2014 International Conference on Embedded Computer Systems: Architectures, Modeling, and Simulation (SAMOS XIV)

A Run-Time Modulo Scheduling by using a Binary
Translation Mechanism

Ricardo Ferreira, Monica Pereira
Waldir Denver

Departamento Informatica e Matematica Aplicada

UFV UFRN
Vicosa, Brazil Natal/RN, Brazil
ricardo@ufv.br monicapereira@dimap.ufrn.br

Abstract—It is well known that innermost loop optimizations
have a big effect on the total execution time. Although CGRAs is
widely used for this type of optimizations, their usage at run-time
has been limited due to the overheads introduced by application
analysis, code transformation, and reconfiguration. These steps
are normally performed during compile time. In this work, we
present the first dynamic translation technique for the modulo
scheduling approach that can convert binary code on-the-fly to
run on a CGRA. The proposed mechanism ensures software
compatibility as it supports different source ISAs. As proof of
concept of scaling, a change in the memory bandwidth has been
evaluated (from one memory access per cycle to two memory
accesses per cycle). Moreover, a comparison to the state-of-the-art
static compiler-based approaches for inner loop accelerators has
been done by using CGRA and VLIW as target architectures.
Additionally, to measure area and performance, the proposed
CGRA was prototyped on a FPGA. The area comparisons show
that crossbar CGRA (with 16 processing elements) is 1.9x larger
than the VLIW 4-issue and 1.3x smaller than a VLIW 8-issue
softcore processor, respectively. In addition, it reaches an overall
speedup factor of 2.17x and 2.0x in comparison to the 4 and
8-issue, respectively. Our results also demonstrate that the run-
time algorithm can reach a near-optimal ILP rate, better than
an off-line compiler approach for an n-issue VLIW processor.

I. INTRODUCTION

The ever-increasing complexity of embedded system ap-
plications and the demand for combining many functionalities
in a single system have increased the need for systems able
to efficiently execute applications with heterogeneous behav-
ior [1]. In order to efficiently execute these applications, it
is necessary to find solutions able to identify (at run-time) the
particular behavior of each application and use this information
as a mechanism to improve performance. In this paper, we
focus on run-time techniques and reconfigurable architectures
to support inner loop processing. Moreover, the proposed run-
time approach is based on binary translation mechanisms, and
it could be extended to handle other application behaviors.

Nowadays, there is a large amount of streaming data
mostly produced by sensors, telecommunication, and multi-
media applications. These applications are implemented in
general by using intensive loops. In addition, systems with
different processing capabilities, ranging from embedded to
exascale computing, require efficiency in terms of performance
and power (Gops/W). Coarse-Grained Reconfigurable Archi-
tectures (CGRAs) have shown that they can provide both

978-1-4799-3770-7/14/$31.00 ©2014 IEEE

Departamento de Informatica

Jorge Quadros, Stephan Wong

Luigi Carro Computer Engineering Lab.
Instituto de Informatica TU Delft
UFRGS Delft, Netherlands

Porto Alegre, Brazil J.S.S.M.Wong @tudelft.nl

carro @inf.ufrgs.br

power efficiency and hardware acceleration [2].

In past years, many solutions emerged in an attempt to
increase the loop performance by using Modulo Scheduling
and CGRAs [2], [3], [4], [5], [6], [71, [8], [9], [10]. CGRASs
are especially suitable for this, since they have a lower config-
uration overhead than fine-grained ones, such as FPGAs [11].
In spite of that, all solutions found in literature require special
compilers or modifications in the application, which, in turn,
precludes code reuse and software compatibility.

Recent works proposed the use of binary translation as
a solution to reduce the intrinsic performance overhead of
CGRA [12], [13]. Binary translation converts code compiled
to a source ISA to run in a different ISA, in order to
ensure software compatibility between different versions, or
to allow application execution in different ISAs without the
need for code recompilation. Additionally, run-time binary
translation does not require compiler modifications, and may
take advantage of optimizations that are not possible at compile
time. Along with the possibility of optimizing the execution,
run-time mechanisms are becoming essential due to the dy-
namic behavior of many applications, such as data-dependent
computation, whose behavior may vary based on the inputs.

To fulfill the requirements of code reuse and software
compatibility, we propose to apply binary translation (BT)
onto the modulo scheduling (MS) approaches. To the best
of our knowledge, no previous work has been carried out in
order to define a BT run-time modulo scheduling algorithm for
CGRAs. Moreover, a huge compile time reduction should be
achieved, since this is the major challenge faced in previous
modulo scheduling algorithms [2], [3], [4], [5], [6], [7], [8].
Recently, a low-complexity MS algorithm suitable for just-in-
time (JIT) compilation was proposed in [9]. A CGRA with
a crossbar network is used in [9] to reduce the complexity
instead of mesh topologies [14], [2], [15], [4]. Nevertheless,
the MS-JIT assumes that the starting point to perform the
MS is a loop dataflow graph (DFG), and therefore it requires
special JIT compilers or modifications in the application (like
pragmas) to detect the loop and generate the DFG graph. In this
work, we propose the first algorithm to detect, generate, and
schedule the loop from the binary code. Another advantage
of the proposed mechanism is its capability to benefit from
the scaling process. For instance, if the memory bandwidth is
improved, the binary translator could use this information to

75

2014 International Conference on Embedded Computer Systems: Architectures, Modeling, and Simulation (SAMOS XIV)

time
to (1) DFG Target
t] 9 9 Architecture

PE, PE, PE, PE,

oleYo I
N © PE,|—{PE,

S1 St St S
t (8) [PE, PE; PE, PE |
(a) (b) ()
Fig. 1. (a) DFG (b) Target CGRA (c) Time Extended CGRA (TEC) graph
9

0 O @ 6

ONO © O
Fig. 2. (a) Partial TEC (b) Partial TEC (c) Final TEC

accelerate the application.

