path
(RCP) for post-silicon delay prediction. The RCP is de-
signed such that it is highly correlated to all critical paths
for some expected process variations. For both this and the
critical path replica method, it is essential to guard-band the
prediction. However, the RCP approach with 2.8% predica-
tion error rate requires a guard-band 31% smaller than the
critical path replica method.

Although design-dependent monitors show good estima-
tion accuracies, most of them rely on monitoring and char-
acterization of one unique critical path, however, due to the
increasing effect of process variations, finding one unique
critical path is a hard task to do. Depending on the operat-
ing point, process corner, and workload many different tim-
ing paths might become critical, therefore, for real circuits
the concept of finding one critical path and create a criti-
cal path replica as a performance monitor is too simplistic.
Moreover, techniques that have one monitor per critical path
incur high area overhead as well as long design turnaround
time to the system[24].

4.2 Global power management unit
We discussed various types of performance monitors used

for AVS to locally manage power within each core. All
the mentioned types of performance monitors are applica-
ble for both single as well as multicore processors. As we
discussed earlier in this section, process variations are static
during operation and manifest themselves as D2D, WID
variations, while temperature and voltage variations are dy-
namic. These affect both single as well as multicore proces-
sors. However, as the individual core size becomes smaller,
there arises another source of process variations that specifi-
cally affects multicore systems, called core-to-core variations
(C2C). C2C variations occur due to spatially correlated WID



variations, for example due to non-uniformity in the litho-
graphic exposure field [38]. Thus, multicore processors are
still threatened by increasing power consumption due to
PVT variations since they require large design margins in
the supply voltage resulting in large power consumption.

Dynamic power management of multicore processors is ex-
tremely important because it allows power savings when not
all cores are used. AVS is one of the techniques that is widely
used for power reduction in multicore processors. The per-
core performance data collected by performance monitors is
sent to the global power management unit to decide the sup-
ply voltage. AVS for multicore processors can be performed
at various levels of granularity: 1) Per-chip, the supply volt-
age is set globally for the whole chip, 2) Per-core, the supply
voltage is set for each core, which means that only cores that
require higher frequency are set to the higher supply volt-
age, while other cores operate at lower supply voltage or are
completely shut down, 3) cluster-level, the voltage is set for
each cluster which one or more cores are associated with.

5. CONCLUSION
This paper presented a classification of power reduction

techniques in single and multicore systems. Three main
classes have been discussed: the techniques which aim to
reduce power either during fabrication/design or runtime in
the tiles, run-time power reduction techniques for intercon-
nects, and adaptive voltage scaling techniques to dynami-
cally manage power during run-time. In addition, a num-
ber of design and manufacturing issues (such as process and
temperature variations) have been taken into consideration.
The paper also discussed a number of examples for each
of the classes and presented the published power reduction
numbers reported by their respective papers. A summary of
these numbers has been listed along with the trade-offs in
performance and/or area overhead incurred as a result.

Acknowledgments
This work is carried out under the BENEFIC project (CA505),
a project labelled within the framework of CATRENE, the
EUREKA cluster for Application and Technology Research
in Europe on NanoElectronics.

6. REFERENCES
[1] Y. B. Kim, Challenges for Nanoscale MOSFETs and

Emerging Nanoelectronics, Trans. On Electrical and
Electronic Materials, vol. 11, pp. 93-105,2010.

[2] S. H. Fuller and L. I. Millett, The Future of Computing
Performance: Game Over or Next Level?, The National
Academy of Sciences, 2011.

[3] L. Spracklen and S. G. Abraham, Chip Multithreading:
Opportunities and Challenges, in HPCA, pp. 248-252, 2005.

[4] H. Esmaeilzadeh, et. al, Dark Silicon and the End of Multicore

Scaling, in ISCA, vol. 46, pp. 5âĂŞ26, 2011.
[5] V. Venkatachalam and M. Franz, Power Reduction Techniques

for Microprocessor Systems, ACM Computing Surveys, vol.
37, no. 3, pp. 195-237, 2005.

[6] F. Gao and J. P. Hayes, ILP-based optimization of sequential
circuits for low power, in ISLPED, pp. 140-145, 2003.

[7] K. Ghose, B. Kamble, Reducing power in superscalar processor
caches using subbanking, multiple line buffers and bit-line
segmentation, in ISLPED, Pages 70-75, 1999.

[8] J. Hu, et. al, Using Dynamic Branch Behavior for
Power-efficient Instruction Fetch, in ISVLSI, pp. 127-132,
2003.

[9] S. N. Kim, et. al, Drowsy Instruction Caches: Leakage Power
Reduction Using Dynamic Voltage Scaling and Cache
Sub-bank Prediction, in MICRO, pp. 219-230, 2002.

[10] A. Buyuktosunoglu, et. al, An Adaptive Issue Queue for
Reduced Power at High Performance, Proc. of the Inter.
Workshop on Power-aware Computer Systems, pp. 25-39, 2001.

[11] J. Ebergen, J. Gainsley, and P. Cunningham, Transistor sizing:
How to control the speed and energy consumption of a circuit,
Proc. of the Inter. Symp. on Asynchronous Circuits and
Systems, pp. 51-61, 2004.

