
Article

The International Journal of High
Performance Computing Applications
2015, Vol. 29(1) 37–50
� The Author(s) 2014
Reprints and permissions:
sagepub.co.uk/journalsPermissions.nav
DOI: 10.1177/1094342014549059
hpc.sagepub.com

Challenges in exascale radio
astronomy: Can the SKA ride the
technology wave?

Erik Vermij1, Leandro Fiorin1, Rik Jongerius1, Christoph Hagleitner2

and Koen Bertels3

Abstract
The Square Kilometre Array (SKA) will be the most sensitive radio telescope in the world. This unprecedented sensitiv-
ity will be achieved by combining and analyzing signals from 262,144 antennas and 350 dishes at a raw datarate of petabits
per second. The processing pipeline to create useful astronomical data will require hundreds of peta-operations per sec-
ond, at a very limited power budget. We analyze the compute, memory and bandwidth requirements for the key algo-
rithms used in the SKA. By studying their implementation on existing platforms, we show that most algorithms have
properties that map inefficiently on current hardware, such as a low compute–bandwidth ratio and complex arithmetic.
In addition, we estimate the power breakdown on CPUs and GPUs, analyze the cache behavior on CPUs, and discuss
possible improvements. This work is complemented with an analysis of supercomputer trends, which demonstrates that
current efforts to use commercial off-the-shelf accelerators results in a two to three times smaller improvement in com-
pute capabilities and power efficiency than custom built machines. We conclude that waiting for new technology to
arrive will not give us the instruments currently planned in 2018: one or two orders of magnitude better power effi-
ciency and compute capabilities are required. Novel hardware and system architectures, to match the needs and features
of this unique project, must be developed.

Keywords
Exascale, Square Kilometre Array, supercomputers, power efficiency, astronomy

1. Introduction

The Square Kilometre Array (SKA) (SKA
Organisation, n.d.) will be the largest radio telescope in
the world, and it will have an unprecedented sensitivity,
angular resolution and survey speed. Most specifica-
tions are 10 to a 100 times better than any existing tele-
scope. Because of the size of the project, its
construction has been divided into two phases: SKA1,
and its extension SKA2. SKA1 is currently being
designed, and construction will start in 2018. In the
same year, the design of SKA2 will start. This paper
will only look at the SKA1, because the specifications
for SKA2 have yet to be finalized. SKA1 will deploy
262,144 antennas and 350 dishes in remote areas in
South Africa and Australia, together producing several
petabits of data per second. Realizing the SKA1 will
face many challenges in diverse fields like data trans-
port, algorithms, data storage, and system design. In
this paper we will look at the computational challenges
of the project: the absolute performance and power
efficiency required. Power efficiency has special

attention, since several subsystems of the SKA1 will be
located far away from any human infrastructure.

The main contributions of this paper are as follows.
We present a detailed computational profile of SKA1
and its main algorithms, analyze the algorithms on
existing hardware, and discuss points for improvement.
We show relevant trends in high-performance comput-
ing and introduce the innovation metric to compare
generations of supercomputers. Finally, we argue about
the feasibility of deploying the SKA1 using commercial
off-the-shelf (COTS) hardware.

1IBM Research, The Netherlands
2IBM Research, Zurich, Switzerland
3Delft University of Technology, Delft, The Netherlands

Corresponding author:

Erik Vermij, IBM Research, PO Box 2 Dwingeloo, AA 7990, The

Netherlands.

Email: erik.vermij@nl.ibm.com

 at Bibliotheek TU Delft on February 11, 2015hpc.sagepub.comDownloaded from 

http://hpc.sagepub.com/


2. SKA1 project description

SKA1 (SKA Organisation, 2013) will consist of three
instruments: SKA1-low, SKA1-mid, and SKA1-survey.

SKA1-low is an aperture-array instrument (Perley,
1984) consisting of 1024 stations, each containing 256
dual-polarized antennas, which will receive signals
between 50 and 350 MHz. The antenna signals are
summed per station into a single beam, which is trans-
ported to a central signal-processing facility. The sta-
tions will be 35 m in diameter, and the maximum
distance between any two stations is 70 km. This instru-
ment will be very much like a big version of LOFAR,
the low-frequency aperture array built in the
Netherlands (Van Haarlem et al., 2013).

SKA1-mid will use 254 single-pixel feed dishes capa-
ble of receiving signals between 350 MHz and
13.8 GHz. From this frequency range, a 2.5 GHz band
can be selected for measurements. The distance
between any two dishes will be at most 200 km.

The SKA1-survey instrument will use 96 dishes,
each containing phased-array receivers. Every receiver
will have 94 antennas and can point 36 beams onto the
sky. In this way, a single dish has a huge field of view,
compared with the SKA1-mid dishes. The frequency
ranges between 250 MHz and 4 GHz, with an instanta-
neous bandwidth of 500 MHz. The maximum distance
between any two dishes will be 50 km.

2.1 Science cases for the SKA1

In the early stages of the SKA(1) project, two major sci-
ence cases where identified (SKA Organisation, 2014):

� understanding the history and role of neutral
hydrogen in the Universe from the dark ages to the
present-day;

� detecting and timing binary pulsars and spin-stable
millisecond pulsars in order to test theories of grav-
ity (including general relativity and quantum grav-
ity), to discover gravitational waves from
cosmological sources, and to determine the equa-
tion of state of nuclear matter.

Besides these two main science cases, there are about
10 others, like searching for exo-planets and studying
cosmic magnetism. From these science cases, various
use-cases have been defined, which give hints towards
the instrument and processing requirements of what is
needed to produce relevant scientific results. Two main
categories can be identified: imaging and non-imaging
use-cases. In the imaging mode we create images of the
sky, while for the non-imaging mode, we are interested
in, for example, time-series. Besides the very first process-
ing steps, these two modes have not much in common.

The first science case stated above (also known as
Epoch of Reionization), has an imaging use-case, and
some requirements are listed below:

� use the SKA1-low instrument, in a frequency range
from 50 to 300 MHz;

� 208,333 image frequency channels, about 1.2 kHz
each;

� image resolution between 7 arcseconds and 1 arc-
minute, for respectively calibration and actual
imaging;

� image dynamic range larger than 2.5 3 106.

From these requirements we can, to some extent,
dimension the telescope and processing pipeline. For
example, the image frequency channel requirement
translates to the Fast Fourier Transform (FFT) size
needed in the correlator (as explained in the next sec-
tion). The dynamic range requirement translates to the
quality of the entire calibration and imaging pipeline.

As we cannot evaluate all science cases in this work,
we will focus on an overall use-case: creating sky images
for the entire frequency range of the instrument, and no
channel integration. Based on experience with existing
telescopes, this is expected to be the most compute
intensive workload. In Figure 1 we show an example of
a sky image (for a single frequency channel). In this
image we see the distribution of hydrogen in the M81
galaxy, which shows a far more extended structure than
images made in the human-visible light spectrum.

2.2 Processing pipeline and applications

In Figure 2, we show the simplified processing flow for
the SKA1-low, using the continuum imaging science
case. For SKA1-mid and SKA1-survey, the antenna/
station subsystem is replaced by a single dish.

Figure 1. Cold atomic hydrogen gas in the M81 galaxy,
measured at 1420.4 MHz. As a reference, human-visible red
light has a frequency of 430 THz.
Source: Image courtesy of NRAO, DS Adler, DJ Westpfahl.

38 The International Journal of High Performance Computing Applications 29(1)

 at Bibliotheek TU Delft on February 11, 2015hpc.sagepub.comDownloaded from 

http://hpc.sagepub.com/


SKA1-survey phased-array feed processing is not ana-
lyzed in this article.

