
Simultaneous Reconfiguration of Issue-width and
Instruction Cache for a VLIW Processor

Fakhar Anjam and Stephan Wong
Computer Engineering Laboratory

Delft University of Technology
Mekelweg 4, 2628CD, Delft

The Netherlands
Email: {F.Anjam, J.S.S.M.Wong}@tudelft.nl

Luigi Carro, Gabriel L. Nazar, and Mateus B. Rutzig
Instituto de Informatica

Universidade Federal Do Rio Grande Do Sul
Av. Bento Gonalves, 9500 - Campus do Vale - Bloco IV

Bairro Agronomia - Porto Alegre - RS - Brasil
Email: {carro, glnazar, mbrutzig}@inf.ufrgs.br

Abstract—This paper presents an analysis on the impact of
simultaneous instruction cache (I-cache) and issue-width recon-
figuration for a very long instruction word (VLIW) processor.
The issue-width of the processor can be adjusted at run-time to
be 2-issue, 4-issue, or 8-issue, and the I-cache can be reconfigured
in terms of associativity, cache size, and line size. We observe that,
compared to reconfiguring only the I-cache for a fixed issue-width
core, reconfiguring the issue-width and I-cache together can
further reduce the execution time, energy consumption, and/or
the energy-delay product (EDP). The results for the MiBench
and the PowerStone benchmark suites show that compared to “2-
issue + the best I-cache”, “4-issue + the best I-cache” can reduce
execution time, energy consumption, and EDP by up to 37%,
11%, and 36%, respectively, for different applications. Similarly,
compared to “2-issue + the best I-cache”, “8-issue + the best
I-cache” can reduce execution time and EDP by up to 46% and
30%, respectively, for different applications.

I. I NTRODUCTION

Increasing the issue-width for a VLIW processor increases
the performance for applications with inherent instruction
level parallelism (ILP). Figure 1 presents the instructions per
cycle (IPC) for some applications from different benchmark
suites (MiBench [1], PowerStone [2]) for 2-issue, 4-issue,
and 8-issue VLIW processors with a single load/store unit.
As depicted in the figure, the IPC increases with the issue-
width for applications with more ILP. Specializing a cache
for a processor may improve the performance or energy
consumption for one benchmark, but may perform poorly
across others [3]. Studies have shown that more than half
of the chip die is reserved for the on-chip caches and that
the energy consumption in cache systems accounts for more
than 50% of the total energy consumption [2][4][5][6][7].
Table I presents the instruction cache parameters for some

0
0,5

1
1,5

2
2,5

3

Bitcount Susan 
smoothing

Rijndael 
encode

Rijndael 
decode

SHA ADPCM 
decode

DES Pocsag Hamming Moving 
filter

IP
C

2-issue 4-issue 8-issue

Fig. 1. Instructions per cycle (IPC) for different applications [1][2].

commercial/research VLIW processors. As can be observed,
there is a wide variation across different cache parameters
(associativity, cache size, and line size). Compared to having a
fixed cache, reconfiguring the cache for a processor at run-time
can reduce the execution time, energy consumption, and/or
the EDP across different benchmarks [3][5][7][8][9][10][11].
Compared to reconfiguring only the cache, reconfiguring the
“issue-width + cache” can further improve the execution time,
energy consumption, and/or the EDP.

In this paper, we study the impact of I-cache reconfiguration
on the performance, dynamic energy consumption, and the
EDP when the issue-width of a VLIW processor is changed.
We define the EDP as the product of energy consumed per
application and the total execution cycles. When the issue-
width is changed, a different schedule is followed by the
compiler and a different request for instructions and data
is generated. Since this request determines the performance,
energy consumption, and the EDP, we analyze how this request
can be better fulfilled by tuning the available I-cache. The
fundamental question to answer here is: given reconfigurable
processors, does it makes sense to perform I-cache reconfigu-
ration? In particular, we try to answer the following questions:

• Given an I-cache configuration, is there a processor con-
figuration (issue-width) that reduces the execution time
and/or energy consumption?

• Given a processor configuration (issue-width), is there
an I-cache configuration that reduces the execution time

TABLE I
TYPICAL INSTRUCTION CACHE PARAMETERS FOR SOME FAMOUSVLIW

PROCESSORS.

Processor Issues Assoc. Size
(Kbytes)

Line size
(bytes)

TriMedia TM32A 5 8 32 64
TriMedia TM3270 5 8 64 128

TMS320C611 8 1 4 64
ST231 4 1 32 64
ST240 4 4 32 64

Transmeta TM5400 5 8 64 -
Fujitsu FR450 2 2 32 32

CoreVA 4 1 16 64



and/or energy consumption?
• Given a set of processor configurations (issue-widths),

and assuming that one will reconfigure them for perfor-
mance, is there an I-cache configuration that reduces the
energy consumption for the same execution time?

We present a design and analysis where both the issue-width
and the I-cache can be reconfigured simultaneously. Notice
that if different “issue-width + I-cache” configurations have
the same execution times, but reduced energy consumptions
or vice versa, it may be beneficial to reconfigure the core issue-
width, the cache, or both. We analyze different “issue-width
+ I-cache” configurations. We designed and implemented aρ-
VEX VLIW processor that can be configured to be 2-issue, 4-
issue, or 8-issue at run-time. The unused issue-slots are clock-
gated to reduce dynamic power consumption of the processor.
We considered an instruction cache that can be reconfigured
in terms of associativity, total cache size, and line size. We
utilized the VEX simulator [12] to simulate different “issue-
width + L1 I-cache” configurations. For energy calculation,we
utilized the CACTI [13] and the Synopsis Design Compiler for
a 90nm technology. We utilized the MiBench [1], PowerStone
[2], and custom (16 small applications/kernels from different
domains) benchmark suites. We found that given a processor
configuration (issue-width), there is always an optimum I-
cache configuration which performs better in terms of energy
consumption, execution time, and/or the EDP compared to
other cache configurations. Additionally, we found that, com-
pared to tuning only the I-cache for a fixed issue-width core,
tuning the “issue-width + I-cache” has more potential to reduce
the energy consumption, execution time, and/or the EDP for
different applications. The results show that compared to “2-
issue + the best I-cache”, “4-issue + the best I-cache” can
reduce execution time, energy consumption, and EDP by up
to 37%, 11%, and 36%, respectively, for different applications.
Comparing “2-issue + the best I-cache”, to “8-issue + the best
I-cache”, execution time and EDP can be reduced by up to
46% and 30%, respectively, for different applications.

The remainder of the paper is organized as follows. Mo-
tivations for the paper are presented in Section II. Section
III discusses some related work. Our reconfigurable issue-
width VLIW processor and instruction cache, configuration
parameters, and experimental setup are presented in Section
IV. Section V presents in detail the experimental results and
analysis. Finally, Section VI concludes the paper.