The remainder of this paper is organized as follows. Sec-
tion II describes the modulo scheduling technique. Section III
details the CGRA architecture. In Section IV, we present the
proposed binary translation modulo scheduling. Experimental
results are discussed in Section V. Section VI presents the
works related to the proposed solution. Finally, Section VII
presents conclusions and future works.

II. MODULO SCHEDULING

Modulo scheduling (MS) [16] is a software pipelining tech-
nique which overlaps different iterations of a loop to exploit a
higher degree of Instruction-Level Parallelism (ILP). For ease
of explanation, lets consider the data flow graph (DFG) and
a 2x2 Mesh CGRA (depicted in Fig. 1(a-b)). The MS will
schedule and map the DFG onto the target CGRA. Since this
DFG has 8 nodes and the target CGRA has only 4 processing
elements (PEs), the MS should use at least two temporal
partitions. More formally, the DFG should be mapped onto the
Time Extended CGRA (TEC) graph [2] depicted in Fig. 1(c),
where there are two temporal partitions Sy and S;. This TEC
represents all interconnections between the partitions for a 2x2
Mesh. Each CGRA connection PE, — PFE creates a TEC
interconnection PES? — PE>? where j = mod(i + 1, P), P
is the number of partitions, and mod is the modulo function.
Moreover, if the PEs have internal registers, all PEs have
self-connections between the partitions.

Considering the DFG where node 1 is connected to nodes
2 and 3. If node 1 is assigned to Sy, nodes 2 and 3 should be
placed into S;. Fig 2(a) depicts one possible partial scheduling
and mapping. Since nodes 2 and 3 are placed in S7, then their
successors should be placed in Sy by the MS algorithm as
depicted in Fig 2(b). Although the TEC has 8 PESs, the MS
fails, since node 7 is placed in Sy and there is no free PE in
Sp to map its descendent node 8 (see Fig 2(c)).

The MS is similar to the set covering problem, where
the node scheduled at time ¢; is placed in the partition set
Swmod(i,p)- For instance, the nodes at t, t2,t4 will be mapped
onto the Sy set. In this example, the MS fails since there
are only 4 PFEs for five nodes (1,4,5,6, and 8) in the S
set. Therefore, it is not possible to perform the MS with

(1) 1t teration

Fig. 3. (a) DFG (b) TEC graph (c) Loop Overlapping

the minimal number of partitions, and consequently, the DFG
should be re-scheduled or local registers should be used. In
order to find the minimal sets, the EPImap and REGImap
algorithms [2], [10] proposed to use recomputation and local
registers. For instance, PF; and PFEs could store the results
of nodes 6 and 7 in the local register file to forward these
values to node 8 placed at PES*. If it is not feasible with
the minimal set, the partition number is increased until a
solution is found. Only recently, the problem of mapping a
DFG into a TEC CGRA has been proved to be NP-Complete
in [2]. Therefore, due to the complexity of mapping the
DFGs, all MS approaches are off-line and compiler-based,
except the MS-JIT approach proposed in [9]. The MS-JIT
applies two strategies to reduce the mapping time. Firstly,
the target architecture is a cross-bar based CGRA to reduce
the complexity of the placement and routing steps, from NP-
complete to O(1). However, the scheduling step itself is still
NP-complete. Secondly, the MS is implemented by using a
greedy approach based on graph traversal, where each node
is visited once. Nevertheless, the MS-JIT approach does not
include the DFG generation, and an off-line compiler is still
needed.

Assuming the DFG example depicted in Fig. 1(a), MS
has several constraints to take into account. First, the DFG
paths should be balanced since the execution is performed
in a pipelined fashion. Therefore, a buffer node should be
inserted in the edge 6 — 8. In addition, in relation to memory
operations, which are the most severe constraints, it is assumed
that nodes 4,7, and 8 are memory operations and the CGRA
can perform just one memory access per cycle. Therefore, at
least three partitions are needed as depicted in Fig. 3. Two
loop iterations will execute at the same time in a pipelined
fashion. Every third clock cycle, a new iteration is started.
The scheduling quality is measured by the minimal number
of partitions, which corresponds to the throughput. In this
example, the solution is optimal and it is bounded by memory
constraints.

III. ARCHITECTURE

In this work, the proposed architecture is based on the
homogeneous CGRA presented in [9]. However, in this work,
we propose a tightly accelerator approach and a heterogeneous
CGRA as shown in Fig. 4(a). The CGRA copies the values
from the CPU register file to the CGRA inputs, then the loop
body is executed, and finally, the output values are written back
to the register file. A monitor module detects the loop during
the execution. The BT module is implemented in software and
it translates and generates the CGRA configuration on-the-fly.

76

2014 International Conference on Embedded Computer Systems: Architectures, Modeling, and Simulation (SAMOS XIV)

Instruction

Monitor
Memory

BT code Data
=)
Processor
Register
File
M | |ALU] | LD
U ST

(a) Target Architecture (b) Processing Element (PE)

Configuration
Memory

Crossbar
Output Fifo

(@)

Fig. 4.

The monitor could be implemented in hardware by using
a FSM like a decode stage. The goal is to dynamically detect
inner loops, assuming loops based on a backward goto. When
a backward goto is executed, a monitor is switched on until the
goto is reached again. The monitor works in parallel with the
CPU. A loop is a candidate to be mapped if all instructions
inside the loop are supported by the CGRA. In this work,
all logic/arithmetic and load/store instructions are supported.
Simple conditional assignments are also supported, as well as
branch instructions to outside the loop body (exit points). No
floating point instructions are supported. However, the monitor
can be extended to detect more complex loop structures.

The target CGRA is a heterogeneous architecture inter-
connected by a crossbar network. A heterogeneous PE set
reduces the area cost and configuration bits. In this work,
we assume three PE types: multipliers, load/store, and ALU
units. Moreover, the architecture has 16 PFE's in total, since
the throughput does not increase that much beyond the size of
16 as shown in [14]. In addition, the crossbar of 16 units is
feasible even though its cost is O(n?).