2.2.1 Station processing for SKA1-low. Because the SKA1-
low uses aperture arrays instead of dishes, extra pro-
cessing is required to synthesize a dish. The digitized
antenna signal from the analog-to-digital converter is
sent to a polyphase channelizer consisting of several
finite impulse response (FIR) filter banks and an FFT,
creating a number of frequency bands. These are fed
into the beamformer, in which every band is multiplied
with a complex phase shift to delay the signal, and
added to the corresponding band from the other anten-
nas. By delaying signals between antennas and sum-
ming them, the instrument focuses its sensitivity into a
specific direction, creating a so-called beam. The chan-
nelization before beamforming is needed because the
beamforming concept only works on small frequency
bandwidths (Jeffs, n.d.).

2.2.2 Central signal processing (CSP). The beam from every
station or dish undergoes a second channelization, gen-
erating finer frequency channels, after which the beams
are aligned in time and phase and, in the case of the
SKA1-low, undergo a gain correction to offset filter
artifacts from the station processing. The beam is corre-
lated (multiplied) (Thompson et al., 2001) with the data
from all other stations or dishes, and integrated over a
small period of time (the dump time). By correlating,
the signal-to-noise ratio of the data improves. A pair of
stations/dishes is called a baseline. The result is a visibi-
lity, which is a sample of the Fourier-transformed sky.
The visibilities are processed by removing RFI signals
and by performing a calibration step, to correct for
known system inequalities. Furthermore, a set of well-
known very bright sources (the A-team, sources such as

Cassiopeia A or Centaurus A) is demixed from the
dataset. After these steps, the data is often integrated
again in time and frequency, depending on frequency
smearing (Bridle and Schwab, 1989) and other science
requirements.

2.2.3 Science data processor (SDP). From the visibilities, a
sky image can be constructed. The calibration works on
a station/dish basis, and accounts for both direction-
independent effect (gains, crosstalks) and direction-
dependent effects, such as ionospheric distortion. The
corrected visibilities together with the calibration solu-
tion are passed to the imaging pipeline. From a tele-
scope model and the calibration parameters, we can
create a small map representing the complex gain func-
tion for a beam, called A-projection (analog to the lens
behavior in an optical camera) (Tasse et al., 2012). Two
maps of a single baseline are multiplied together, and
then multiplied with a W-term to account for the non-
coplanar baselines effect (Cornwell et al., 2008) (the
earth is not flat), and scaled up. The resulting map, or
convolution matrix, is multiplied with a visibility and
added (gridded) onto a Fourier grid. This gridding pro-
cess happens in various time-steps, called W-snapshots
(Cornwell et al., 2012). All snapshots are later refitted
into a single grid. A Fourier transform of the grid
results in a dirty image, and the CLEAN deconvolution
algorithm (Högbom, 1974) is used to extract bright sky
sources. After a certain threshold has been reached, the
extracted sources are converted back into visibilities
(de-gridding), which are subtracted from the original
dataset. This gives us a visibilities dataset with only
weak sources, and the gridding process starts over until
only noise is left. All extracted sources are kept in a sky
model. This sky model is used to make better estima-
tions about certain calibration parameters, resulting in
another feedback loop back into the calibration step.

AntennaFIR + FFT FIR + FFT Corrections

Correlate

Antenna

Beams

Station subsystem

CalibrationGriddingImaging

BeamformingADC

Visibilities

RFI removal
Initial calibration &

A-team removal

Sky image Sky model

BaselinesChannelsBands

De-gridding

Visibilities

Dirty imageSources

Estimated visibilities

CSP subsystem

SDP subsystem

Figure 2. Overview of the processing steps for the SKA1-low, using imaging pipeline. For SKA1-mid and SKA1-survey, the antenna/
station subsystem will be replaced by a dish.

Vermij et al. 39

 at Bibliotheek TU Delft on February 11, 2015hpc.sagepub.comDownloaded from 

http://hpc.sagepub.com/


After a sufficient amount of iterations, the sky model is
converted into a sky image.

3. SKA1 computational profile

In this section we analyze the compute requirements of
various applications in the SKA1 processing chain. The
key element of this research are the scaling rules, or
how the compute for an application relates to tele-
scope-parameters. The analysis is based on work per-
formed by Jongerius et al. (2014), internal project
documents, and our own research. We would like to
point out that the numbers in this section are estima-
tions. Furthermore, some algorithms, like calibration,
are missing, since they are at this moment not well
defined enough to include.

3.1 Station processing application set

3.1.1 Channelization. The channelization consists of a
fixed-size bank of FIR filters and a fixed-size (real to
complex) FFT. The compute requirements per second
per single-polarized antenna are given in equation (1).
Ntaps is the number of filter taps and Nbands is the num-
ber of frequency bands. Samplessec is the incoming sam-
ple rate.

Opschannelization =Samplessec

3 (2Ntaps + 5 3 0:5 log2 (2Nbands))
ð1Þ

3.1.2 Beamforming. The beamforming step multiplies
every dual-polarized antenna sample with 2 3 2
matrix holding complex weights. Thus every sample
undergoes 14 operations, 8 multiplications and 6
additions.

3.2 CSP application set

3.2.1 Channelization. The compute requirements per sec-
ond per beam for this step is a variation on equation
(1). In this case the inputs are complex numbers, and
we generate frequency channels instead of frequency
bands.

3.2.2 Correlation. The correlator multiplies two signals
together and adds the result to a sum. The compute for
the correlator per second per channel is given in equa-
tion (2). Here, Nstat is the number of stations or dishes.

Opscorrelator = 8 3 Samplessec 3 0:5 3 N 2
stat ð2Þ

An implementation challenge lies in the fact that
data arrives per station, containing all the frequency
channels of that station, whereas the algorithm wants
the data per frequency channel, containing all the sta-
tions. This data rearrangement is often called the

‘corner turn’, and frustrates practical implementations
of the correlator.

3.2.3 RFI removal. Based on experiences from LOFAR,
we see that good RFI removal costs 278 operations per
input sample (Offringa et al., 2010). This is not shown
in an equation.

3.3 Imaging application set

3.3.1 Convolution matrix generation. Creating the convolu-
tion matrices as described in Section 2.2.3 involves sev-
eral 2D FFTs and point-wise matrix multiplications.
The compute is however dominated by a single 2D
FFT, often not a power-of-two in size. The compute
requirements per second per channel and baseline are
given by equation (3). W is the average W-matrix size,
and O is a scaling factor. Ssec indicates how many sec-
onds the projection matrices are valid because of time
dependent effects. Cchan is the channel compression,
indicating how many channels can be served by the
same W-A combination. Niter is the number of itera-
tions following the feedback loops described in
Section 2.2.

OpsConv�matr�gen = 5 3
Niter

SsecCchan
3 W 2O2 log2 (W

2O2)

ð3Þ

The up-scaling introduces a form of interpolation in
the gridder. This is necessary because the location of
the visibilities is of much higher precision than the
Fourier plane gridpoints.

3.3.2 W-snapshots gridding. As de-gridding and gridding
are very much the inverse of each other with the same
kernels and properties, we will only focus on gridding
in this section. Based on the location of the visibility
with respect to the grid, a 1/64th subset of the convolu-
tion matrix is selected. The visibility is multiplied with
this matrix and added to the Fourier plane. The com-
pute per second per channel is given in equation (4).
Tdump is the correlator dump time, and Nbl the number
of baselines.

Opsgridding = (6+ 2)3
NiterNbl

Tdump
3 W 2 ð4Þ

A practical aspect of this algorithm is that additional
parallelism in the baselines exists. However, exploiting
that can be difficult because of the addition to a final
grid, which has to happen in an atomic way.