II. M OTIVATIONS

Instruction cache reconfiguration plays an important role in
the performance, energy consumption, and EDP for different
applications. Figure 2 depicts the execution cycles, dynamic
energy consumption, and EDP when the size of a direct-
mapped I-cache with 16 bytes line size is changed from 4
Kbytes to 32 Kbytes for the ADPCM encode and the Susan
edges applications from the MiBench benchmark suite. The
issue-width of the core is kept fixed at 2. As depicted in the
figure, the execution cycles for the Susan edges decrease with
increasing the I-cache size, while that for the ADPCM encode

remains almost the same. The reason is the decrease in the
number of cache misses for the Susan edges. The cache size
has no effect on the cache misses for the ADPCM encode.
Normally, a larger cache consumes larger energy per access,
hence, for the ADPCM encode, the energy consumption in-
creases with increasing the cache size, as the number of misses
remains the same. For the Susan edges, although the per-access
energy increases with the larger cache size, but the number
of misses reduces, hence, the dynamic energy consumption
reduces with increasing the cache size. It is to be noted that
compared to a cache hit, the energy consumption due to a
cache miss is much higher. The result is that the EDP for the
Susan edges decreases with increasing the I-cache size while
that for the ADPCM encode increases.

Instead of reconfiguring only the I-cache, reconfiguring both
the “issue-width + I-cache” can further improve the perfor-
mance, energy consumption, and the EDP. Figure 3 depicts
execution cycles, speedup, dynamic energy consumption, and
EDP for the Rijndael decode application for a direct-mapped
I-cache with varying cache size and line size for 2-issue and
4-issue VLIW processors. As depicted in the figure, changing
the cache parameters changes the execution cycles for both the
2-issue and 4-issue cores. Compared to the 2-issue, the 4-issue
core always performs better in terms of execution cycles forall
of the cache configurations. The 4-issue core performs better
up to 1.5x compared to the 2-issue core for a properly tuned
I-cache. As depicted in the figure, considering a fixed cache
line size (16 or 32 bytes), the energy consumption varies for
the 2-issue and 4-issue cores with varying cache sizes (4 to 32
Kbytes). The energy consumption also varies with line size for
a fixed cache size. For the same cache parameters, the energy
also varies for the 2-issue and 4-issue cores. Similarly, the
EDP varies largely with varying the “issue-width + I-cache”
configurations. Hence, by properly tuning the “issue-width+

0

5

10

15

20

25

30

C
yc

le
s 

(M
ill

io
n

s)

ADPCM encode Susan edges

0

0.5

1

1.5

2

2.5

E
n

er
g

y 
(m

J)

0

10

20

30

40

50

60

4 8 16 32
Cache size (Kbytes)

E
D

P
 (

M
ill

io
n

s)

Fig. 2. Impact of cache size reconfiguration on execution cycles, dynamic
energy consumption, and EDP for a direct-mapped instruction cache with 16
bytes line size for a 2-issue processor.



2-issue 4-issue

0
0,1
0,2
0,3
0,4
0,5
0,6
0,7
0,8
0,9
1

4 8 16 32 4 8 16 32
16 32

Cache size (Kbytes) and line size (bytes)

E
D

P
 c

o
m

p
a
re

d
 

to
 2

-i
s
s

u
e

 c
o

re

0
25
50
75

100
125
150
175
200
225
250

C
y
c

le
s
 (

M
il
li
o

n
s
)

0
0,2
0,4
0,6
0,8

1
1,2
1,4
1,6

S
p

e
e
d

u
p

 c
o

m
p

a
re

d
 

to
 2

-i
s
s

u
e

 c
o

re

0
2
4
6
8

10
12
14
16
18
20

E
n

e
rg

y
 (

m
J
)

300

Fig. 3. Dynamic energy consumption, execution cycles, speedup, and EDP
for the Rijndael decode.

I-cache” parameters in Fig. 3, the execution cycles and the
EDP can be reduced by up to 33% and 40%, respectively, in
the case of the best/optimal configurations.

III. R ELATED WORK

The impact of cache parameters such as total size, line
size, associativity, replacement policies, etc., on performance
and energy consumption for different levels of caches (L1
and L2) has been widely reported. A reconfigurable cache
memory with heterogeneous banks to reduce the cache size
and hence the power consumption at run-time is presented
in [14]. Reconfigurable aspects of the cache system for the
TMS320C6211 processor are discussed in [15]. The 4-way
unified L2 cache can be used as either mapped RAM or as
1, 2, 3, or 4 ways cache. Each way or bank is 16 Kbytes. A
reconfigurable data cache design with a hardware-adaptive line
size for miss rate and memory traffic reduction is presented
in [8]. The paper does not discuss energy consumption.

Selective cache ways [5] provides the ability to disable a
subset of the ways in a set-associative cache to reduce the
energy consumption for little performance overhead. A mech-
anism for tuning cache ways and voltage scaling for embedded
system platforms to reduce energy consumption is presentedin
[16]. Way predictive set-associative caches [10][17] provides
the ability to reduce energy consumption at the expense of
longer average access time. The design presented in [11]
dynamically divides the cache arrays into multiple partitions
that can be used for different processor activities to increase
the performance. A novel set and way management cache ar-
chitecture for efficient run-time reconfiguration (Smart cache)

is presented in [18], providing reconfigurability across cache
size and associativity. A hybrid selective-sets-and-wayscache
organization is proposed in [19] that always offers equal or
better resizing granularity than both of the selective-sets and
selective-ways organizations. The impact of line size on energy
consumption and performance for instruction and data caches
is presented in [9]. Designs of configurable caches where all
the three parameters (associativity, cache size, and line size)
can be configured are presented in [7][20]. It must be noted
that all these papers present results for cache configurations
with fixed issue-width processors.

Superscalar and VLIW are two main architectures that can
exploit ILP. A superscalar processor determines the active
issue-width at run-time by resolving dependencies among the
in-flight instructions. A VLIW processor considers a fixed
issue-width at compile time and then splits the incoming long
instruction among the available functional units (FUs) at run-
time, greatly simplifying the hardware and reducing the energy
consumption [21]. The commonly used commercial VLIW
processors such as the TriMedia series from NXP, ST231 from
STMicroelectronics, TMS320C611 from Texas Instruments,
Crusoe from Transmeta, and the FRxxx series from Fujitsu
all utilize a fixed issue-width. Reconfiguring the issue-width
at run-time improves the performance of applications with
higher ILP. Core fusion [22], TRIPS [23] and Voltron [24]
combine small cores and the on-chip memory to make larger
issue-width cores at run-time to exploit the instruction, data,
or thread-level parallelism. Smart memories [25] is a recon-
figurable architecture capable of merging in-order RISC cores
to form a VLIW machine. All these papers present results for
performance/speedup for the available configurations of the
system but do not discuss the energy consumption.