Fig. 4(b) depicts the internal structure of an ALU unit. Each
PFE has two input registers R, and R;. These registers are also
used as buffer registers (BR) as presented in [9], and in this
case the ALU is bypassed and it can not be assigned to any
DFG node. While REGImap [10] uses the local register file
(LRF) as BR in parallel to the local ALU, in our approach, the
LRF only stores the immediate operand and loop input values.
The goal is to simplify the MS algorithm to be suitable at
run-time.

IV. BINARY TRANSLATION MODULO SCHEDULING

In [17], a BT mechanism was proposed to dynamically map
MIPS code onto a CGRA. The proposed BT unit implements
a dynamic scheduling algorithm for a CGRA similar to a
Tomasulo algorithm used in superscalar out-of-order proces-
sors. All blocks could be mapped onto a large CGRA, and a
configuration cache is used to store the most common blocks.
In spite of that, a MS approach is more efficient than BT [17]
and Tomasulo for loops. Considering an inner loop with 32
instructions mapped by the BT proposed in [17]. Suppose that
the achieved latency is 8 cycles for this loop. The achieved ILP
will be 32/8 = 4. The CGRA should have at least 32 units, and
these units are not used in pipelined fashion. On the other hand,
the MS algorithm overlaps loop iterations. Considering a MS
CGRA with 16 units. Suppose there is a feasible scheduling
with two temporal partitions. Every two cycles, a new iteration
is processed. In this case, the ILP will be 32/2 = 16. Thus,
the CGRA size is reduced by a factor of 2x (16 units instead
of 32 units), and the performance is improved 4x by the MS
approach in comparison to BT [17] for inner loop acceleration.

C code Istit =
For (i=0; i < N; i++) @ @ 9: —
a[i] = a[i]+1; 5 2nd it
MIPS Code 9 e @ e: [}

00p:
1: branch r2,r4, exit; o 9
2:1drl, 0 (r2); //i->12

3:addrl,rl,1; -
4:sd rl,0(2); © ® =
5: add r2,r2,4;

6: goto Loop 9

Fig. 5. Simple Vector Increment

1 cmplt $60.0 = $r0.4, $r0.0

5 add $r0.3=$10.3, |
6 1dw.d $r0.6 = 8[$r0.2]
7 brf $50.0, L

9 1dw $r0.7 = 12[$10.2]

10 stw 0[$r0.2] = $10.3
11 add $r0.6 = $10.6, 1

12 stw 4($10.2] = $10.5

13 add $r0.7 = $r0.7, 1

14 stw 8[$r0.2] = $10.6

15 stw 12[$r0.2] = $r0.7
16 add $r0.2 = $r0.2, 16
17 goto LO?3 ## goto

<a>j EJ Bg‘?' ?

Register

Fig. 6. (a) VLIW 4 code (b) One L/S Compiled DFG (c) 4 L/S Compiled
DFG (d) 4 L/S 2 partitions CGRA

Although the MS is more suitable for loops, the MS binary
translation (MS-BT) is more complex. In addition to detect the
RAW, WAR, and WAW hazards, the MS-BT should detect the
recurrence values between the iterations, taking into account
the temporal partitions and balancing the DFG paths by insert-
ing buffer registers. Moreover, if the schedule fails, the MS-BT
should increase the partition number. Therefore, our MS-BT
differs from previous Tomasulo and the BT approach proposed
in [17] to dynamically solve new challenges. Moreover, as all
previous MS approaches are compiler-based, this is the first
compiler-free binary translation approach.

Before describing the MS-BT approach, first, we present
a simple loop example. Initially, this example is compiled
considering only one memory access operation per clock
cycle. Then, we compare our MS-BT dynamic approach to
a VLIW compiler-based approach. The capability to perform
more memory operations per clock is modified to show
adaptability of our approach in comparison to static compiler-
based approaches. In the example, we assume a simple loop
to increment the values of one vector. The C code and a
pseudo MIPS code are depicted in Fig. 5. Fig. 5 also presents
the correspondent dependence graph for the ideal case of a
software pipelining execution with overlapped iterations. For
ease of explanation, the instructions are numbered. The goto
instruction is not depicted. The recurrence dependence on R2
value is shown by the feedback edge. A loop iteration can
be executed in one clock cycle if the hardware supports the
execution of all operations at same time (as shown at time 3).

77

2014 International Conference on Embedded Computer Systems: Architectures, Modeling, and Simulation (SAMOS XIV)

partition 1 partition 2 partition 0

addrd =15 +16

dd
"""" I:EZ_

mult r3=r4 * 37

R4 value

R 01234567 ;]'j:b3

e e (]

ventors 11REENNN N |]|
p IIIIIII PE 4 PE 4

Fig. 7. RAW example with Buffer register

It is well known that loop unrolling and VLIW processor
reaches high ILP for inner loops. Fig. 6(a) depicts the assembly
code generated by a VLIW compiler [18] for a 4-issue VLIW
processor. The compiler uses an unrolling factor of 4. The
code has 8 VLIW instructions. Each instruction can have up
to 4 operations (grouped inside each white block). Each vector
element should be read (load) and written (store), therefore at
least 8 instructions are needed as only one memory access
operation per clock cycle is allowed. In this example, the
compiler reaches the optimal ILP, and one element of the
vector is added every two clock cycles. Fig. 6(b) depicts the
DFG. There are 4 dependence load-add-store chains, register
Ry is the memory index and Ry is the loop counter. Now, let
us assume that, thanks to some technology improvement, the
architecture can perform 4 memory access operations (ops) per
clock cycle. To include this information into the VLIW system,
one is forced to recompile the VLIW code. Fig. 6(c) depicts the
generated code for 4-issue and 4 memory ops per clock cycle.
The code has 8 VLIW instructions and unrolling factor of 8.
There are 8 load/add/store chains (L — A — S). Therefore,
eight elements are added per iteration or one element per clock
cycle, which doubles the ILP. However, if the architecture
could perform 4 memory ops per clock cycle, it is possible to
produce one loop result per % cycle. Therefore, the compiled
solution is 50% of the optimal solution.

