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Abstract— Because of technology scaling, the soft error rate 

has been increasing in digital circuits, which in turn affects system 

reliability. Therefore, modern processors, including VLIW 

architectures, must have means to mitigate such effects to 

guarantee reliable computation. In this scenario, our work 

proposes two new low overhead fault tolerance approaches, with 

zero latency detection, that correct soft errors in the pipelines of a 

configurable VLIW processor. Each approach has a distinct way 

to detect errors, but they both utilize the same rollback 

mechanism. The first utilizes redundant hardware by having 

specialized duplicated pipelines. The second uses idle issue slots to 

execute duplicated instructions and does this by first identifying 

phases within an application. Our implementation does not 

require changes to the binary code and has negligible performance 

losses. It has 50% of area overhead with 35% power dissipation 

for the full pipeline duplication, and only 7% of extra area when 

using idle resources. We compared our approach to related work 

and demonstrate that we are more efficient when one considers the 

area, performance, power dissipation and error coverage 

altogether. 

Keywords—fault tolerance; VLIW; soft errors; configurable 

processor 

I.  INTRODUCTION 

Technology scaling has been allowing high logic integration 
and performance improvements of integrated circuits, as higher 
frequencies can be achieved. However, their reliability is 
compromised as they get more susceptible to soft errors [1]. Soft 
errors affect processors by modifying values stored in memory 
elements (such as pipeline registers, register files, and control 
registers) and are caused by numerous energetic particles such 
as protons and heavy ions from space or neutron and alpha 
particles at ground-level. In order to harden the processor against 
soft errors, fault-tolerant techniques implemented in hardware 
and software are mandatory to detect those errors and correct 
their effects before a failure in the system is observed [2].  

Very Long Instruction Word (VLIW) processors are 
representative examples of current architectures that may suffer 
from the aforementioned issues. VLIW processors exploit 
Instruction-Level Parallelism (ILP) by means of a compiler, 
executing several operations per cycle depending on the 
processor’s issue width and the intrinsic ILP available in the 
application. They occupy less area and dissipate less power 
when compared to superscalar processors, because their 

hardware is much simpler, e.g., the instruction queue, reorder 
buffer, and dependency-checking hardware are not needed.  

In this paper, we propose two approaches for detecting and 
correcting soft errors in VLIW pipelines. The first approach is 
the full duplication based on a 4-issue configuration, with four 
main pipelines and four duplicated ones. The other is a phase-
based configurable mechanism implemented in hardware that 
uses idle issue slots to execute duplicated instructions based on 
the application profiling. It is implemented on an 8-issue 
processor that can have a variable number of duplicated 
instructions depending on the application phase: between zero 
(no fault tolerance) and four (full duplication). These techniques 
are based on a modified dual modular redundancy (DMR) with 
instruction rollback mechanism, called DMRr. 

In order to validate our proposed techniques, a fault injection 
campaign was performed in several benchmarks on four 
configurations of the VLIW processor: unprotected 4-issue, 4-
issue with DMRr, unprotected 8-issue, and configurable DMRr 
8-issue. We evaluated the results considering several axes, such 
as error coverage, area, power dissipation, code size, and 
performance. We also compared our approach to others, 
showing that we are more efficient when one considers these 
axes altogether.  

The remainder of this paper is organized as follows. Section 
II presents the fault tolerance techniques for VLIW processors 
proposed in this work. Section III evaluates the implementation 
and shows the results. Section IV discusses related works, while 
Section V concludes this work. 

II. PROPOSED PIPELINE DMR WITH INSTRUCTION ROLLBACK 

The focus of this work is to protect the pipelines of a VLIW 
processor against soft errors. The pipelines occupy about 45% 
of the total area and the register file the other 55% (on the tested 
4- and 8-issue configurations); however, the register file can be 
protected with parity or ECC. The pipelines are duplicated in 
hardware, and a checker compares the results (i.e., all output 
signals) of the main and the duplicated pipeline. Therefore, the 
checker will detect if there is any error in the execution (e.g., 
error in an arithmetic operation, jump address of a branch, or in 
the values of a memory operation). The destination register, the 
register file’s and memory’s write enable signal are also 
compared by a checker. 



In order to not only detect an error, but also correct it, a 
rollback mechanism is used. When a mismatch is found in any 
of the compared signals, the rollback executes the last 
instruction again, and it flushes the pipeline in order to prevent 
data corruption. As the checker has zero latency error detection, 
the memory, and the register file will not be corrupted in case of 
an error, because the writing to these components will be 
disabled. The rollback overhead has a fixed cost of 5 cycles 
(because of the pipeline length of five stages), which is 
negligible when compared to the total number of cycles of an 
application. In addition, this cost is only paid in case of an error, 
having no overhead otherwise. Both the checkers and the 
rollback mechanism do not affect the critical path of the 
processor, as they operate in parallel to the pipelines, and the 
area overhead for each checker is of about 1%. 

The VLIW processor used in this work is the ρ-VEX softcore 
VLIW processor [3], implemented in VHDL. The ρ-VEX core 
has a five-stage pipeline, and it can be configured to have 
different number of issue slots (e.g., 2, 4, or 8). Each issue may 
contain different functional units from the following set: ALU 
(always present), multiplier, memory, and branch units. In this 
work, the 4-issue version has 4 ALUs, 2 multipliers, 1 memory 
unit and 1 branch unit; while the 8-issue has 8 ALUs, 4 
multipliers, 1 memory unit, and 1 branch unit, which are similar 
to other VLIW processors (e.g., Intel Itanium [4]).  