Our reconfigurable issue-width processor design [26] is
based on theρ-VEX VLIW processor [27], having small 2-
issue in-order cores that can morph at run-time to make a
larger issue-width core to exploit ILP. The processor issue-
width can be configured to be 2-issue, 4-issue, or 8-issue
at run-time. We consider a wide range of run-time I-cache
configurations (associativity, cache size, and line size) for our
adaptable issue-width processor. This paper analyzes the per-
formance and energy benefits of simultaneous reconfiguration
of issue-width and I-cache for our VLIW processor.

IV. T HE RECONFIGURABLEPROCESSOR AND

INSTRUCTIONCACHE

In this section, we present the design and configuration
parameters for our reconfigurable VLIW processor and in-
struction cache. In this paper, we present results only for
instruction cache, hence, in the remainder of the paper, the
word cache or I-cache is referring to an instruction cache.

A. The VEX System: ISA and Toolchain

The VEX (VLIW Example) instruction set architecture
(ISA) is a 32-bit clustered VLIW ISA that is scalable and
customizable to individual application domains developedby
Hewlett-Packard (HP) and STMicroelectronics [28]. The ISA



is scalable because different parameters, such as the number
and type of functional units (FUs), number of registers, and
different latencies can be changed. The ISA is customizable
because custom instructions can be added. The VEX ISA is
loosely modeled on the ISA of the HP/ST Lx (ST200) family
of VLIW embedded cores [29]. Based on trace scheduling,
the VEX C compiler is a parameterized ISO/C89 compiler. A
flexible programmable machine model determines the target
architecture, which is provided as input to the compiler. A
VEX software toolchain including the VEX C compiler and
the VEX simulator is made freely available by the Hewlett-
Packard Laboratories [12].

B. Theρ-VEX Reconfigurable VLIW Processor

The ρ-VEX is a configurable (design-time) open-source
VLIW softcore processor [27]. The ISA is based on the
VEX ISA [28]. Different parameters of theρ-VEX processor,
such as the number and type of FUs, number of multi-
ported registers (size of register file), number and type of
accessible FUs per syllable, width of memory buses, and
different latencies can be changed at design time. Figure 4
depicts the organization of a 2-issueρ-VEX processor. The
processor is a 5-stage pipelined processor consisting offetch,
decode, execute0, execute1/memory, andwritebackstages. The
available functional units arearithmetic logic unit (ALU),
multiplier unit (MUL), branch or control unit(CTRL), and
load/store or memory unit(MEM). The processor has a
64×32-bit multiported general-purpose register file (GR) and
an 8×1-bit multiported branch register file (BR).

C. The Run-time Adjustable Issue-slots Processor

In [26], we designed and implemented a run-time reconfig-
urable processor utilizing 2-issueρ-VEX cores. This processor
has four 2-issueρ-VEX cores as depicted in Fig. 4. Multiple
2-issue cores can be combined at run-time to make a larger
issue-width core. With the four 2-issue cores, we can have a
VLIW processor at run-time of the following type:

• 2-issue
• 4-issue or
• 8-issue

Figure 5 depicts the general view of the run-time adjustable
issue-slots VLIW processor. There are different functional
units and their type and composition can be changed. We
adjusted the design presented in [26] for the analysis in this

Instruction
Cache

Data
Cache

DecodeFetch WritebackExecute0/1

GR CTRL

BR MEM

ALU

MULPC

ALU

MUL

Fig. 4. A 2-issueρ-VEX VLIW processor.

Data 
Cache

4-issue core

2-issue core

2-issue core

Reconfigurable 
Instruction 

Cache

2-issue core

2-issue core

8-issue core

Cache 
Configuration 

Register

Processor 
Configuration 

Register

Fig. 5. General layout of the run-time adjustable issue-slots VLIW processor.

paper. The adjusted processor consists of 8 ALUs, maximum
of 4 multipliers (MULs), one branch unit (CTRL), and one
load/store (MEM) unit. The 2-issue, 4-issue, and 8-issue cores
can use 2 ALUs and 2 MULs, 4 ALUs and 4 MULs, and 8
ALUs and 4 MULs, respectively. From profiling results of
the considered benchmarks, we determined that increasing the
number of MULs from 4 in case of the 8-issue core has no
effect on performance; hence we kept the maximum number of
MULs to 4. The processor has a 64×32-bit multiported register
file with 8-write-16-read (8W16R) ports. The register ports are
distributed among the 8 issue-slots in order to provide access
to the unified registers as required by the ISA. The issue-
slots reconfiguration is accomplished through a configuration
register. Two bits in the configuration register control theissue-
width of the processor. When theissue ctrl bits are “00”,
the system behaves as a 2-issue processor, when “01”, the
system behaves as a 4-issue processor, and when “1x”, the
system behaves as an 8-issue processor. The issue-width is
changed in a single cycle. Additionally, theissue ctrl bits are
used to clock gate the unused functional units and parts of the
processor system to reduce the dynamic power consumption.
The 2-issue, 4-issue, and 8-issue core can issue a VLIW
instruction consisting of 2, 4, and 8 RISC-style operations,
respectively, every cycle.

Currently, our processor supports only single-tasking com-
putation. Multitasking or multi-threading support is not avail-
able. When an application starts executing, it is allowed to
finish completely and then a new application is started. Hence,
we do not need any complex mechanisms for task preemption,
and the design becomes very simple. The processor issue-
width can be reconfigured in a single cycle whenissue ctrl bits
are written to the configuration register. The reconfiguration is
needed per application basis. The request to change the issue-
width remains pending until the currently running application
finishes execution. The request to change the issue-width for
the new application can be placed in the currently running code
or it can be placed in the start of the new application. This
request is placed in a custom operation that writesissue ctrl
bits to the configuration register. When the configuration
register is written, the processor reconfigures the issue-width.

Our processor can be configured to be 2-issue, 4-issue, or
8-issue with different number of load/store (LS) units, butfor
this paper, we kept the number of LS units to be 1 for every



type of our processor issue-width. The reason is that we do
not want to include the discussion about the data cache and
only focus on the instruction cache. When the number of LS
units is increased, the number of data words loaded/stored per
cycle can be increased which can improve the performance of
certain applications. We consider a single LS unit so that the
energy due the data cache remains the same for every type of
processor issue-width.

D. The Reconfigurable Instruction Cache

Our reconfigurable I-cache architecture includes three pa-
rameters: cache associativity, cache size, and line size. Ac-
cording to Table I, there is a wide variation across the cache
parameters, therefore, we utilized the following parameters for
our reconfigurable cache:

• Cache associativity: 1/2/4/8 ways
• Cache size: 4/8/16/32 Kbytes
• Cache line size: 16/32/64 bytes

In our system, the total cache (in all parameters) is available
to all types of the configured issue-width cores. In this
analysis, we only discuss the dynamic energy. We calculate
the energy according to [20] which takes into account the
energy consumption from the complete instruction memory
hierarchy including the external memory. The architectureof
our reconfigurable cache is also based on [20]. Following are
the 3 cache parameters and their methods of reconfiguration.