3.3.3 W-snapshots re-projection and 2D FFT. Refitting a
gridding snapshot consists of a coordinate transforma-
tion, and a 2D FFT. The re-projection is estimated to

40 The International Journal of High Performance Computing Applications 29(1)

 at Bibliotheek TU Delft on February 11, 2015hpc.sagepub.comDownloaded from 

http://hpc.sagepub.com/


be 50 operations per pixel per channel and is not shown
in an equation. The compute requirements per channel
for the FFT follow equation (5), where R is the amount
of pixels in one dimension of the image. Snapshotssec
indicates the amount of seconds a snapshot is valid.

Opssnapshot�refitting = 5 3
Niter

Snapshotssec
3 R2 log2 (R

2)

ð5Þ

3.3.4 Deconvolution. For this application we assume
Cotton-Schwab CLEAN (Schwab, 1984), together with
the W-snapshots described earlier. An estimate for the
compute requirements per channel for this algorithm
are shown in equation (6). Nmc is the number of minor
cycles, Npp is the amount of pixels along one axis of the
dirty-beam patch, Npi is the amount of pixels along one
axis of the image, Nal is the number of pixels in the
active-list, and Measurementsec is the measurement
time. A detailed explanation of these parameters is
beyond the scope of this work, but can be found in
Taylor et al. (1999).

Opsdeconvolution = 3 3 Nmc 3
Niter

Measurementsec

3 (
Npp

Npi
)2 3 Nal

ð6Þ

3.4 Compute requirements

With the analysis performed in the previous Sections,
and the specific parameters of all the instruments, we
can calculate the compute requirements. The result is
shown in Figure 3. From this figure it is clear that sev-
eral applications have very high compute requirements,
up to several hundreds of peta-operations per second.

To make this work as relevant as possible, we focus on
four compute intensive kernels, namely:

� fir + 1D FFT (channelization), used in the SKA1-
low stations and the CSP;

� correlation;
� 2d FFT, used in creating the convolution matrices,

the W-snapshots re-projection, and several places
not explicitly mentioned in this work;

� gridding.

In the remainder of this work we will discuss these
four kernels.

3.4.1 Parallelism and datatypes in the applications. The com-
pute requirements for SKA1 are high, but there are
also trivial parallelizations possible. Already recogniz-
able in the previous section, most SDP applications can
be parallelized over frequency channels. These channels
do not interact with each other, and they can therefore
be processed completely independent of each other.
Another parallelization possibility are the beams, which
is especially relevant for SKA1-Survey.

Another interesting point of our application set is
that the datatypes are not necessarily 32 or 64-bit float-
ing-point. For example, the input for the correlator are
8-bit integers. The applications in the SDP do not have
requirements like this, but it is clear that some steps
need more precision and/or dynamic range than others.
For example, the multiplication of a visibility with a
convolution matrix can be done with a ‘small’ datatype,
compared to the full Fourier plane.

3.5 Visibility buffer and dataflows

The visibility stream out of the correlator must be
stored in a visibility buffer (or UV buffer). The various
major and calibration cycles can then be executed on

 1e+08

 1e+10

 1e+12

 1e+14

 1e+16

 1e+18

 1e+20

Stat. channelization

Beam
form

ing

C
entral channelization

C
orrelation

R
FI rem

oval

Proj. m
at. gen.

W
-snapshots - gridding

W
-snapshots - reproj.

W
-snapshots - 2D

 FFT

D
econvolution

D
egridding

O
p
s
/s

e
c

SKA1-low
SKA1-mid

SKA1-survey

Figure 3. Compute requirement estimates for the various applications for the three SKA1 instruments.

Vermij et al. 41

 at Bibliotheek TU Delft on February 11, 2015hpc.sagepub.comDownloaded from 

http://hpc.sagepub.com/


this dataset. The visibilities need to be stored in a ping-
pong fashion, one buffer for the incoming data, and
one buffer for the dataset currently being processed.
Here we assume that the telescope will always be ‘on’.
In Figure 4 we show the amount of storage needed for
the visibilities, for the three instruments of the SKA1.
It can be observed that the buffer requirements are very
high, over 100 PB.

The input and output bandwidths for several steps
for the three SKA1 instruments are shown in Figure 5.
For the SKA1-low we see a huge bandwidth reduction
from the AD-converters to the station output, due to
the beamforming, where we sum all the antennas
together. For all the instruments, we see an increase in
data rates in the correlator. This is due to the large
number of stations/dishes we have in SKA1. Most
existing, smaller, telescopes reduce the data rates in the
correlator, due to the summation happening there. The
input data rate for the imaging pipeline is again much
higher than the correlator output because of the vari-
ous calibration and major loops that need to happen

here. Finally, the output data rates of the imaging pro-
cess (a set of images), is much smaller, as a large stream
of visibilities is converted into an image.

4. The SKA1 on today’s technology

As shown in the preceding sections, SKA1 will require
significant computational power. In this section, we will
be analyzing state-of-the-art implementations of the
key algorithms, and take a look at how we could opti-
mize current technology for SKA1.

4.1 Core technologies

A decade ago, the first multi-core CPU was introduced,
which sacrificed single-core peak performance for par-
allelism. With manycore architectures, this concept is
taken to the extreme. Besides using more cores, specia-
lized logic designed for a specific task can be added:
using additional area is traded off for better power effi-
ciency or throughput/latency (Venkatesh et al., 2010).
Performance and/or power efficiency can be further
improved by using heterogeneity. This can be done on a
node level by using multiple types of devices (CPUs and
GPUs for example), or within a single device (ARM�

big.LITTLE (ARM, n.d.) for example). Another kind
of heterogeneity comes in the form of attached FPGAs,
which are reconfigurable. Examples of this are the
Molen polymorphic processor (Vassiliadis et al., 2004),
and the systems of Convey Computer (Convey
Computer�, n.d.).

Most advances in power efficiency and throughput
we see today are based on these technologies. For
example, GPUs employ the manycore paradigm, have
thousands of small cores, and are often used in a het-
erogeneous setup. CPUs become faster by adding wider
and more specialized instructions (Intel, n.d.(b)) or
small accelerators (Intel, n.d.(a)).

4.2 The SKA1 kernels on existing products

4.2.1 Channelization. The work performed by
Shahbahrami et al. (2005) shows that FIR filters using
real numbers are well suited for SIMD parallelization.
For complex numbers additional data-shuffling hard-
ware is required. Jongerius et al. (2012) show that a
modern CPU can only run a real FIR filter at 10–15%
of its peak performance, because of the low number of
operations per byte of I/O. Romein (2013) shows that
this also holds true for complex FIR filters on GPUs.

The FFT algorithm features an irregular data access
pattern with low computational intensity, which make
it hard to run this algorithm efficiently on almost any
architecture. Jongerius et al. (2012) show that the
FFTW library (Frigo and Johnson, 1998) reaches 17%
of the peak performance of a modern CPU. The

 1e+16

 1e+17

 1e+18

UV buffer

B
y
te

s
SKA1-low
SKA1-mid

SKA1-survey

Figure 4. UV buffer requirements for the SKA1.

 1e+09

 1e+10

 1e+11

 1e+12

 1e+13

 1e+14

 1e+15

 1e+16

AD
C
 output

D
ish/station output

C
orrelator output

Im
aging pipline input

Im
aging pipline output

B
y
te

s
/s

e
c

SKA1-low
SKA1-mid

SKA1-survey

Figure 5. Bandwidths throughout the SKA1 instruments.

42 The International Journal of High Performance Computing Applications 29(1)

 at Bibliotheek TU Delft on February 11, 2015hpc.sagepub.comDownloaded from 

http://hpc.sagepub.com/


research by Xu et al. (2011) shows in detail how the
FFT can be optimized for SIMD processing on a mod-
ern CPU. Romein (2013) shows that FFTs on GPUs
are heavily IO bound, and achieve around 20% of the
peak performance, comparable with CPUs. Research
by Lobeiras et al. (2011) and nVidia’s own CUFFT
library confirm this.