Our proposed MS-BT mechanism adapts the dependence
graph as a function of the available resources. For this example,
there are 8 memory access operations to be executed and the
architecture only supports 4 per clock cycle. Therefore, at least
2 partitions are needed. Assuming that the load/store (L/S) are
executed in a two-stage pipeline unit. The first stage computes
the address and the second stage send/receives data to/from
the memory. Despite a latency of 5 cycles to compute a load-
add-store chain, the throughput found by our approach is 2
clock cycles due to the iteration overlapping, as depicted in
Fig. 6(d). Moreover, as 4 elements are processed in parallel,
the loop throughput is 4 elements/2 cycles, or 1 element per
1/2 cycle, which is the optimal solution.

The binary translation algorithm scans the instruction in
order. In addition to RAW detection, the MS-BT performs
buffer register insertion and cycle recurrence register detection.
A RAW is verified by using a target unit vector indexed by the
register number. Supposing that the current RAW instruction
is a multiplication, if there is no multiplier unit in the current
partition, buffer registers (BR) will be inserted until finding a
free multiplier unit. Fig. 7 depicts an example of RAW in R4
between an add instruction in partition 1 and a multiplication
instruction. The R4 will be computed by PF> in partition 1.
Assuming only one multiplier unit (PEy) per partition, since
the multiplier is already allocated at partition 2, one buffer

RAW LIR RCR
1. 1drl, 4(2) 1. 1drl, 4(2) 1. [1drl, 4t2)
a
2. addrl,rl,r5 2. add rl,rl,3 lir 2. add rl,rl,r5
3. sd r'|_4(r2) 3. sdrl4(r2) 3. | sdrl.4(2)
4. add 2,124 4, addr2,24 4.
a
() part 0 partl
L br
part 0 partl part2 part3 part4 o
Ebrh
inst. 3
1d | sd||]sd
([T KD El
"LLadd
. . PEO
buffer register chain
br br m
_' Y PE 2

Fig. 8. LIR and RCR registers

register will be inserted, and the multiplier will be allocated
in next partition as depicted in Fig. 7.

In addition to the RAW (read after write) dependence,
the MS-BT should be able to detect the loop input registers
(LIR). A LIR is a register that is read at least once and it is
not overwritten, and it represents invariant loop input values.
Finally, there is the recurrence cycle register (RCR), which is
similar to a LIR, however it is overwritten. The RCR can be
a loop counter, vector index, or inter-iteration values. Fig. 8
depicts an example of LIR and RCR inside a simple loop,
which performs the load-add-store chain and increments the
vector index. Register R5 is a LIR, and it behaves as a constant
during the loop execution. Register R, is an RCR. However,
since the instructions are processed in order, R2 behaves as a
LIR until the MS-BT processes the last instruction. By default,
all registers that appear as source registers are considered as
LIR, until they are overwritten and become a RCR.

Moreover, there is register R; in Fig. 8, which is a false
output register, since it only carries temporary values due
to RAW dependences. For each LIR, a list of dependence
functional units is created during the loop scanner. An RCR
also has a dependence list.

For ease of explanation, let us assume that the scheduling
is done by using 5 partitions (0 to 4), as depicted in Fig. 8(b).
The two-stage load is executed at PEj in partitions 0 and
1. The result is sent to the adder at PE; in partition 2, and
finally, it is sent to the two-stage store at PFEj in partitions
3 and 4. The adder at PFE; is used in partition O to execute
instruction 4 (add R2) and in partition 2 to execute instruction
2 (add R1), as the units are time-multiplexed. The LIR list will
also generate the buffer register chains for the RCR.

Register R, will generate a chain of three buffer registers
(BRs), as the Ry value is used in partition 0, in PFEjy (load),
and also in PEj (store) in partition 3. Moreover, an additional
4 BR chain is generated to send back the value to the adder.
Although Fig. 8(b) depicts 7 BRs in total, the target architec-
ture uses only 2 BRs, since the BRs are time-multiplexed, and
the maximum number of BRs is the maximum number per
partition. For this example, partitions 1 and 2 need only two
BRs.

For this example, a better scheduling is possible. Assuming
only one memory access operation per clock cycle, the minimal

78

2014 International Conference on Embedded Computer Systems: Architectures, Modeling, and Simulation (SAMOS XIV)

1 Inst = Fetch Instruction()

2 While (Inst != END)

3 type = get InstructionType(inst), Partition = initial
4 if (Immediate Operand)

5 if (Rs1 == input)

6 PE = get_FreePE(type,Partition)

7 Place PE[partition] = Inst

8 LIR.insert(Rs1,partition,PE) // added LIR list
9 else

10 PEraw = get PE[Rs1]

11 p = partititon(PEraw)

12 PE = get_FreePE(type,p)
13 Place PE[p] = Inst,

14 else Two Value Operands:
15 if (Rs1 == input && Rs2 == input)

16 PE = get_FreePE(type,Partition), Place PE[partition] = Inst
17 LIR.insert(Rs1,partition,PE) // added LIR list

18 LIR.insert(Rs2,partition,PE) // added LIR list

19 else // Read-after-Write

20 PEraw = Later PE(rs1,rs2),

21 p = partititon(PEraw)

22 PE = get_FreePE(type,p),

23 Place PE[p] = Inst

24 if (Rs1 == input) LIR.insert(Rs1,p,PE)

25 if (Rs2 == input) LIR.insert(Rs2,p,PE)

26 Route PERaw -> PE,

27 Verify RCR(Target Register)

28 Inst = Fetch Instruction()

29 end While

30 Place and Route LIR lists

// Read-after-Write

Route PERaw -> PE

Fig. 9. Binary Translation Algorithm - Pseudo Code

number of partitions is 2. Fig. 8(c) depicts the mapping
by using two partitions. Similar to the example depicted in
Fig. 6(d), the load is mapped in partitions O and 1, then the
adder in partition 0, and finally the store in partitions 1 and 0,
respectively. Every two clock cycles, the loop produces a new
value. At resource level, the usage is maximum in partition 0,
where the PFEy (load/store), PF, and PFEy (ALUs), and two
BRs are needed. It is important to notice that the R2 LIR chain
has also three BRs as the previous mapping with 5 partitions
depicted in Fig 9(b). However, there is an overlapped iteration,
and the BRs in partition O store values of different iterations.