1) Cache Associativity; Way Concatenation:For reconfigu-
ration of cache associativity, the way concatenation technique
is used [20]. The base cache includes eight banks that can
operate as eight ways. By writing to the configuration register,
the ways can be effectively concatenated, resulting in either a
four-way, two-way, or direct-mapped 32 Kbytes cache.

2) Cache Size; Way Shutdown:For reconfiguration of cache
size, the way shutdown technique is used. With way shutdown,
the 32 Kbytes 8-way cache can be reconfigured as a 16 Kbytes
cache that can be either 4-way, 2-way or direct mapped, an 8
Kbytes cache that can be either 2-way or direct mapped, or a
4 Kbytes direct mapped cache.

3) Cache Line Size; Line Concatenation:For reconfigu-
ration of line size a base physical line size of 16 bytes is
implemented, with larger line sizes implemented logicallyas
multiple physical lines [20]. By writing to the configuration
register, line size can be reconfigured as 16, 32, or 64 bytes.

E. Characteristics of the Instruction Cache Design

The I-cache can be reconfigured at run-time by writing a
small number of bits in the cache configuration register. The
cache reconfiguration can be done in a single cycle after the
configuration register is written. Because our processor does
not support multi-tasking, the cache reconfiguration is required
only when application changes. There is no need for cache
flushing, no reconfiguration overhead, and hence, the cache
reconfiguration time is reduced. The cache design is simple as
no complex cache flushing logic is needed. Applications are
profiled statically utilizing the available issue-width and cache
parameters, and the best cache for a particular issue-width

can be selected based on energy consumption, performance,
or EDP metrics. In our case, the best/optimal cache for a
particular issue-width and application is a cache with optimal
performance and reasonable energy consumption. Information
about the best configuration (issue-width + I-cache) can be
stored in a program executable, which are written to the issue-
width and cache configuration registers, and the issue-width
and the cache can be reconfigured before the application starts
execution. We do not need any run-time methods and policies
for reconfiguration of the processor and the cache, as we
reconfigure the system per application basis, and we can do
static profiling in order to determine the best configurations.

F. Experimental Setup and Benchmark Applications

We utilized the VEX toolchain [12] which includes a
parameterized C compiler and a simulator. The compiler
reads a machine configuration file and then compiles and
schedules the code according to the machine specifications.
For our analysis, there are 48 I-cache configurations and 3
issue-width configurations; hence the total search space for
each application is 144 “issue-width + I-cache” configura-
tions. The simulator generates an extensive log file containing
different information, such as total memory accesses, total
misses, execution cycles, stall cycles, function profiles etc.
For energy calculation, we utilized CACTI [13] and Synopsis
Design Compiler and targeted 90nm technology. We utilized
the MiBench [1], PowerStone [2], and custom benchmark
suites for the analysis. The custom benchmark suite includes
the following 16 small applications/kernels from different
domains: discrete cosine transform (DCT), discrete Fourier
transform (DFT), finite impulse response filters (FIR), Floy-
dwarshall graph, Hamming distance, Huffman compression
and decompression, inverse discrete cosine transform (IDCT),
matrix multiply, moving filter, run length encoding (RLE),
different sorting applications such as bubblesort, quicksork,
radixsort, and shellsort. Due to the space limit, we cannot
present results for all of the benchmark applications.

G. Energy Calculation

To calculate dynamic energy consumption in I-cache, we
utilized CACTI [13] and targeted 90nm technology. We
obtained energy per access for all of the cache configurations
with CACTI. We then calculated the total cache energy
consumption taking into account both the hit and miss
energies with the following equation:

Cache Energy = Accesses ∗ Energy/access + Misses ∗
Energy/miss

= Accesses ∗ Energy/access + Misses ∗
Kmiss ∗ Energy/access

= (Accesses + Kmiss ∗ Misses) ∗
Energy/access (1)

Kmiss is a factor representing a multiple of the cache
hit energy consumption. According to [20] which takes into
account the energy consumption from the complete instruction



memory hierarchy including the external memory, the value of
Kmissranges from 50 to 200. For this paper, we consider the
Kmissto be 50. We utilized the VEX toolchain [12] to simulate
all the benchmark applications. Each application is simulated
144 times to generate total memory accesses, cache hits, cache
misses, and execution cycles statistics for the 144 “issue-width
+ I-cache” configurations. Using equation (1), we calculated
the I-cache energy consumption for each application with 144
different configurations. The cache energy/access is obtained
from CACTI for each cache configuration.

For calculating energy consumption in the processor, we
utilized the Synopsis Design Compiler (Synthesis-E-2010.12-
SP1) to get the power consumption for 90nm technology. We
kept the working frequency at 100 MHz. We then calculated
the processor energy consumption for all applications with
the following equation:

Processor Energy = Power consumed ∗ Cycle time ∗
Execution cycles (2)

The total energy consumption and energy-delay product
(EDP) are calculated with the following equations:

Total Energy = Processor Energy + Cache Energy
(3)

EDP = Total Energy ∗ Execution cycles (4)

Execution cycles, TotalEnergy, and EDP for each bench-
mark application with 144 different “issue-width + I-cache”
configurations are calculated and then analyzed in Section V.

V. RESULTS AND ANALYSIS

As stated earlier, when the issue-width is changed, a
different schedule is followed by the compiler and a different
request for instructions and data is generated. Since this
request determines the performance, energy consumption,
and EDP, we analyze how this request can be better fulfilled
by tuning the available cache parameters. In this paper, we
investigate the following question: given several different
cache configurations with same energy consumption for
different processor configurations, is it possible that different
programs run with less execution time or given several
different cache configurations with same execution time for
different processor configurations, is it possible that different
programs run with less energy consumption. In order to
analyze this question, we study three types of reconfiguration
for our system:

1) Reconfiguration of issue-width with respect to I-cache
2) Reconfiguration of I-cache with respect to issue-width
3) Reconfiguration of both the issue-width and the I-cache

A. Reconfiguration of Issue-width with respect to I-cache

Changing the I-cache configuration for any core configu-
ration (issue-width) affects the memory accesses and miss/hit

rates. These parameters have a direct influence on the applica-
tion’s performance, energy consumption, and hence the EDP.
Similarly, changing the issue-width for a cache configuration
also impacts these parameters. Figure 6 presents an analysis
for 3 applications; Basicmath, ADPCM decode (D-adpcm),
and Rijndael encode (E-rijndael) for the 3 configurations ofour
processor issue-width with varying the I-cache configurations.
Here, 1W8KB16B means a cache with 1 way associativity, 8
Kbytes total size, and 16 bytes line size. This is the base cache.
We vary the cache in all its three parameters, i.e., doublingthe
size, the line size, and the associativity. The first graph inFig. 6
depicts the speedup normalized to “2-issue core + 1W8KB16B
I-cache” configuration. Focusing at the Basicmath application,
we can observe that there is no effect of changing the issue-
width; hence, for all issue-widths, the speedup is similar at
varying I-cache configurations. We can observe that for any
issue-width configuration, varying the I-cache configuration
does vary the performance as well as the energy consumption,
but this change remains same across all the issue-widths. When
any of the execution time or energy consumption changes, the
EDP changes accordingly.