LOFAR shows us that using FPGAs on the
Uniboard (Szomoru, 2011) is a good match for the
fixed-sized FIR and FFT. The multiple bitwidth modes
LOFAR can use are all supported on a single FPGA
image.

For the channelization we can conclude that SIMD
and SIMT models both work fine, and that the bottle-
necks are in the memory bandwidth and memory access
pattern.

4.2.2 Correlator. Nieuwpoort and Romein (2011) imple-
mented the correlation algorithm on several architec-
tures, namely CPUs, GPUs, the Blue Gene� /P
(Romein et al., 2010), and the Cell processor. They con-
clude that having sufficient local storage is key to good
performance. Both Cell and the Blue Gene� achieve
close to peak performance, whereas CPUs and GPUs
reach significantly lower numbers (70 and 40% respec-
tively). Work by (Clark et al., 2011) and (Romein,
2013) shows that, for modern GPUs, a peak perfor-
mance of up to 80% can be achieved for a large number
of stations, provided that significant optimization effort
is put into register and IO usage.1

Research by Woods (2010) and De Souza et al.
(2007) shows that FPGAs are a suitable candidate for
running the correlation algorithm, because of its regular
and simple structure. Utilizing custom datawidths is a
major, and realistic, advantage over other architectures.

In conclusion, the correlator runs well on most archi-
tectures, but a big local storage is important. Using cus-
tom datatypes gives an advantage.

4.2.3 2D FFT. A white paper published by Intel� (Intel,
2011) reports CPU utilizations ranging from 70% for a
64 3 64 dataset down to 50% for a 256 3 256 data-
set, using their commercial math packages. For larger
datasets the utilization drops, but one dimension is
always kept at or below 256, which makes the results
less valuable for this analysis. For the utilization on a
GPU we run some small benchmarks. Using an
nVidia� K20 GPU and CUDA� 6.0, we see rather flat
utilizations in the range of 7.5 and 10%, for input sizes
from 64 3 64 to 8192 3 8192. The datasets for 2D
FFTs on full sky images (10,000–50,000 pixels across)
will not fit on current day discrete accelerator devices,
thereby frustrating efficient implementation.

Despite vendor-optimized codes, we see that (large)
2D FFTs do not run very well on CPUs and GPUs.
Their computational intensity is somewhat better than
1D FFTs, but is still low.

4.2.4 Gridding. The naive way to implement this algo-
rithm gives a very low computational intensity (Van
Amesfoort et al., 2009), and a lot of atomic add opera-
tions. This is shown in Humphreys and Cornwell
(2011) for CPUs and GPUs. Both platforms achieve
around 5% of their peak performance because of band-
width limitations. An implementation on the Cell
(Varbanescu et al., 2009) achieves around 25% of the
peak performance, but only after considerable optimi-
zations in the memory bandwidth usage. GPU research
performed in Romein (2012) tries to eliminate atomic
add instructions as much as possible, and the GPU
reaches 25% of its peak performance. Even when there
are hardly any atomic add operations left (0.23% of all
grid updates), they still take up 26% of the time.

For the gridding, we can conclude that the simple
kernel will run well on most architectures; bottlenecks
are in the memory bandwidth and atomic additions.

4.3 Hints towards optimized architectures

This section presents and analyzes two aspects of the
key SKA1 algorithms: first, the power breakdown on
CPUs and GPUs, and second, the cache performance
on CPUs. Together with the work presented in Section
4.2, these analyses can be seen as a starting point for
research into architectures that can run the algorithms
at higher throughputs and with improved power effi-
ciency. The CPU tests are run on a model of an Intel�

Xeon� E5-2630 implemented by using the Gem5 simu-
lator (Binkert et al., 2011) and McPAT (Li et al., 2009),
while the GPU tests are run on a generic model of a
NVIDIA� GTX480 GPU implemented by using an
enhanced version of GPUWattch (Leng et al., 2013), a
microarchitecture-level GPU power simulator based on
GPGPU-Sim (Bakhoda et al., 2009) and McPAT. This
GPU architecture is not the most modern one, and is
already superseded by two architectures. The general
organization of GPUs has however not changed, there-
fore we believe the results shown are still relevant. The
CPU performance numbers are obtained by using the
Intel� Vtune� Amplifier and again a Xeon� E5-2630
processor.

For the channelization, we used the algorithm
described by Romein (2013). The correlator implemen-
tations are based on code presented by Nieuwpoort
and Romein (2011), and the gridding implementation
described by Romein (2012). For the 2D FFT kernel,
we used a 128 3 128 complex matrix as input. This is
a realistic size for the convolution matrix generation,
but somewhat small for the W-snapshot refitting.

4.3.1 Power breakdown. Figure 6 shows the results of our
power breakdown experiments. As can be seen, the
CPU shows very similar power distributions for all the
algorithms. Only a very small portion of the energy

Vermij et al. 43

 at Bibliotheek TU Delft on February 11, 2015hpc.sagepub.comDownloaded from 

http://hpc.sagepub.com/


goes to the actual computations. Around 50% of the
energy goes to the three levels of cache, and another 20
to 30% is spent in the memory controllers. Although
not shown in the graph, almost all the power for the
level two and level three caches is due to the static
power component. For the level one cache, the static
and dynamic power distribution is about equal. This
means that a significant part of a CPUs power usage is
due to the presence of these big caches, which consume
energy even when they are idle. From the graph it is
possible to notice the slightly higher usage of the mem-
ory controllers in the channelization, due to the stream-
ing nature of the algorithm. Moreover, the correlator
uses more power in the level one cache, which corre-
sponds with its intensive use of a local storage, as indi-
cated in Section 4.2.2.

The breakdown for the GPU shows a bigger power
percentage for the functional units than the CPU, as
one would expect with GPUs being compute oriented
platforms. This difference is especially clear when run-
ning a compute-bound algorithm like the correlator.
For the 2D FFT the difference is much smaller. This
shows that compute bound problems run more effi-
ciently on a GPU, and this is of course the reason why
they are used in HPC. Another interesting observation
is the large amount of energy GPUs spend in the

register file (especially compared to CPUs), around
15%. This corresponds with the fact that the register
file in a GPU is large, and can be compared with the
level-one cache in CPUs. The constant power (around
15%) is mainly caused by processor and memory leak-
age power and peripheral circuits’ power (Leng et al.,
2013). In the case of GPUs, it can be noticed that we
have a high power consumption of the floating point
units while running the correlator, as we would expect
for a compute bound problem. Furthermore, the 2D
FFT consumes a lot of energy in the local storage (reg-
ister files, shared memory and level two cache), corre-
sponding with the large datasets it has to process in a
relatively inefficient way.

4.3.2 CPU cache performance. The results for the CPU
cache performance are shown in Table 1, and corre-
spond with what we know about the algorithms. The
channelization does not use the level two and level three
cache: data is streamed from external RAM into level
one, processed and evicted again. For the correlator we
know that it appreciates large amounts of local storage,
this is reflected in the numbers: level one misses almost
always hit in level two. The 2D FFT behaves in the
same way as the channelization, but also uses the level

0

10

20

30

40

50

60

70

80

90

100

Chann. Corr. 2D FFT Grid.

P
o

w
e

r 
b

re
a

k
d

o
w

n
 (

%
)

Algorithms

Floating Point Units
Integer ALUs

Reg. Files
L1 I-caches

L1 D-caches
Cores - Other

L2 Caches
L3 Cache

On-chip Comm.
Mem. Ctrls.

0

10

20

30

40

50

60

70

80

90

100

Chann. Corr. 2D FFT Grid.

P
o

w
e

r 
b

re
a

k
d

o
w

n
 (

%
)

Algorithms

Floating Point Units
Integer ALUs

Reg. Files
Cores - Other
Shared Mem.

L2 Cache
On-chip Comm.

Mem. Ctrls.
Other

Const.