Fig. 9 depicts a pseudo-code of our modulo scheduling -
binary translation algorithm. The instructions are scanned in
order. There are two basic instruction types: one operand (plus
an immediate operand) and two operands. In this algorithm,
we assume the notation Rsl and Rs2 for the source register
operands. As well as in Tomasulo algorithm, a Read-After-
Write (RAW) is verified by using a target unit vector indexed
by the register number. When a RAW is detected, the current
instruction receives a forwarding value. Supposing that the
current instruction is a multiplication, if there is no multiplier
unit in the current configuration, buffer registers (BR) will
be inserted until finding a free multiplier unit. Then, the
instruction is placed, and in case of RAW or BR registers,
the connections are routed between the temporal partitions. If
the instruction has an input register R, the PE[p] is inserted in
LIR list of R, where PF is the processing element where the
instruction is placed, and p is the temporal partition. Next, the
instruction target register is verified to detect RCR registers,
and the next instruction is fetched until all instructions are
processed. Finally, all LIR registers are generated, placed and
routed. Similar to Tomasulo algorithm, the register number
is replaced by the unit number to eliminate the output and
anti-dependences, i.e. WAW and WAR hazards.

N

I o
code

VLIW16

Fig. 10. Target Platforms: 4 compiled-based and the proposed BT CGRA

The proposed MS-BT algorithm is suitable for RISC binary
code as well as VLIW code. During the BT execution, the
RAW vector is updated after all single instructions inside a
VLIW instruction are processed.

V. EXPERIMENTAL RESULTS

As proof of concept, the proposed MS-BT algorithm is
evaluated by using a cycle-accurate simulator in comparison
to off-line compilers, where we considered a 1-issue VLIW as
baseline MIPS-like processor capable to execute one instruc-
tion per clock cycle. Moreover, a comparison to an ADRES-
based CGRA [19] is performed by using the state-of-the-art
modulo scheduling tools [10]. Fig. 10 depicts the experimen-
tal framework used to measure the performance of 5 target
architectures. The proposed run-time approach is compared to
4 static compiler-based approaches: three VLIW processors
and one CGRA-based approach. The VLIW-n is an n-issue
processor, and the C code is compiled by using the option -03
(basic loop unrolling and trace scheduling compilation) and
the option -05 (very heavy loop unrolling) [18]. The binary
code of VLIW-4 is the starting point for the proposed MS-BT
mechanism. As mentioned before, it can also be applied to
another ISA as MIPS-like code.

The VLIW processors and the proposed CGRA are eval-
uated under two distributions of heterogeneous units. Both
distributions use up to 2 multipliers, and n ALUs per clock.
The difference between them lies in the number of memory
units: 1 or 2, as memory latency and bandwidth is a critical
resource nowadays. In addition, the inner loop dataflow is
extracted and the modulo scheduling algorithm REGImap [10]
is used to map the loops onto an ADRES reconfigurable
architecture. We chose the REGImap approach because it is
the state-of-the-art for compiler-based approach to find optimal
scheduling solutions. Additionally, REGImap can use up to 8
local registers and a set of homogeneous units (the current
REGImap version supports only homogeneous units). Regard-
ing the ADRES architecture, although it has a mesh topology,
which has less routing resources compared to the proposed het-
erogeneous crossbar CGRA, the evaluated ADRES architecture
is homogeneous, and hence, there is no placement constraint
due to the unit type. Moreover, there is no constraint in the
maximum number of operations per clock cycle (memory,
multipliers or ALU). Although the interconnection is more
restricted, there is no placement constraints or limit on the
maximum number of a critical resource per clock cycle. The
proposed target CGRA has 16 heterogeneous units: M memory
units, 2 multipliers and 14-M ALUs, where M is the number
of memory units (1 or 2). The units are interconnected by a
crossbar network.

The increment vector example and four multimedia bench-

79

2014 International Conference on Embedded Computer Systems: Architectures, Modeling, and Simulation (SAMOS XIV)

TABLE 1. NUMBER OF INSTRUCTIONS PER LOOP
Loop Inst | Ld St M A ILP1 ILP2
cjpegtl.txt 78 8 8 13 | 32 | 4.87 9.75
cjpegt2.txt 79 8 8 13 | 33 | 493 9.87
matrixtl.txt 56 16 0 17 21 3.50 7.00
x264t1.txt 52 12 0 7 13 | 433 8.67
itvertl.txt 108 7 4 25 | 30 8.64 8.64
itvert2.txt 63 8 8 5 22 | 3.94 7.88
itvert3.txt 100 6 4 25 | 26 | 4.00 4.00
itvert4.txt 66 10 10 5 30 33 6.6
itvert5.txt 55 4 2 13 14 8.46 8.46
itvert6.txt 60 5 2 13 16 8.57 9.23
itvert7.txt 63 8 8 5 22 | 3.94 7.88
100% g
90% BTMS £
ILP]
70% v805,v1605
M0ne v803,v1603 3 8 b
emory 50% 2 3 ©°
Access Vo3 400 é S <
T 1 T, T T
S HMFE @ g
% =]
100% BTMS 5
90% V1605 E |G|l &
v1603 BRI g
70% v803,v805 S5 =B
Two > > >
Memory g4,
Accesses
v403,v405 L L
— () compilation time (c)

Fig. 11. Normalized ILP for 1 or 2 memory access per clock cycle

marks have been used to validate our approach. Table I presents
the instruction composition of the detected loops from the
binary. The first column shows the benchmark name and a
number, when there is more than one inner loop. Some loops
are omitted as they have the same instruction composition. The
number of MIPS instructions is presented in column Inst, fol-
lowed by the number of load, store, multiplications, and ALU
instructions, respectively. Columns ILP1 and ILP2 present the
maximum theoretical ILP bound by memory throughput of 1
or 2 accesses per cycle, respectively.