Focusing at the D-adpcm application, we can observe that
varying the I-cache configurations has no effect on the speedup
for different issue-width configurations. The speedup increases
only with the issue-width reconfiguration. On the other hand,
the energy consumption varies with the issue-width and hence
the EDP. Considering the Rijndael encode application, we
can observe that both the issue-width and the I-cache con-
figurations impact the performance and energy consumption.
The “8-issue + 1W8KB32B I-cache” results in the highest
performance, the least energy consumption, and hence the least
EDP. This shows that the issue-width reconfiguration becomes
necessary in certain cases to reduce the execution time and/or
the energy consumption.

B. Reconfiguration of I-cache with respect to Issue-width

In this case, we study and analyze the effect of varying the
I-cache configurations on the core’s issue-width configuration.
Figure 7 depicts the impact of I-cache reconfiguration on

0
0,5

1
1,5

2
2,5

S
p

ee
d

u
p

0
20
40
60
80

100
120

E
n

er
g

y 
(m

J)

0
0,2
0,4
0,6
0,8

1
1,2
1,4
1,6
1,8

ba
si

cm
at

h

D
-a

dp
cm

E
-r

ijn
d

ae
l

ba
si

cm
at

h

D
-a

dp
cm

E
-r

ijn
da

el

ba
si

cm
at

h

D
-a

dp
cm

E
-r

ijn
d

ae
l

ba
si

cm
at

h

D
-a

dp
cm

E
-r

ijn
d

ae
l

1W8KB16B 1W16KB16B 1W8KB32B 2W8KB16B

E
D

P

2-issue 4-issue 8-issue

Fig. 6. Impact of issue-width with respect to I-cache; speedup, energy, and
EDP normalized to 2-issue and 1W8KB16B I-cache.



0
1
2
3

s
p

e
e
d

u
p

0
0.2
0.4
0.6
0.8
1

1.2

E
n

e
rg

y
 

n
o

rm
a
li
ze

d

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

1
W

4
K

B
1
6
B

1
W

8
K

B
1
6
B

1
W

1
6
K

B
1
6
B

1
W

3
2
K

B
1
6
B

1
W

3
2
K

B
1
6
B

1
W

3
2
K

B
3
2
B

1
W

3
2
K

B
6
4
B

1
W

3
2
K

B
1
6
B

2
W

3
2
K

B
1
6
B

4
W

3
2
K

B
1
6
B

1
W

4
K

B
1
6
B

1
W

8
K

B
1
6
B

1
W

1
6
K

B
1
6
B

1
W

3
2
K

B
1
6
B

1
W

3
2
K

B
1
6
B

1
W

3
2
K

B
3
2
B

1
W

3
2
K

B
6
4
B

1
W

3
2
K

B
1
6
B

2
W

3
2
K

B
1
6
B

4
W

3
2
K

B
1
6
B

Patricia Pocsag

E
D

P
 n

o
rm

a
li
ze

d

2-issue 4-issue 8-issue

Fig. 7. Impact of I-cache on issue-width; speedup, energy andEDP for
2-issue, 4-issue, and 8-issue cores with varying I-cache normalized to own
issue-width with 1W4KB16B I-cache.

the issue-width. We consider an I-cache of 1W32KB16B
that is varied in different dimensions. The first, second, and
third cache sets are 1W(4-8-16-32)KB16B (varying cache
size), 1W32KB(16-32-64)B (varying line size) and (1-2-
4)W32KB16B (varying the associativity), respectively. The
speedup, energy, and EDP for each issue-width configuration
are normalized to that of the “own issue-width + the smallest
I-cache” configuration. The smallest I-cache in the considered
caches is 1W4KB16B.

Considering the Patricia application, when the cache is
varied for each type of the issue-width in the first cache
set, the speedup, energy consumption, and EDP are improved
compared to that of the same issue-width with 1W4KB16B
I-cache. When the cache is varied in the second and third
sets, there is a small variation in the speedup, but there is a
big variation in energy consumption. It must be noted that the

0.5

1

1.5

2

2.5

Bas
icm

at
h

Bitc
ou

nt

Qso
rt

Sus
an

 

co
rn

er
s

Sus
an

 

ed
ge

s
Sus

an
 

sm
oo

thi
ng

JP
EG 

de
co

de JP
EG 

en
co

de
Tiff2

bw

Tiff2
rg

ba

Tiffd
ith

er

Tiffm
ed

ian

C
yc

le
s,

 E
ne

rg
y,

 a
nd

 E
D

P
 

no
rm

al
iz

ed
 to

 2
-is

su
e

Dijk
str

a

Pat
ric

ia
Strin

g 

se
ar

ch

Blow
fis

h 

de
co

de
Blow

fis
h 

en
co

de
Rijn

da
el 

de
co

de
Rijn

da
el 

en
co

de SHA

ADPCM 

de
co

de
ADPCM

 

en
co

de CRC32
FFT

IF
FT

GSM
 

de
co

de GSM 

en
co

de

C
yc

le
s,

 E
ne

rg
y,

 a
nd

 E
D

P
 

no
rm

al
iz

ed
 to

 2
-is

su
e

0.5

1

1.5

2

2.5

3

Cycles-2 Cycles-4 Cycles-8
Energy-2 Energy-4 Energy-8
EDP-2 EDP-4 EDP-8

Fig. 8. Execution cycles, energy consumption, and EDP for the4-issue and
8-issue cores normalized to 2-issue core (all with their bestI-caches) for the
MiBench benchmarks.

0.5

1

1.5

2

2.5

3

ADPCM
Bcn

t
Blit

Com
pr

es
s

CRC
DES

Eng
ine FIR

G3f
ax

JP
EG

Poc
sa

g
Qur

t
V42

C
yc

le
s,

 E
n

er
g

y,
 a

n
d

 E
D

P
 

n
o

rm
al

iz
ed

 t
o

 2
-i

ss
u

e

Cycles-2 Cycles-4 Cycles-8
Energy-2 Energy-4 Energy-8
EDP-2 EDP-4 EDP-8

Fig. 9. Execution cycles, energy consumption, and EDP for the4-issue and
8-issue cores normalized to 2-issue core (all with their bestI-caches) for the
PowerStone benchmarks.

performance does not change with the issue-width; rather it
only changes with varying the cache. In case of the Pocsag
application, performance and energy consumption changes
with varying the I-cache in first and second cache sets for
each issue-width, but there is no effect for the third cache
set, meaning that the associativity has almost no effect on
any issue-width’s execution cycles, energy consumption and
EDP. Hence, we can say that for a fixed issue-width, changing
the I-cache almost always affects the performance, energy
consumption, and/or the EDP. The advantage in our case is that
we can also change the issue-width, which can also produce
some positive effect.