Figure 6. Power breakdown on CPUs (left) and GPUs (right) for the four SKA1 algorithms considered in this work: channelization
(Chann.), correlator (Corr.), 2D FFT, and gridding (Grid.).

Table 1. CPU cache performance and ALU utilization for the four SKA1 algorithms considered in this work. Here ‘Chann.’ is the
station channelization.

Chann. (%) Correlator (%) 2D FFT (%) Gridding (%)

Cycles under L1$ miss 29 32 46 1
Cycles under L1$ miss, L2$ hit 3 29 26 1
Cycles under L2$ miss, L3$ hit 4 2 7 0
Cycles under L3$ miss 23 1 13 0

44 The International Journal of High Performance Computing Applications 29(1)

 at Bibliotheek TU Delft on February 11, 2015hpc.sagepub.comDownloaded from 

http://hpc.sagepub.com/


two cache, since it uses larger datasets. The gridding
exhibits very good cache behavior.

4.3.3 Considerations. From these numbers, we can extract
some general guidelines on how to improve the power
efficiency and throughput of these four algorithms.

GPUs spend a significant amount of energy in the
floating point units, the register file and the rest of the
core. We see a similar picture for the corresponding
CPU categories. Adding macro instructions to the
core-architecture for executing FFT butterflies (beyond
existing shuffle instructions), complex multiplications,
or even bigger instruction blocks, would result in less
register file accesses and more efficient execution units.
This could reduce the power consumption and improve
the throughput. Furthermore, core-architectures could
be optimized to capture the simplicity and regularity of
the algorithms. The correlator for example, has basi-
cally a single type of instruction (complex multiply
accumulate) inside several loops, but still, when run-
ning this algorithm on a CPU, 5% of the power goes to
the instruction cache. Exploiting this regularity can also
improve the power efficiency and throughout.

Besides the computational part of the chips, the local
memories use large amounts of energy, and are often
also a performance bottleneck. Making the memories
deeper and wider will make performance better, but the
energy consumption worse. A possible improvement
would be to be able to exploit the regularity and pre-
dictability of the data needs. With carefully arranged
accesses, specific to our SKA1 algorithms, we could uti-
lize the available bandwidth to the largest extent.
Similarly an improved, more SKA1 specific, organiza-
tion of the local memories would increase data locality,
reducing the number of accesses to a lower level or the
external memory. The numbers presented in Table 1

and the power breakdown observations in Section 4.3.1
can serve as a guideline here.

5. HPC trends

In this section, we will look at several HPC trends, fore-
most based on the Top500 (n.d.) and Green 500 (n.d.).
With the petaFLOPS (PFLOPS) well achieved, the
high-performance computing community is looking at
the next big step: exaFLOPS of sustained Linpack per-
formance. In this section, we use the data from the June
2014 lists.

5.0.4 Peak performance analysis

Figure 7 shows the measured performance of the num-
ber one systems of the Top 500 for the past decade.
Note we only include new number one systems: includ-
ing the number one from every list would make the fig-
ure less clear, while not changing the result. It can be
seen that on a logarithmic scale, this dataset fits a
straight line, which goes back all the way back to 1993.
The performance of the number one systems increases
with roughly a factor of two every year. These perfor-
mance projections suggest that it could be possible to
build an exaFLOP system in 2018.

5.0.5 Power efficiency lags behind peak performance

Figure 7 shows, in FLOPS per watt, the power effi-
ciency of the system. Also in this case, we can observe a
straight line. The slope of the power efficiency is lower
than that of the peak performance, meaning that peak
performance is growing exponentially faster than power
efficiency. This means that new systems use exponen-
tially more absolute power than their predecessors. We

 0.01

 0.1

 1

 10

 100

Jun ’02 (Earth sim)

Nov ’04

Jun ’05 (Blue Gene L)

Nov ’05

Nov ’07

Jun ’08 (Roadrunner)

Nov ’09 (Jaguar)

Nov ’10 (Tianhe 1a)

Jun ’11 (K)

Jun ’12 (Sequoia)

Nov ’12 (Titan)

Jun ’13 (Tianhe-2)

Peak performance (PetaFLOPS/sec.)
Power efficiency (Gigaflops/watt)

Innovation

Figure 7. Trends for the new number one systems in the Top 500. Innovation is explained in Section 5.0.6.

Vermij et al. 45

 at Bibliotheek TU Delft on February 11, 2015hpc.sagepub.comDownloaded from 

http://hpc.sagepub.com/


can generalize these Linpack numbers for general-
purpose workloads (Kamil et al., 2008): power bills are
becoming higher and cooling will become more imprac-
tical. When the practical absolute power usage limit is
reached in the not so distant future, the growth in peak
performance will have to slow down to follow the trend
in power efficiency.

5.0.6 Innovation analysis

Every new number one supercomputer is faster than its
predecessor, and, most of the time, also more power
efficient. We are interested in the level of innovation
that every new generation brings, i.e. how much closer
it brings us to high-performance and power-efficient
computing. To investigate this, we create the
Innovation metric, shown in Equation (7). Perf, Eff and
n are the measured peak performance, power efficiency
and system index, respectively. The results are shown in
Figure 7. The higher this number the better.

Innovationn =
Perfn
Perfn�1

3
Effn

max (Eff0 : Effn�1)
ð7Þ

Over the past decade, an interesting observation is
that, out of all the systems, the best scoring ones are all
based on custom-designed hardware (Blue Gene�/L,
PowerXCell�, K, Blue Gene� /Q). The lower scoring
systems are all based on commercial off-the-shelf
(COTS) products, or are extensions of existing systems.
This analysis shows us that although the use of COTS
products is convenient for many reasons, they appar-
ently do not give us the big steps forward we need.

5.1 Heterogeneity and power efficiency in HPC

In recent years, accelerators have gained in popularity
in supercomputers. These products are often celebrated
for their power efficiency and peak performance.

For power efficiency, we look at the Green 500: the
Top 500 sorted by power efficiency. The current, GPU
based and oil-immersed, green number one system
achieves an impressive 4.38 GFLOPS/W (1.9 for the
Top 500 number one), but is a factor 157 slower in
peak performance. This difference in peak performance
makes comparing the efficiency hard, because small
systems can always be more power efficient than big
ones, because of less communication overhead and
other scaling rules.

The first big supercomputer in the green list is the
Piz Daint. This system is number six in the Top 500
(6.2 PFLOPS), and number four in the Green 500 (3.18
GFLOPS/W). This shows that it is possible to build big
heterogeneous supercomputers, with around 50% bet-
ter performance per watt than the homogeneous Blue
Gene� /Q systems. These results might, however, not
hold for a wider set of benchmarks. This is reflected in

Dongarra (n.d.), noting that Linpack no longer repre-
sents real workloads, which are often not as GPU-
friendly as the DGEMM kernel in Linpack.

In the Top 500, only a little over 10% of the systems
use accelerators, a number that hardly changed in the
last four lists. Important factors for this might be the
extra development effort they require, the narrower
application space that will run well on them, and the
only modest improvement in peak performance (Lee et
al., 2010) and power efficiency as shown above.

5.1.1 Future of heterogeneity. Although the acceptance of
accelerators as we know them today is still slow (or
even halted if we look at the Top 500), we have to real-
ize that specialization is, besides integration, one of the
few things left to increase the performance of (silicon
based) computer systems. Thus, the concept of accelera-
tors is very valid, and in the upcoming years we will see
two trends emerging: one, the host—PCIe—accelerator
model will change, to remove the PCIe bottleneck, give
accelerators fast access to large amounts of memory,
and remove the master–slave execution model. And
two, a much deeper form of specialization, towards
workload-optimized systems instead of a one-size-fits-
all approach. In this direction, both Microsoft�

(Putnam et al., 2014) and Google� (2014) recently
announced (partly) custom hardware to drive their
data-centers.