[12] H. Kojima, S. Tanaka, and K. Sasaki, Half-Swing Clocking
Scheme for 75% Power Saving in Clocking Circuitry, in
JSSC, vol. 30, no. 4, pp. 432-435, 1995.

[13] E. Kursun, S. Ghiasi, and M. Sarrafzadeh, Transistor Level
Budgeting for Power Optimization, in ISQED, pp. 116-121,
2004.

[14] A. Sultania, D. Sylvester, and S. Sapatnekar, Transistor and
Pin Reordering for Gate Oxide Leakage Reduction in Dual
Tox circuits, in ICCD, pp. 228-233, 2004.

[15] K. Banerjee and A. Mehrotra, Global interconnect warming,
IEEE Circuits and Devices Magazine, pp. 16-32, 2001.

[16] M. Stan and W. Burleson, Bus-invert coding for low-power
i/o, in TVLSI, pp. 49-58, 1995.

[17] H. Zhang, J. Rabaey, Low-swing interconnect interface
circuits, in ISLPED, pp. 161-166, 1998.

[18] C. N. Taylor, S. Dey, and Y. Zhao, Modeling and Minimization
of Interconnect Energy Dissipation in Nanometer
Technologies, in DAC, pp. 754-757, 2001.

[19] B. Victor and K. Keutzer, Bus encoding to prevent crosstalk
delay, in ICCAD, pp. 57-63, 2001.

[20] K. N. Patel and I. L. Markov, Error correction and crosstalk
avoidance in dsm busses, Proc. of ACM Inter. Workshop on
System-Level Interconnect Prediction, pp. 9-14, 2003.

[21] W. B. Jone, et. al, Design theory and implementation for
low-power segmented bus systems, in TODAES, vol. 8, issue
1, pp. 38-54, 2003.

[22] B. Biship, M. .J .Irwin, Databus Charge Recovery: Practical
Considerations, In ISLPED, pp. 85-87, 1999.

[23] M. Wirnshofer, et. al, A Variation-Aware Adaptive Voltage
Scaling Technique based on In-Situ Delay Monitoring, in
DDECS, pp. 261-266, 2011.

[24] T. Chan, et. al, DDRO: A Novel Performance Monitoring
Methodology Based on Design-Dependent Ring Oscillators,
in ISQED, pp. 633-640, 2012.

[25] T. Chan and A. B. Kahng, Tunable Sensors for Process-Aware
Voltage Scaling, in ICCAD, pp. 7-14, 2012.

[26] J. Lee, B. G. Nam, and H. J. Yoo, Dynamic Voltage and
Frequency Scaling (DVFS) Scheme for Multi-Domains Power
Management, in ASSCC, pp. 360-363, 2007.

[27] B. Lin, et. al, User and Process-Driven Dynamic Voltage and
Frequency Scaling, in ISPASS, pp. 11-22, 2009.

[28] M. Elgebaly and M. Sachdev, Variation-Aware Adaptive
Voltage Scaling System, in TVLSI, vol. 15, no. 5, pp. 560-571,
2007.

[29] T. Yamagishi, et. al, An Area-Efficient, Standard-Cell Based
On-Chip NMOS and PMOS Performance Monitor for Process
Variability Compensation, Proc. of IEEE Inter. Conf. on Cool
Chips, pp. 1-3, 2012.

[30] M. Bhushan, et. al, Ring Oscillators for CMOS Process
Tuning and Variability Control, in TSM, Vol. 19, No. 1, pp.
10-18, 2006.

[31] K. Kang, et. al, On-Chip Variability Sensor Using
Phase-Locked Loop for Detecting and Correcting Parametric
Timing Failures, in TVLSI, vol. 18, no. 2, pp. 270-280, 2010.

[32] M. Eireiner, et. al, In-Situ Delay Characterization and Local
Supply Voltage Adjustment for Compensation of Local
Parametric Variations, in JSSC, vol. 42, no. 7, pp.
1583-1592, 2007.

[33] Y. Ikenaga, et. al, A 27% Active-Power-Reduced 40-nm
CMOS Multimedia SoC with Adaptive Voltage Scaling Using
Distributed Universal Delay Lines, in JSSC, vol. 47, no. 4,
pp. 832-840, 2012.

[34] TD. Burd, T. Pering, A. Stratakos, and R. Brodersen, A
dynamic voltage scaled microprocessor system, in ISSCC, pp.

294 âĂŞ 295, 2000.
[35] J. Kim and M. A. Horowitz, An efficient digital sliding

controller for adaptive power-supply regulation, in IJSSC,
vol. 37, no. 5, pp. 639-647, 2002.

[36] Q. Liu and S. S. Sapatnekar, Capturing Post-Silicon
Variations Using a Representative Critical Path, in TCAD,
vol. 29, no. 2, pp. 211-222, 2010.

[37] L. Xie and A. Davoodi, Representative Path Selection for
Post-Silicon Timing Prediction under Variability, in DAC,
pp. 386-391, 2010.

[38] E. Humenay, D. Tarjan, and K. Skadron, Impact of Process
Variations on Multicore Performance Symmetry, in DATE,
pp. 1-6, 2007.