C. Reconfiguration of both the Issue-width and the I-cache

The ability to reconfigure both the issue-width and the
I-cache brings the advantage of both reconfigurations. The
system can be reconfigured for the best performance, the
least energy consumption, or both. Instead of comparing to
a fixed “issue-width + I-cache”, we compare the results for
the 2-issue, 4-issue, and 8-issue cores with their best I-caches
for all of the benchmark applications. In this way, we can
optimize the performance, dynamic energy consumption, and
the EDP for individual applications. Figures 8 – 10 present
the execution cycles, energy consumption, and the EDP for 4-
issue and 8-issue cores with their best I-caches normalizedto

0.5

1

1.5

2

2.5

3

DCT
DFT

FI
R T

yp
e1

FI
R T

yp
e2

Fl
oy

dw
ar

sh
all

Ham
m

ing

Huf
fm

an
 co

m
p

Huf
fm

an
 d
ec

om
p

ID
CT

M
at
rix

 m
ult

ipl
y

M
ov

ing
 fil

te
r

RLE

Bub
ble

so
rt

Quic
ks

or
t

Rad
ixs

or
t

She
lls

or
t

C
y
c
le

s
, 
E

n
e

rg
y
, 
a

n
d

 E
D

P
 

n
o

rm
a
li
ze

d
 t

o
 2

-i
s
s
u

e

Cycles-2 Cycles-4 Cycles-8
Energy-2 Energy-4 Energy-8
EDP-2 EDP-4 EDP-8

Fig. 10. Execution cycles, energy consumption, and EDP for the 4-issue and
8-issue cores normalized to 2-issue core (all with their bestI-caches) for the
custom benchmarks.



that of the 2-issue core with its best I-cache for the MiBench,
PowerStone, and the custom benchmark suites, respectively. In
these figures, the continuous lines are drawn only for clarity
purpose; otherwise the values are only at discrete points. In
general, we observed that switching from 8-issue core to 4-
issue or 2-issue core reduces energy consumption. The main
reason is that the 8-issue core reads a longer instruction (256
bits) per access from the cache while the 4-issue and 2-
issue cores read smaller instructions (128 bits and 64 bits,
respectively) per cache access. Additionally, the 8-issuecore
utilizes more functional units compared to 4-issue and 2-issue
cores. On the other side, switching from 2-issue core to 4-issue
or 8-issue core increases the performance as more operations
can be executed in parallel. In both of these scenarios, the
instruction cache is always tuned to the best configuration for
each issue-width.

From Figures 8 – 10, we can observe that there are some
applications/kernels such as Bitcount, Tiffmedian, ADPCM
decode, DES, DCT, Hamming distance, IDCT, Moving filter,
where the EDP for the 8-issue core with its best I-cache is less
than or equal to that of the 2-issue core with its best I-cache.
For these applications switching from 2-issue to 8-issue core
increases the performance more than the energy consumption
and hence reduces the EDP. The largest reduction in the
EDP is for the DES application, which is about 30%. There
are some applications such as Susan smoothing, Rijndael
decode, Rijndael encode, SHA, JPEG, Pocsag, FIR Type1,
Floydwarshall, Huffman compression, RLE, Shellsort, where,
for a small increase in EDP, one can get more performance
when the issue-width is changed from 2-issue to 8-issue.

Similarly, considering the 4-issue and 2-issue cores with
their best I-caches, we can observe that there are about 29
applications, where the EDP for the 4-issue core is less than
or equal to that of the 2-issue core. These applications are;
11 in MiBench: Bitcount, Susan smoothing, JPEG encode,
Tiffdither, Tiffmedian, Blowfish decode, Rijndael encode and
decode, SHA, ADPCM decode, and GSM encode, 6 in Power-
Stone: ADPCM, Compress, DES, G3fax, JPEG, and Pocsag,
and 12 in custom benchmark suite: DCT, DFT, FIR type1,
Floydwarshall, Hamming, Huffman compression, IDCT, ma-
trix multiply, moving filter, RLE, Radixsort, and Shellsort.
This means that for these applications switching from 2-
issue to 4-issue core increases the performance more than
increasing the energy consumption and hence reduces the EDP.
Compared to “2-issue + the best I-cache”, “4-issue + best I-
cache” reduces the EDP for Tiffmedian, Rijndael decode, and
DES by about 30%, 36%, and 41%, respectively. Additionally,
there are some applications, where with a small increase in
EDP one can get more performance when the issue-width is
changed from 2-issue to 4-issue.

Considering the energy consumption with the best I-caches
for every issue-width, there is no case in the considered
benchmarks, where the 8-issue core consumes less energy than
the 2-issue or 4-issue core. There are some applications such
as Bitcount, Tiffmedian, Rijndael decode, DES, Hamming
distance, where a 4-issue core consumes less energy than

that of the 2-issue core, both with their best/optimal I-caches.
Tiffmedian and DES consume 11% and 6% less energy,
respectively, on a 4-issue core compared to a 2-issue core
both with their best caches. There are many applications such
as Susan smoothing, JPEG encode, Tiffdither, blowfish de-
code, Rijndael decode, SHA, ADPCM decode, GSM encode,
Compress, G3fax, JPEG, Pocsag, DCT, DFT, FIR Type1,
Floydwarshall, Huffman compression, IDCT, Matrix multiply,
Moving filter, RLE, Shellsort, where by switching from a 2-
issue to a 4-issue core (both with their best I-caches) results
in a large performance gain with a small energy increase.

Considering the execution cycles with the best I-caches for
every issue-width, all the considered benchmark applications
perform better with the 8-issue and 4-issue cores compared
to the 2-issue core. Switching from 2-issue to 8-issue core
(both with their best caches) reduces the execution cycles for
Hamming distance, ADPCM decode, and DES by about 36%,
40%, and 46%, respectively. The largest reduction in execution
cycles when switching from a 2-issue to 4-issue core (both
with their best caches) is for the Rijndael decode application
which is about 37%.

Figures 11 and 12 depict some Pareto points for energy
consumption and EDP with same execution cycles at the given
I-cache configurations for the Rijndael encode and ADPCM
decode applications. Here, the execution cycles decreases
with increasing the issue-width, but remains constant for all
the considered caches. Considering Fig. 11 for the Rijndael
encode application, the 2-issue core consumes less energy at
every point compared to the 4-issue and 8-issue cores. As
the execution cycles for the 8-issue core are less than that
for the 2-issue core, the EDP for the 8-issue is lower than
that for the 2-issue core at some points. The 4-issue core
behaves somewhere in between the 2-issue and 8-issue cores.
For the ADPCM decode application in Fig. 12, the 2-issue
core consumes less energy at every point compared to the
4-issue and 8-issue cores. As the execution cycles for the 8-
issue core are less than that for the 2-issue core, the EDP

0

5

10

15

20

25

C
yc

le
s 

(M
ill

io
ns

)

0
1

2
3

4
5
6

E
ne

rg
y 

(m
J)

2-issue 4-issue 8-issue

0
10
20
30
40
50
60
70
80

16 32 16 32 32 16 32 32 32
16 32 64 16 32 16

2 4 8

ED
P

 (M
ill

io
ns

)

Cache size (Kbytes), line size (bytes), and ways

Fig. 11. Pareto points for energy and EDP with same execution cycles at
all I-cache configurations for the Rijndael encode.