6. Technology Challenges For the SKA1

6.1 Traditional walls

The traditional technology walls have been power,
memory, and instruction-level parallelism. Dennard
scaling (Dennard et al., 2007) no longer works; thus,
with every technology scaling of S, the amount of tran-
sistors that can be switched on while staying within the
power envelope shrinks by a factor of S (Esmaeilzadeh
et al., 2011). Furthermore, moving data costs a lot of
power: moving data from external RAM to the com-
pute core can be a factor of 1000 more expensive than
doing a computation on that data (Keckler et al., 2011).

Regarding memory, we see that compute perfor-
mance is growing exponentially faster than bandwidth
(Wulf and McKee, 1995), and latency lags bandwidth
quadratically (Patterson, 2005). This means that getting
enough data to feed the cores on time is becoming
increasingly hard. As an example, for nVidia’s� Tesla�

product line, the bandwidth-to-compute ratio has wor-
sened by a factor of 2.15 in the past 5 years (C870 to
K40) (Cook, 2012).

Lastly, instruction-level parallelism is limited in
every real application, thereby limiting the return on
investments regarding wider execution machines
(Hennessy and Patterson, 2006).

46 The International Journal of High Performance Computing Applications 29(1)

 at Bibliotheek TU Delft on February 11, 2015hpc.sagepub.comDownloaded from 

http://hpc.sagepub.com/


6.2 SKA1 challenges

For SKA1, the power and memory walls can be sum-
marized into a data-locality problem. The instrument
generates so much data (Section 3.5), that it is impossi-
ble to move the data to an appropriate processing
device. As a node-level example: a modern PCIe-
attached device needs hundreds of operations per
incoming byte to run at a high utilization. We do not
have that amount of operations, as indicated in Section
4. Between nodes we see a similar problem: a signifi-
cant portion of supercomputing power goes to the
interconnect, and with the rapidly increasing node peak
performance, data communication cannot keep up.
Managing where the data is with respect to the com-
pute resources will be the key challenge.

As discussed in the introduction, power efficiency is
of special importance to the SKA1, since several sub-
systems will be located in remote areas. Power will have
to be transported there or generated on the spot. This
gives another dimension to the power efficiency
challenge.

7. Can SKA1 ride the technology wave?

7.1 At node level

The algorithms discussed and analyzed in Sections 3
and 4 exhibit features that do not map well onto exist-
ing technologies. In Section 4.3, we already briefly dis-
cussed some of them: predictable data-access patterns,
high bandwidth-to-compute ratio, and complex arith-
metic. Other exploitable features are narrow and/or
flexible datawidths and simple highly repetitive kernels.

Given the challenging requirements of the SKA1, we
cannot afford to either waste computational resources
or energy, or not to benefit from some specific features
the algorithms offer us. An extra level of specialization,

such as the industry examples indicated in Section
5.1.1, will be needed.

7.2 On system level

In Figure 8, we show the compute versus power effi-
ciency operation points for the several subsystems of
SKA1. The SKA1 systems should be built towards the
end of this decade. Power requirements are found in
the SKA1 baseline design, and the compute is based on
Section 3. The graph furthermore shows several point
sets and a trend based on several Top 500 top-10 sys-
tems. We would like to emphasize that our kernels will
run on a lower utilization than the Linpack kernel for
the Top/Green 500 datapoints. For this figure we do
not use the latest Top 500 list, since the number 10 in
that list (the only new one), does not have a reported
power number.

Two observations can be made. First, the power effi-
ciency of the subsystems are orders of magnitude apart.
This means that the power budgets are not balanced
very well. As illustrated we also included a weighted
power efficiency in Figure 8. Secondly, it is clear that
riding the technology wave and waiting for systems
available at the end of the decade will not give us the
hardware needed to realize some subsystems (foremost
the SDPs) of SKA1.

Given the data challenges indicated in Section 6,
novel data-centric approaches should be considered. A
high-level example of this could be to split the system
physically into frequency channels (as described in
Section 3.4). Data can stay at rest within a ‘channel-
node’, while the node does all consecutive processing
steps. This would significantly reduce the load on the
system interconnect, and thereby reduce the power con-
sumption. With such an approach, we would end up
with a true data-centric supercomputer.

 0.01

 0.1

 1

 10

 100

 1000

 10000

 0.1  1  10  100  1000  10000

P
o
w

e
r 

e
ff
ic

ie
n
c
y
 (

G
F

L
O

P
S

/w
a
tt
)

Performance (Peta ops/second)

3202810231028002

Weighted average power efficiency

SKA1-low station processing

SKA1-low/survey CSP

SKA1-low/survey SDP

SKA1-mid CSP

SKA1-mid SDP

Top 500 Nov 2008 Top 10
Top 500 Jun 2011 Top 10
Top 500 Nov 2013 Top 10
Green 500 Nov 2013 Top 10

Figure 8. The compute and power efficiency points for the SKA1 subsystems.

Vermij et al. 47

 at Bibliotheek TU Delft on February 11, 2015hpc.sagepub.comDownloaded from 

http://hpc.sagepub.com/


8. Conclusion—Realizing the SKA1

In this paper, we presented an overview of SKA1 from
a compute perspective, and analyzed whether the
instrument can be built using COTS hardware in 2018.
Three observations can be made: (1) SKA1 will require
large amounts of computational power at a very high
power efficiency. (2) Most SKA1 algorithms will only
run at efficiencies of around 1 to 50% on COTS hard-
ware, with clear points for improvement being smarter
memory accesses and specialized execution units. (3)
The HPC innovation and trend analysis shows that
custom-build machines achieve two to three times
larger improvement in compute capabilities and power
efficiency than systems employing COTS hardware.

We conclude that waiting for new technology to
arrive will not give us the instruments currently planned
at the end of the decade: an order of magnitude better
power efficiency and compute capabilities are required.
Developing new, workload specific technology, specia-
lized for the tasks at hand must be considered. Solving
the data-locality problem will be key: there should
always be a suitable compute element near the data, on
every level.

Acknowledgement

This work is conducted in the context of the joint ASTRON
and IBM DOME project.

Note

1. Blue Gene is a trademark of International Business
Machines Corporation, registered in many jurisdictions
worldwide. Other product or service names may be trade-
marks or service marks of IBM or other companies.

Funding

This work was supported by the Netherlands Organization
for Scientific Research (NWO), the Dutch Ministry of EL&I,
and the Province of Drenthe, the Netherlands.

References

ARM (n.d.) big.LITTLE processing. Available at: http://

www.arm.com/products/processors/technologies/biglittle

processing.php.
Bakhoda A, Yuan GL, Fung WWL, et al. (2009) Analyzing

CUDA workloads using a detailed GPU simulator. In:

Proceedings of the IEEE International Symposium on Per-

formance Analysis of Systems and Software (ISPASS, Bos-

ton, 26-28 April 2009), pp.163–174. doi:10.1109/

ISPASS.2009.4919648.
Binkert N, Beckmann B, Black G, et al. (2011) The gem5

simulator. SIGARCH Computer Architecture News 39(2):

1–7. doi:10.1145/2024716.2024718.
Bridle AH and Schwab FR (1989) Wide field imaging I: Band-

width and time-average smearing. Synthesis Imaging in

Radio Astronomy 6: 247.