The experiments described next were performed to verify
the quality of the scheduling to reach the maximum ILP
available and the required compiler and/or execution time.
The VLIW code has been compiled for 4, 8, and 16-issue
with -03 and -o05 options [18], and 1 or 2 memory accesses
per clock cycle. For all approaches, the ILP was measured by
considering only the inner loop code and normalized by the
maximum theoretical ILP depicted in Table I. The ADRES
results were generated by using the REGImap algorithm with
8 local registers and 16 units. Even though the dataflow graphs
have a medium size from 50 to 120 operations, REGImap
could not find a scheduling solution for most of them in less
than 1 hour. REGImap can only map the single increment
vector example in 2 seconds. However, the graph has been
modified by using one local index counter adder for each load-
add-store chain to eliminate the fanout of the index counter.
The same strategy was applied to the cjpeg loop which has 16
load/store instructions controlled by the R, address register.
Instead of one address register, the cjpeg was modified to
use four registers. REGImap has found a scheduling after
4 hours. As one can observe, the proposed approach is 3

-0
-~ T =TS
=

990666665

Ist Iteration Partition Units

2nd Iteration

5
6
7
9

9
12
13
12
9 11
10 13
11 13
12 12
13 11
= 14 10

s==s 15 8
() I

0NN B W= O

Fig. 12. (a) DFG DCT Row’s Loops (b) Mapped two overlap iterations

orders of magnitude faster than the VLIW static compiler
solution as shown in Fig. 11. The VLIW results are labelled
by V;O;, where ¢ is the VLIW issue and j the compiler option.
Concerning the quality of the scheduling measured by the ILP,
the MS-BT reaches the optimal solution in 4 of 5 benchmarks
for 1 memory access per cycle. Moreover, the reached ILP is
better than the ILP found by the VLIW processors even with
16-issue. For 2 memory accesses per clock cycles, the ILP
achieved by the MS-BT approach is quasi-optimal, and the
average ILP is 92.5% of the maximum theoretical ILP.

The next experiment analyzes a loop from DCT (discrete
cosine transform) application [20] onto the CGRA. This algo-
rithm implements an 8x8 DCT in two steps: rows and columns.
In the example detailed next, we considered the loop to process
the rows. The dataflow graph has been extracted from the
VLIW binary code, and it is depicted in Fig. 12(a). The source
code has been compiled to a 4-issue VLIW (1 memory, 2
multiplier, and/or 4 ALU).

Based on maximum ILP, the MS-BT will map the binary
code by using modulo scheduling to overlap the loop iterations.
The goal is to produce an overlap as depicted in Fig. 12(b),
where the maximum number of units per partition is equal
or less than N, where N is the maximum number of units
available per partition in the target architecture. The black
vertices represent the scheduling memory operations. There is
only one memory operation per clock cycle, which shows that
the memory constraints are not violated. The buffer registers
are displayed by using grey vertices and the latency is 31 clock
cycles. As can be observed, the worst cases of unit usage are
configurations 7, 10, and 11, where 13 units are required. It is

80

2014 International Conference on Embedded Computer Systems: Architectures, Modeling, and Simulation (SAMOS XIV)

TABLE II. ARCHITECTURE AREA AND FREQUENCY EVALUATION
Architecture BRAMs | LUTs | Clock
VLIW 4 16 6575 91 Mhz
Crossbar CGRA 23 12977 103 Mhz
ADRES 4 15173 | 92 Mhz
VLIW 8 64 17490 | 62 Mhz

also important to take into account the maximum number of
live variables (or registers). In a MIPS processor or in a VLIW
processor, the maximum number of registers is bounded by
the register file size, which, in general, it is 32 or 64. For the
proposed approach, each functional unit has two input registers
to store the live variables. Therefore, for our 16 unit CGRA,
there are 32 registers.

Assuming a VGA image with 640x480 pixels, the complete
DCT application runs in 24.5ms (or 2,457,600 clock cycles)
in a soft-core 100MHz 4-issue VLIW. On the other hand,
when including the accelerator and the binary translation
overhead, the execution time reduces to 15ms at 100MHz.
Furthermore, a theoretical analysis also demonstrates a great
potential to increase speedup. If we assume an aggressive
scaling that enables an ILP with of 8.88 by allowing 2 memory
accesses per clock cycle, the execution time reduces to 7ms.
Additionally, for a 5 Mega-pixel image, which is a normal size
nowadays, the binary translation overhead is insignificant.

Finally, all five target architectures have been implemented
on a commercial FPGA (Xilinx XC6VLX240T-1FFG1156)
synthesized with ISE version 13.3 to evaluate the relative
performance and area. The ADRES implementation is based
on the architecture described in [15] with a homogeneous
set of functional units. Additionally, to provide a consistent
comparison, all architectures use the same functional units:
ADRES, CGRA, and the VLIW processor [21]. The functional
units support the execution of all VLIW instructions.