10

12

14

16

18

20

22

C
yc

le
s 

(M
ill

io
ns

)

0
0.5

1
1.5

2
2.5

3
3.5

4
4.5

5

En
er

gy
 (m

J)

0
10
20
30
40
50
60
70

4 8 8 16 16 16 32 32 32 8 16 16 32 32 32 16 32 32 32

16 32 16 32 64 16 32 64 16 32 16 32 64 16 32 16

1 2 4 8
Cache size (Kbytes), line size (bytes), and ways

ED
P 

(M
ill

io
ns

)

2-issue 4-issue 8-issue

Fig. 12. Pareto points for energy and EDP with same execution cycles at
all I-cache configurations for the ADPCM decode.

for the 8-issue core is equal to or less than that for the 2-
issue core at some points. The 4-issue core consumes more
energy than that for the 2-issue core, but its execution cycles
are much lower than that for the 2-issue core and slightly
more than that for the 8-issue core, hence, the EDP for the 4-
issue core is lower than that for the 2-issue and 8-issue cores.
Hence, if low power is the main concern, the 2-issue core can
be selected, and if low execution time is the main concern,
the 8-issue core can be selected. For lower EDP, the 4-issue
core can be selected. By including both the issue-width and
I-cache parameters, we increase the Pareto points for energy
consumption and execution time and hence have a broader
range of selection.

Figures 13 – 15 depict percentage variations in energy
consumption, execution cycles, and EDP for the Dijkstra,
Tiffmedian, and GSM encode applications when the issue-
width is changed from 2-issue to 4-issue with different I-
caches. Considering Fig. 13 for the Dijkstra application, when
the issue-width is increased from 2-issue to 4-issue, thereis
a 15% reduction in execution cycles for almost each cache
configuration. The energy consumption and the EDP vary from
1% to 30% and from -18% to 0.2%, respectively. The I-cache

-20

-10

0

10

20

30

P
e
rc

e
n

t 
v

a
ri

a
ti

o
n

8 16 32 8 16 32 16 32 32 16 32 32 16 32 32 32

16 32 64 16 32 64 16 32 16

1 2 4 8

Cache size (Kbytes), line size (bytes), and ways

Energy Cycles EDP

Fig. 13. Percentage variation in energy, cycles, and EDP for4-issue core
compared to 2-issue core with different I-caches for the Dijkstra application.

-40

-30

-20

-10

0

10

20

4 8 8 16 16 32 32 32 8 16 16 32 32 32 16 32 32 32

16 32 16 32 16 32 32 16 32 16 32 32 16 32 16

1 2 4 8

Cache size (Kbytes), line size (bytes), and ways

P
e

rc
e
n

t 
v
a

ri
a

ti
o

n

Energy Cycles EDP

Fig. 14. Percentage variation in energy, cycles, and EDP for4-issue core
compared to 2-issue core with different I-caches for the Tiffmedian.

for which the 4-issue core has the least energy compared to the
2-issue core is selected to be the best “issue-width + I-cache”
configuration. This cache has the least execution cycles andthe
least EDP. Considering Fig. 14 for the Tiffmedian application,
when the issue-width is increased from 2-issue to 4-issue, there
is a 27% reduction in execution cycles for almost each cache
configuration. The energy consumption and the EDP vary from
-11% to 15% and from -35% to -15%, respectively. Similarly,
considering Fig. 15 for the GSM encode application, when
the issue-width is increased from 2-issue to 4-issue, thereis a
20% reduction in execution cycles for almost each I-cache
configuration. The energy consumption and the EDP vary
from -8% to 27% and from -24% to 2%, respectively. Hence,
reconfiguring the issue-width for the same I-cache produces
multiple options to choose from. If energy is the main concern,
the issue-width resulting in lower energy consumption can be
selected. If performance is the prime concern, the issue-width
with the lower execution cycles can be selected.

Figure 16 depicts percentage variations in energy con-
sumption, execution cycles, and EDP for the Rijndael encode
application when the issue-width is changed from 2-issue to
4-issue and 8-issue with different I-caches. When the issue-
width is changed from 2-issue to 4-issue, the execution cycles

-30

-20

-10

0

10

20

30

4 8 8 16 16 16 32 32 32 8 16 16 32 32 32 16 32 32 32

16 32 16 32 64 16 32 64 16 32 16 32 64 16 32 16

1 2 4 8

Cache size (Kbytes), line size (bytes), and ways

P
e
rc

e
n

t 
v

a
ri

a
ti

o
n

Energy Cycles EDP

Fig. 15. Percentage variation in energy, cycles, and EDP for4-issue core
compared to 2-issue core with different I-caches for the GSM encode.



-100

-50

0

50

100

150

4 8 8 16 16 16 32 32 32 8 16 16 32 32 32

16 32 16 32 64 16 32 64 16 32 16 32 64

1 2

Cache size (Kbytes), line size (bytes), and ways

P
e

rc
e
n

t 
v

a
ri

a
ti

o
n

Energy-4 Cycles-4 EDP-4 Energy-8 Cycles-8 EDP-8

Fig. 16. Percentage variation in energy, cycles, and EDP for4-issue and 8-
issue cores compared to 2-issue core with different I-cachesfor the Rijndael
encode.

vary from -30% to -2%, the energy consumption varies from
2% to 34%, and the EDP varies from -26% to 7%. When the
issue-width is increased from 2-issue to 8-issue, the execution
cycles vary from -45% to 0.4%, the energy consumption varies
from -32% to 144%, and the EDP varies from -63% to 145%.
Hence, when the issue-width is included with the I-cache
reconfiguration, the Pareto points for the energy consumption,
execution cycles, and the EDP are increased and a better
configuration of the system can be found.

VI. CONCLUSION

In this paper, we presented an analysis for simultaneous
reconfiguration of issue-width and instruction cache for a
VLIW processor. The issue-width of the processor can be
adjusted at run-time to be 2-issue, 4-issue or 8-issue and the
I-cache can be reconfigured in terms of associativity, cache
size, and line size. With different applications, we showed
that compared to a “2-issue + the best I-cache”, a “4-issue +
the best I-cache” configuration reduces the execution cycles,
energy consumption, and EDP by up to 37%, 11%, and 41%,
respectively, for different applications. Similarly, compared to
a “2-issue + the best I-cache”, an “8-issue + the best I-cache”
configuration reduces the execution cycles and EDP by up to
46% and 30%, respectively, for different applications.