Clark MA, Plante PCL and Greenhill LJ (2011) Accelerating

radio astronomy cross-correlation with graphics process-

ing units. Computing Research Repository abs/1107.4264.
Convey Computer� (n.d.) Convey Computer website. Avail-

able at: http://www.conveycomputer.com.
Cook S (2012) CUDA Programming: A Developer’s Guide to

Parallel Computing with GPUs. 1st edition. San Francisco,

CA: Morgan Kaufmann Publishers.
Cornwell T, Golap K and Bhatnagar S (2008) The non-

coplanar baselines effect in radio interferometry: The W-

Projection algorithm. IEEE Journal of Selected Topics in

Signal Processing 2(5): 647-657.
Cornwell TJ, Voronkov MA and Humphreys B (2012) Wide

field imaging for the square kilometre array. Proceedings

of SPIE 8500, Image Reconstruction from Incomplete Data

VII 8500L: 1–12. doi:10.1117/12.929336.
De Souza L, Bunton J, Campbell-Wilson D, et al. (2007) A

radio astronomy correlator optimized for the Xilinx Virtex-

4 SX FPGA. In: Proceedings of the international conference

on field programmable logic and applications, Amsterdam,

27-29 August, pp.62–67. doi:10.1109/FPL.2007.4380626.
Dennard R, Gaensslen F, and Yu HN (2007) Design of ion-

implanted MOSFET’s with very small physical dimen-

sions. IEEE Solid-State Circuits Society Newsletter 12(1):

38–50. doi:10.1109/N-SSC.2007.4785543.
Dongarra J (n.d.) HPCG benchmarking. Available at: http://

www.sandia.gov/maherou/docs/HPCG-Benchmark.pdf.
Esmaeilzadeh H, Blem E, St Amant R, et al. (2011) Dark

silicon and the end of multicore scaling. SIGARCH Com-

puter Architecture News 39(3): 365–376. doi:10.1145/

2024723.2000108.
Frigo M and Johnson SG (1998) FFTW: An adaptive soft-

ware architecture for the FFT. In: Proceedings of the 1998

IEEE international conference on acoustics speech and sig-

nal processing, Vol. 3, Seattle, 12–15 May, pp.1381–1384.
Google� (2014) Custom motherboard announcement. Avail-

able at: https://plus.google.com/111282580643669107165/

posts/Uwh9W3XiZTQ.
Green 500 (n.d.) Green500 website. Available at: http://

www.green500.org/.
Hennessy JL and Patterson DA (2006) Computer Architec-

ture: A Quantitative Approach. 4th edition. San Francisco,

CA: Morgan Kaufmann Publishers.
Högbom JA (1974) Aperture synthesis with a non-regular dis-

tribution of interferometer baselines. Astronomy and Astro-

physics Supplement 15: 417.
Humphreys B and Cornwell T (2011) Analysis of convolu-

tional resampling algorithm performance. Available at:

http://www.skatelescope.org/uploaded/59116_132_memo_

humphreys.pdf.
Intel (n.d.(a)) Intel random number generator. Available at:

http://software.intel.com/sites/default/files/m/d/4/1/d/8/441_

Intel_R__DRNG_Software_Implementation_Guide_final_

Aug7.pdf.
Intel (n.d.(b)) Intel SSE and AVX extensions. Available at:

http://software.intel.com/en-us/intel-isa-extensions.
Intel (2011) Signal processing on Intel� architecture: Perfor-

mance analysis using Intel� performance primitives. Tech-

nical report, Intel�. Available at: http://www.intel.nl/

content/dam/doc/white-paper/signal-processing-on-intel-

architecture.pdf.

48 The International Journal of High Performance Computing Applications 29(1)

 at Bibliotheek TU Delft on February 11, 2015hpc.sagepub.comDownloaded from 

http://www.arm.com/products/processors/technologies/biglittleprocessing.php
http://www.skatelescope.org/uploaded/59116_132_memo_humphreys.pdf
http://www.intel.nl/content/dam/doc/white-paper/signal-processing-on-intelarchitecture.pdf
https://plus.google.com/111282580643669107165/posts/Uwh9W3XiZTQ
http://software.intel.com/sites/default/files/m/d/4/1/d/8/441_Intel_R__DRNG_Software_Implementation_Guide_final_Aug7.pdf
http://hpc.sagepub.com/


Jeffs B (n.d.) Beamforming presentation. Available at: http://

ens.ewi.tudelft.nl/Education/courses/et4235/

Beamforming.pdf.
Jongerius R, Corporaal H, Broekema C, et al. (2012) Analyz-

ing LOFAR station processing on multi-core platforms.

In: Proceedings of the ICT Open 2012, 22–23 October 2012,

pp. 71-76. Rotterdam, The Netherlands,. Available at:

http://www.ictopen2013.nl/content/proceedings+2012.
Jongerius R, Wijnholds S, Nijboer R, et al. (2014) An End-to-

End Computing Model for the Square Kilometre Array.

IEEE Computer 47(9).
Kamil S, Shalf J and Strohmaier E (2008) Power efficiency in

high performance computing. In: Proceedings of the IEEE

international symposium on parallel and distributed process-

ing, Miami, 14–18 April, pp.1–8. doi:10.1109/

IPDPS.2008.4536223.
Keckler S, Dally W, Khailany B, et al. (2011) GPUs and the

future of parallel computing. IEEE Micro 31(5): 7–17. doi:

10.1109/MM.2011.89.
Lee VW, Kim C, Chhugani J, et al. (2010) Debunking the

100 3 GPU vs. CPU myth: An evaluation of throughput

computing on CPU and GPU. SIGARCH Computer

Architecture News 38(3): 451–460. doi:10.1145/

1816038.1816021.
Leng J, Hetherington T, ElTantawy A, et al. (2013) GPU-

Wattch: Enabling energy optimizations in GPGPUs. In:

Proceedings of the 40th annual international symposium on

computer architecture, Tel-Aviv, 23–27 June. doi:10.1145/

2485922.2485964.
Li S, Ahn JH, Strong R, et al. (2009) McPAT: An integrated

power, area, and timing modeling framework for multicore

and manycore architectures. In: Proceedings of the 42nd

annual international symposium on microarchitecture, New

York, 12–16 December, pp.469–480.

Lobeiras J, Amor M and Doallo R (2011) FFT implementa-

tion on a streaming architecture. In: Proceedings of the

19th Euromicro international conference on parallel, distrib-

uted and network-based processing (PDP), Ayia Napa, 9–

11 February, pp.119–126. doi:10.1109/PDP.2011.31.
Nieuwpoort R and Romein J (2011) Correlating radio astron-

omy signals with many-core hardware. International Jour-

nal of Parallel Programming 39(1): 88–114. doi:

10.1007/s10766-010-0144-3.
Offringa AR, de Bruyn AG, Zaroubi S, et al. (2010) A

LOFAR RFI detection pipeline and its first results. In:

Groningen U (ed.) RFI mitigation workshop—RFI 2010,

Groningen. Proceedings of Science, POS(RFI2010)036.

SISSA.
Patterson PD (2005) Latency lags bandwidth. In: Proceedings

of the 2005 international conference on computer design.,

San Jose, 2–5 October. pp.3–6. doi:10.1109/ICCD.2005.67.
Perley RAE (1984) A proposal for a large, low frequency

array located at the VLA site. VLA Scientific Memoran-

dum: 146.
Putnam A, Caulfield A, Chung E, et al. (2014) A reconfigur-

able fabric for accelerating large-scale datacenter services.

In: Proceedings of the 41st annual international symposium

on computer architecture, Minneapolis, 14–18 June, pp.

13–24. DOI: 10.1109/ISCA.2014.6853195. Available at

http://research.microsoft.com/apps/pubs/default.aspx?id=21

2001.

Romein J (2013) Signal processing on GPUs for radio tele-

scopes. In: Proceedings of the GPU technology conference.