Table II presents the results in amount of resources and
maximum operation frequency after the placement and routing
steps. The number of LUT slices and BRAM are depicted. It
is important to notice that the VLIW processor uses BRAM to
implement the register file. This is one of the most expensive
resources in a VLIW architecture, since connections to all the
functional units must be provided, which makes the size of
register file (RF) grows exponentially. For instance, in VLIW-
16, the RF should allow 32 reads and 16 writes at same time.
In addition, the VLIW16 has a fully interconnected network
to implement the forward logic. For this reason, VLIW-16
occupies the entire FPGA and it is not depicted in Table II. On
the other hand, the area cost of the proposed CGRA16 is lower
than the VLIWS8 and the ADRES16 architectures. Additionally,
the CGRA16 clock frequency is faster than ADRES16 and the
VLIW’s frequencies. However, since our architecture tightly
couples a VLIW processor and a CGRA, the total area is the
sum of the both. Considering the 4-issue VLIW, the total area
of our architecture is equivalent to a standalone 8-issue VLIW.

VI. RELATED WORK

In this work, the proposed solution consists of a binary
translation mechanism applied to the modulo scheduling to
translate code from different ISA sources into a CGRA.
Concerning MS approaches, the ADRES/DRESC compiler

proposed by Mei, et al., [15] is one of the first works to
propose the use of modulo scheduling to accelerate inner loops
in a CGRA tightly coupled to a VLIW processor. The DRESC
presents an algorithm that combines modulo scheduling, sim-
ulated annealing and pathfinder techniques for scheduling,
placement and routing, respectively. The experimental results
demonstrate that a long time is required to perform scheduling,
in order of minutes for a 64-FU reconfigurable architecture.

In an attempt to reduce compile time, Park, et al., [4]
proposed a modulo scheduling mechanism targeted to CGRA
that prioritizes routing and performs placement and scheduling
during routing process. According to the authors, routing is a
very time-consuming step in CGRAs. Therefore, by focusing
on an efficient routing algorithm, it is possible to map dataflow
graphs to the CGRA faster than the solutions that performs
routing after scheduling, which in turn, reduces compile time.
The results presented in [4] demonstrate shorter compile time
when compared to DRESC. However, EMS presents a lower
scheduling quality than DRESC, which results in performance
penalty during execution time.

To improve mapping quality, the approach in [2] proposed
the combination of routing and recomputation in the mapping
algorithm, called EPIMap. The EPIMap heuristic transforms an
input graph to an epimorphic equivalent graph that meets all
the CGRA constraints. Additionally, the algorithm performs a
systematic search of the solution space, which ensures a higher
quality mapping. According to the results presented in [2],
EPIMap achieves near-optimal mapping quality, with longer
compile time when compared to [4]. Moreover, a formal model
and NP-completeness proof for the modulo scheduling CGRA
is presented in [2].

In [10], EPIMap’s authors proposed a solution that allows
a better usage of local register files by the mapping algorithm
in order to increase performance, called REGIMap. The local
register files are used to temporarily store data that will be
used in next cycles. In this case, it is not necessary to hold
the current value in the processing element (PE), since the
value is stored in the local register. Therefore, the PE can be
scheduled to start a new operation with no risk of overwriting
the old value that will still be used in another cycle. In [10],
the authors present a simple example that demonstrates the
advantage of this solution. Additionally, REGIMap mapping
algorithm performs scheduling and placement in different
steps (routing is performed during scheduling and placement
steps). According to the authors, comparison results between
REGIMap and DRESC [3] show performance increase of
1.89x and 56x lower compilation time. In spite of that, the
experimental results presented in [10], for a 4x4 mesh CGRA
and different number of local registers, are still in order of
thousands of seconds (against milliseconds of our approach,
with similar quality).

The ADRES framework [15] is also a design exploration
tool where several interconnection patterns, local register files,
and functional unit resources have been investigated. The
mesh-plus interconnection reaches better tradeoffs since each
CGRA unit connects to any other unit in at most two steps.
By enriching the interconnection model, it is possible to
reduce the routing complexity. However, the reduction in the
compile time can come at the price of more interconnection
area. Recent works proposed full interconnection model to

81

2014 International Conference on Embedded Computer Systems: Architectures, Modeling, and Simulation (SAMOS XIV)

simplify the placement and routing [22], [7], [23]. Even for
a fully interconnected architecture, the modulo scheduling is
still an NP-complete problem, as proved in [2] for a generic
interconnection model.

From all the mentioned solutions, only the one proposed
in [9] presents low compile time and can be moved from
compile time to run-time. In spite of that, this solution still
requires a compiler to analyze application and generate the
graphs. Therefore, due to this compiler dependence, they are
only suitable for Just In Time (JIT) compilation. Our binary
translation approach is the first module scheduling algorithm
starting from binary code, in order to ensure software compati-
bility between different ISAs. Therefore, the solution presented
in this paper proposes a novel binary translation mechanism
that has a mapping algorithm that is completely compiler free.
In this mechanism, loop detection, graph generation, modulo
scheduling, placement and routing are performed during exe-
cution time.

VII. CONCLUSIONS

This paper presented the first binary translation approach
for the modulo scheduling algorithm in CGRAs. Additionally,
our approach is completely adaptable to the amount of re-
sources. In the results, it was demonstrated the efficiency of
the same mechanism when the amount of memory elements
was increased. To evaluate area, quality and execution time of
the scheduling algorithm, and performance gains, we presented
a set of experiments comparing the proposed solution with
two other systems, the VLIW processor (4-, 8- and 16-issue)
and the REGImap/ADRES modulo scheduling solution, which
is currently, the most efficient modulo scheduling compiler-
based approach. In spite of that, since the loop graphs has
index counters with a large fanout, REGImap was not able to
manage it. Even considering the fact that REGImap is based
on EPImap, which proposes recomputation to handle fanout
greater than 3. Concerning area occupancy, the comparisons
demonstrated that the proposed CGRA with 16 functional
units (CGRA16) plus a 4-issue VLIW is equivalent to an
8-issue VLIW. Quality analysis results have shown that the
proposed run-time mechanism with CGRA16 presented the
quasi-optimal ILP better than the VLIW solution (4-, 8- and
16-issue). Compile time results have also demonstrated that
while the other solutions (VLIW and ADRES) required a
minimum of 0.5 seconds to compile, the proposed mechanism
required 100 microseconds when running on a commercial
processor (Intel i5) and only 3 milliseconds when running in a
softcore processor. These gains are around 3 orders of magni-
tude, enabling the use of mechanism for run-time mapping.
An example of the proposed binary translation mechanism
mapping a loop from DCT application to a generated RA
presented a speedup factor of 1.8 when compared to the same
loop running in a VLIW.