REFERENCES

[1] M.R. Guthaus, J.S. Ringenberg, D. Ernst, T.M. Austin, T.Mudge,
and R.B. Brown, “MiBench: A Free, Commercially Representative
Embedded Benchmark Suite”, inInternational Workshop on Workload
Characterization, pp. 3–14, 2001.

[2] A. Malik, B. Moyer, and D. Cermak, “A Low Power Unified Cache
Architecture Providing Power and Performance Flexibility”, in Interna-
tional Symposium on Low Power Electronics and Design, pp. 241–243,
2000.

[3] R. Balasubramonian, D.H. Albonesi, A. Buyuktosunoglu, and S.
Dwarkadas, “Memory Hierarchy Reconfiguration for Energy andPer-
formance in General-purpose Processor Architectures”, inInternational
Symposium on Microarchitecture, pp. 245–257, 2000.

[4] J. Yang, R. Gupta, and J.F. Martinez, “Energy Efficient Frequent Value
Data Cache Design”, inInternational Symposium on Microarchitecture,
pp. 197–207, 2002.

[5] D.H. Albonesi, “Selective Cache Ways: On Demand Cache Resource
Allocation”, in International Symposium on Microarchitecture, pp. 248–
259, 1999.

[6] S. Segars, “Low Power Design Techniques for Microprocessors”, in
International Solid-State Circuits Conference - Tutorial, 2001.

[7] C. Zhang, F. Vahid, and W. Najjar, “A Highly Configurable Cache
Architecture for Embedded Systems ”, inInternational Symposium on
Computer Architecture, pp. 136–146, 2003.

[8] A.V. Veidenbaum, W. Tang, R. Gupta, A. Nicolau, and X. Ji, “Adapting
Cache Line Size to Application Behavior”, inInternational Conference
on Supercomputing, pp. 145–154, 1999.

[9] C. Zhang, F. Vahid, and W. Najjar, “Energy Benefits of a Configurable
Line Size Cache for Embedded Systems”, inInternational Symposium
on VLSI, pp. 87–91, 2003.

[10] K. Inoue, T. Ishihara, and K. Murakami, “Way-PredictiveSet-
Associative Cache for High Performance and Low Energy Consump-
tion”, in International Symposium On Low Power Electronics and
Design, pp. 273–275, 1999.

[11] P. Ranganathan, S. Adve, and N.P. Jouppi, “Reconfigurable Caches and
Their Application to Media Processing”, inInternational Symposium on
Computer Architecture, pp. 214–224, 2000.

[12] Hewlett-Packard Laboratories. VEX Toolchain. [Online]. Available:
http://www.hpl.hp.com/downloads/vex/.

[13] CACTI: An Integrated Cache and Memory Access Time,
Cycle Time, Area, Leakage, and Dynamic Power Model.
http://www.hpl.hp.com/research/cacti/.

[14] D. Benitez, J.C. Moure, D. Rexachs, and E. Luque, “A Reconfigurable
Cache Memory with Heterogeneous Banks”, inDesign, Automation &
Test in Europe Conf. & Exhibition, pp. 825–830, 2010.

[15] “TMS320C6211 Cache Analysis”,Texas Instruments Application Report
SPRA472, 1998.

[16] T. Givargis and F. Vahid, “Tuning of Cache Ways and Voltage for Low-
Energy Embedded System Platforms”,Journal of Design Automation
for Embedded Systems, vol. 7, no. 1–2, pp. 35–51, 2002.

[17] M. Powell, A. Agarwal, T.N. Vijaykumar, B. Falsafi, and K.Roy, “Re-
ducing Set-associative Cache Energy via Way-prediction and Selective
Direct-mapping”, inInternational Symposium on Microarchitecture, pp.
54–65, 2001.

[18] K.T. Sundararajan, T.M. Jones, and N. Topham, “A Reconfigurable
Cache Architecture for Energy Efficiency”, inInternational Conference
on Computing Frontiers, 2011.

[19] S.H. Yang, M.D. Powell, B. Falsafi, and T.N. Vijaykumar, “Exploiting
Choice in Resizable Cache Design to Optimize Deep-Submicron Proces-
sor Energy-Delay”, inInternational Conference on High-Performance
Computer Architecture, pp. 151–161, 2002.

[20] C. Zhang, F. Vahid, and R. Lysecky, “A Self-Tuning CacheArchitecture
for Embedded Systems”,ACM Transactions on Embedded Computing
Systems, vol. 3, no. 2, pp. 407–425, 2004.

[21] N. Mohamed, N. Botros, and M. Alweh, “Cache Memory Energy
Minimization in VLIW Processors”,Journal of Communication and
Computer, vol. 6, no. 12, pp. 70–74, 2009.

[22] E. Ipek, M. Kirman, N. Kirman, and J.F. Martinez, “Core Fusion:
Accommodating Software Diversity in Chip Multiprocessors”,ACM
SIGARCH Computer Architecture News, vol. 35, issue 2, pp. 186–197,
2007.

[23] K. Sankaralingam, R. Nagarajan, H. Liu, C. Kim, J. Huh, D. Burger,
S. W. Keckler, and C. R. Moore, “Exploiting ILP, TLP, and DLP with
the Polymorphous TRIPS Architecture”, inInternational Symposium on
Computer Architecture, pp. 422–433, 2003.

[24] H. Zhong, S. A. Lieberman, and S. A. Mahlke, “Extending Multicore
Architectures to Exploit Hybrid Parallelism in Single-thread Applica-
tions”, in International Symposium on High Performance Computer
Architecture, pp. 25–36, 2007.

[25] K. Mai, T. Paaske, N. Jayasena, R. Ho, W. J. Dally, and M. Horowitz,
“Smart Memories: A Modular Reconfigurable Architecture”, inInterna-
tional Symposium on Computer Architecture, pp. 161–171, 2000.

[26] F. Anjam, M. Nadeem, and S. Wong, “Targeting Code Diversity with
Run-time Adjustable Issue-slots in a Chip Multiprocessor”,in Design,
Automation & Test in Europe Conf. & Exhibition, pp. 1358–1363, 2011.

[27] S. Wong and F. Anjam, “The Delft Reconfigurable VLIW Processor”, in
International Conference on Advanced Computing and Communications,
pp. 242–251, 2009.

[28] J.A. Fisher, P. Faraboschi, and C. Young,Embedded Computing: A VLIW
Approach to Architecture, Compilers and Tools. Morgan Kaufmann,
2004.

[29] P. Faraboschi, G. Brown, J.A. Fisher, G. Desoli, and F. Homewood, “Lx:
A Technology Platform for Customizable VLIW Embedded Processing”,
in International Symposium on Computer Architecture, pp. 203–213,
2000.