San Jose, 18-21 March.
Romein JW (2012) An efficient work-distribution strategy for

gridding radio-telescope data on GPUs. In: Proceedings of

the ACM international conference on supercomputing,

Venice, Italy, 25–29 June pp.321–330.
Romein JW, Broekema PC, Mol JD, et al. (2010) The

LOFAR correlator: Implementation and performance

analysis. In: Proceedings of the 15th ACM SIGPLAN sym-

posium on principles and practice of parallel programming,

Bangalore, 9–14 January, pp.169–178. doi:10.1145/

1693453.1693477.
Schwab FR (1984) Relaxing the isoplanatism assumption in

self-calibration; Applications to low-frequency radio inter-

ferometry. Astronomical Journal 89: 1076–1081.
Shahbahrami A, Juurlink B and Vassiliadis S (2005) Efficient

vectorization of the FIR filter. In: Proceedings of the 16th

annual workshop on circuits, systems and signal processing,

Veldhoven, 17–18 November, pp.432–437.
SKA Organisation (n.d.) Square kilometer array. Available

at: http://www.skatelescope.org/.
SKA Organisation (2013) SKA1 Baseline design. Available

at: https://www.skatelescope.org/wp-content/uploads/2012/

07/SKA-TEL-SKO-DD-001-1_BaselineDesign1.pdf.
SKA Organisation (2014) SKA phase 1 science (level 0)

requirements specification. Available at: https://www.ska-

telescope.org/wp-content/uploads/2014/03/SKA1-Level0-

Requirements.pdf.
Szomoru A (2011) The UniBoard: A multi-purpose scalable

high-performance computing platform for radio-

astronomical applications. In: Proceedings of the URSI

General Assembly and Scientific Symposium, Istanbul, 13–

20 August, pp.1–4. doi:10.1109/URSIGASS.2011.

6051281.
Tasse C, van der Tol B, van Zwieten J, et al. (2012) Applying

full polarization A-Projection to very wide field of view

instruments: An imager for LOFAR. Astronomy & Astro-

physics, Article number A105, Volume 553, May 2013.

Available at: http://arxiv.org/abs/1212.6178.
Taylor GB, Carilli CL and Perley RA (eds) (1999) Synthesis

Imaging in Radio Astronomy IIAstronomical Society of the

Pacific Conference Series, Vol. 180). (San Francisco, CA:

Astronomical Society of the Pacific.
Thompson AR, Moran JM and Swenson GW (2001) Inter-

ferometry and Synthesis in Radio Astronomy. 2nd edition.

Weinheim, Germany: Wiley-VCH.
Top500 (n.d.) Top500 website. Available at: http://www.to-

p500.org/.
Van Amesfoort AS, Varbanescu AL, Sips HJ, et al. (2009)

Evaluating multi-core platforms for HPC data-intensive

kernels. In: Proceedings of the 6th ACM conference on

computing frontiers, Ischia, 18–20 May, pp.207–216.

doi:10.1145/1531743.1531777.
Van Haarlem M, Wise M, Gunst A, et al. (2013) LOFAR:

The LOw-Frequency ARray. Astronomy and Astrophysics.

556(August 2013). Article number A2.
Varbanescu AL, van Amesfoort AS, Cornwell T, et al. (2009)

Building high-resolution sky images using the Cell/B.E. Sci-

ence of Computer Programming 17(1–2): 113–134. Available

at: http://dl.acm.org/citation.cfm?id=1507443.1507454.

Vermij et al. 49

 at Bibliotheek TU Delft on February 11, 2015hpc.sagepub.comDownloaded from 

https://www.skatelescope.org/wp-content/uploads/2012/07/SKA-TEL-SKO-DD-001-1_BaselineDesign1.pdf
http://ens.ewi.tudelft.nl/Education/courses/et4235/Beamforming.pdf
http://research.microsoft.com/apps/pubs/default.aspx?id=212001
http://hpc.sagepub.com/


Vassiliadis S, Wong S, Gaydadjiev G, et al. (2004) The
MOLEN polymorphic processor. IEEE Transactions on

Computers 53(11): 1363–1375. doi:10.1109/TC.2004.104.
Venkatesh G, Sampson J, Goulding N, et al. (2010) Conserva-

tion cores: Reducing the energy of mature computations.
SIGARCH Computer Architecture News 38(1): 205–218.
doi:10.1145/1735970.1736044.

Woods A (2010) Accelerating software radio astronomy FX

correlation with GPU and FPGA co-processors. Master’s
Thesis, University of Cape Town, South Africa. http://
books.google.nl/books?id=ANHKXwAACAAJ.

Wulf WA and McKee SA (1995) Hitting the memory wall:
Implications of the obvious. SIGARCH Computer Archi-

tecture News 23(1): 20–24. doi:10.1145/216585.216588.
Xu W, Yan Z and Shunying D (2011) A high performance

FFT library with single instruction multiple data (SIMD)
architecture. In: Proceedings of the international conference

on electronics, communications and control (ICECC),
Ningbo, 9–11 September, pp.630–633. doi:10.1109/
ICECC.2011.6066463.

Author biographies

Erik Vermij is a predoctoral researcher at IBM
Research. He is pursuing his PhD at the Delft
University of Technology, where he earlier received his
BSc and MSc in electrical engineering and computer
engineering. His research interests include high-
performance computing, computer architecture, and
reconfigurable computing.

Leandro Fiorin received an MS degree in electronic
engineering from the University of Cagliari, Italy, a
Master of Engineering degree in embedded system
design from the University of Lugano (USI),
Switzerland, and a PhD degree from the Faculty of
Informatics USI, in 2001, 2004, and 2012, respectively.
He is currently research scientist at IBM Research, at
the ASTRON and IBM Center for Exascale
Technology, the Netherlands. Previously, he was a
research associate at the Advanced Learning and
Research Institute (ALaRI) on Embedded System
Design, USI, working on networks-on-chip and
embedded systems architectures. His research interests
focus on energy efficient computing architectures,
fault-tolerant and secure networks-on-chip and
embedded systems, on-chip multiprocessors, and recon-
figurable systems. He is coauthor of several scientific
papers on networks-on-chip, design methodologies for

systems-on-chip, and embedded system security, and of
two patents on networks-on-chip security. He is a
member of the IEEE.

Rik Jongerius is a predoctoral researcher at IBM
Research and a PhD candidate at the department of
Electrical Engineering at the Eindhoven University of
Technology. His research interests include high-
performance computing, computer architecture, and
accelerators. He received his MSc degree in Electrical
Engineering from the Eindhoven University of
Technology in The Netherlands. He is a student mem-
ber of the IEEE.

Christoph Hagleitner currently manages the accelerator
technologies group at the IBM Research Zurich Lab in
Ruschlikon, Switzerland. The research includes all
aspects of hardware accelerators from system architec-
ture and compilers to new nano-electro-mechanical
(NEM) devices and circuits. He obtained a diploma
degree and a PhD degree in Electrical Engineering
from the Swiss Federal Institute of Technology (ETH),
Zurich, in 1997 and 2002, respectively. During his PhD
work, Christoph specialized in interface circuitry and
system aspects of CMOS integrated micro- and nano-
systems. He worked on CMOS integrated probes for
parallel AFM imaging and chemical sensors. After
receiving his PhD degree for a thesis on a CMOS
single-chip gas detection system, he headed to the
circuit-design group of the Physical Electronics
Laboratory at ETH Zurich. In 2003 he joined IBM
Research, where he worked on the system architecture
and analog-frontend design of a novel probe-storage
device (the ‘Millipede’ Project). Since 2008, he manages
the accelerator technologies team. Christoph has served
as a TPC member for the ISSCC as well as the
ESSCIRC conference, and has authored and co-
authored six book chapters and 80 plus papers in jour-
nals and conference proceedings.

Koen Bertels is a Professor of computer engineering
and leads the CE lab at Delft University of
Technology, The Netherlands. His research interests
focus on heterogeneous multicore architectures with an
emphasis on system design aspects and programmabi-
lity issues involving retargetable compilers.

50 The International Journal of High Performance Computing Applications 29(1)

 at Bibliotheek TU Delft on February 11, 2015hpc.sagepub.comDownloaded from 

http://hpc.sagepub.com/