Finally, the proposed BT approach is flexible and adapt-
able, enabling its extension to take into account other program
phases than inner loops as well as its implementation in
hardware by using a FSM. Future works include evaluating
the acceleration considering larger application blocks and
conditional branches and on-the-fly generation of the CGRA
using customized functional units.

(1]

(2]

(31

(4]

(3]

(6]

(71

(91

[10]

(1]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

REFERENCES

Z. Salcic, D. Hui, P. S. Roop, and M. Biglari-Abhari, “Hidraa reac-
tive multiprocessor architecture for heterogeneous embedded systems,”
Microprocessors and Microsystems, vol. 30, no. 2, pp. 72 — 85, 2006.

M. Hamzeh, A. Shrivastava, and S. Vrudhula, “Epimap: Using epimor-
phism to map applications on cgras,” in Design Automation Conference,
2012, pp. 1280 —1287.

B. Mei, S. Vernalde, D. Verkest, H. De Man, and R. Lauwereins, “Dresc:
a retargetable compiler for coarse-grained reconfigurable architectures,”
in Proc. FPT, 2002, pp. 166 — 173.

H. Park, K. Fan, S. A. Mahlke, T. Oh, H. Kim, and H.-s. Kim, “Edge-
centric modulo scheduling for coarse-grained reconfigurable architec-
tures,” in Proc. PACT, 2008.

B. De Sutter, P. Coene, T. Vander Aa, and B. Mei, “Placement-
and-routing-based register allocation for coarse-grained reconfigurable
arrays,” in Proc. LCTES, 2008, pp. 151-160.

T. Oh, B. Egger, H. Park, and S. Mahlke, “Recurrence cycle aware
modulo scheduling for coarse-grained reconfigurable architectures,” in
Proc. LCTES, 2009, pp. 21-30.

R. Ferreira, J. G. Vendramini, L. Mucida, M. M. Pereira, and L. Carro,
“An fpga-based heterogeneous coarse-grained dynamically reconfig-
urable architecture,” in Proc. CASES, 2011.

L. Chen and T. Mitra, “Graph minor approach for application mapping
on cgras,” in Proc. FPT, 2012.

R. Ferreira, V. Duarte, W. Meireles, M. Pereira, L. Carro, and S. Wong,
“A just-in-time modulo scheduling for virtual coarse-grained reconfig-
urable architectures,” in SAMOS XIII, 2013.

M. Hamzeh, A. Shrivastava, and S. B. Vrudhula, “Regimap: register-
aware application mapping on coarse-grained reconfigurable architec-
tures (cgras).” in Design Automation Conference, 2013, p. 18.

R. Hartenstein, “Coarse grain reconfigurable architecture (embedded
tutorial),” in Proceedings of the 2001 Asia and South Pacific Design
Automation Conference, ser. ASP-DAC °01, 2001.

J. K. Paek, K. Choi, and J. Lee, “Binary acceleration using coarse-
grained reconfigurable architecture,” SIGARCH Comput. Archit. News,
vol. 38, no. 4, pp. 33-39, Jan. 2011.

J. Bispo, N. Paulino, J. Ferreira, and J. Cardoso, “Transparent trace-
based binary acceleration for reconfigurable hw/sw systems,” Industrial
Informatics, IEEE Transactions on, 2012.

H. Park, Y. Park, and S. Mahlke, “Polymorphic pipeline array: a flexible
multicore accelerator with virtualized execution for mobile multimedia
applications,” in Proc. MICRO, 2009, pp. 370-380.

B. Mei, S. Vernalde, D. Verkest, H. D. Man, and R. Lauwereins,
“Exploiting loop-level parallelism on coarse-grained reconfigurable
architectures using modulo scheduling,” in Proc. DATE, 2003.

B. R. Rau, “Iterative modulo scheduling: an algorithm for software
pipelining loops,” in Proc. MICRO, 1994, pp. 63-74.

A. C. S. Beck, M. B. Rutzig, G. Gaydadjiev, and L. Carro, “Transparent
reconfigurable acceleration for heterogeneous embedded applications,”
in Proceedings of the Conference on Design, Automation and Test in
Europe, 2008, pp. 1208-1213.

H. Labs. (2013) Vex toolchain.
http://www.hpl.hp.com/downloads/vex/

[Online]. Available:
F. Bouwens, M. Berekovic, A. Kanstein, and G. Gaydadjiev, “Architec-

tural exploration of the adres coarse-grained reconfigurable array,” in
Proc. ARC, 2007, pp. 1-13.

C. Loeffler, A. Ligtenberg, and G. S. Moschytz, “Practical fast 1-
d dct algorithms with 11 multiplications,” in Acoustics, Speech, and
Signal Processing, 1989. ICASSP-89., 1989 International Conference
on. IEEE, 1989, pp. 988-991.

S. Wong, T. Van As, and G. Brown, “p-vex: A reconfigurable and
extensible softcore vliw processor,” in International Conference on
Field-Programmable Technology FPT. 1EEE, 2008, pp. 369-372.

M. Shami and A. Hemani, “Morphable dpu: Smart and efficient data
path for signal processing applications,” in Signal Processing Systems,
2009. SiPS 2009. IEEE Workshop on, 2009, pp. 167-172.

L. Zhou, H. Liu, and J. Zhang, “Loop acceleration by cluster-based
cgra,” IEICE Electronics Express, vol. 10, no. 16, 2013.

82