As already mentioned, two configurations using the DMR 
with instruction rollback (DMRr) are evaluated: 

A. 4+4-issue 

In this configuration, the 4-issue VLIW processor has its 
pipelines duplicated, and checkers compare the results from the 
main pipelines to the ones from the duplicated pipelines. 
Therefore, there is full duplication with dedicated pipelines to 
execute replicated instructions, as depicted in Fig. 1. This 
process is totally done in hardware, and the compiler is not 
aware of it.  

B. Phase-configurable 

Based on the 8-issue VLIW, idle issue slots during a whole 
given program phase (i.e., a sequence of instructions words that 
always have NOPs in specific issue slots) are used to execute 
duplicated instructions from other pipelines, and their results are 
checked. Consequently, it is a configurable fault tolerance 
mechanism, since it may have none (eight issue slots without 
duplication) to full duplication (four main issue slots and four 
duplicated ones), depending on the available resources.  

The 8-issue configuration for this approach is depicted in 
Fig. 2. In order to keep the low overhead (area and delay), the 
duplication pairs are statically placed, i.e., pipeline 0 with 
pipeline 4, pipeline 1 with pipeline 5, and so on. Therefore, the 
issue slots are combined in a way that the first four pipelines are 
compared with the four last ones. For example, if the pipeline 6 
is going to execute NOPs in a given phase, then it will execute 
the duplicated instructions from the pipeline 2 instead. Every 
functional unit is capable of executing both main program 
instructions and, in the case of pipelines P4, P5, P6, and P7, 
duplicated instructions from another pipeline. The exceptions 
are the memory unit in pipeline 4 and the branch unit in the 
pipeline 7: these units execute only duplicated instructions, since 

the ρ-VEX does not support more than one memory or branch 
operations per cycle. The compiler used in this work (HP VEX 
compiler) schedules the instructions starting from the lower 
issue slots (from 0 to 7), considering the availability of the 
functional units. Therefore, our approach in combining the pairs 
of the duplicated pipelines will efficiently exploit this 
scheduling mechanism.  

For this approach to work, first, the application must be 
profiled in order to detect the phases. After that, a table indexed 
by the program counter and containing the configuration of each 
application’s phase is statically created (a mechanism to 
dynamically detect phases will be developed in the future). The 
phase configuration represents the function of each pipeline in a 
given phase, informing whether each issue slot will execute 
regular instructions of the application or execute duplicated 
instructions of another pipeline. Based on this table, the 
processor will dynamically change the function of the pipelines 
and will enable or disable the checkers in each phase.  

The simulation was conducted in the Mentor Graphic’s 
ModelSim. In this way, it was possible to save which instruction 
was executed in each cycle to generate the application profile. 
The benchmark set chosen is composed of the following 10 
applications, which comprises a subset of the WCET benchmark 
suite [5]: ADPCM, CJPEG, CRC, DFT, Expint, FIR, Matrix 
Multiplication, NDES, Sums (recursively executes multiple 
additions on an array) and x264. The profiling was performed 
for all applications from our benchmark set. The results for five 
benchmarks are depicted in Fig. 3. The dots demonstrate when 
a given pipeline, identified by its ID (Y-axis), is being used in a 

 
Fig. 1. DMRr 4+4-issue configuration 

 

Fig. 2. DMRr phase-configurable duplication 
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given moment of the application’s execution (X-axis). The 
profiling for the other five benchmarks has a similar behavior to 
the one from the Matrix Multiplication benchmark. 

The idle phases that were used to execute duplicated 
instructions are highlighted in Fig. 3.  An example of each phase 
for the ADPCM benchmark is depicted in Fig. 3b: the P0-P7 
represent the pipelines 0 to 7. The white background on the 
pipelines indicate that they are executing duplicated instructions 
from the other pipeline in their pairs (as discussed in Fig. 2), and 
the black background represents that the pipeline is executing 
main program instructions (no duplication). On this example, 
there are phases with full duplication (phase 4), partial 
duplication (phases 2 and 5) and no duplication (phases 1 and 
3). As it can be noticed, the ADPCM, CRC, Sums, and x264 
benchmarks have phases when some issue slots are not utilized. 
On the other hand, as the Matrix Multiplication, CJPEG, DFT, 
Expint, FIR, and NDES benchmarks do not have such phases, 
they cannot take advantage of the phase-configurable approach, 
because it would have the same behavior as the unprotected 8-
issue, once no issue slot would be duplicated and compared. 
Therefore, this second approach, even though it has no costs in 

terms of performance and negligible power overhead, can be 
only used when the application has phases with lower levels of 
ILP than the processor supports. 

III.  RESULTS 

In this section, the results will be discussed regarding the 
fault tolerance, area, performance, and power dissipation of the 
proposed mechanism and compared to those from the 
unprotected processor. 

A. Error Coverage Analysis 

An extended fault injection campaign was performed to 
inject soft errors in the pipeline, making it possible to evaluate 
the failure rate of the processor. Scripts in TCL (Tool Command 
Language) were created to inject transient faults in all pipelines 
and checkers of the processor. The script chooses a random bit 
from an arbitrary signal to be flipped at a random time during 
the execution of the application. The fault duration is one clock 
cycle, and one fault is injected per application’s execution. The 
total number of injected faults was 2.882.376 (so there was the 
same number of application executions), varying from 2.750 to 
322.495 injected faults per benchmark for each configuration. 

          
 a. ADPCM       b. Configurable duplication example for the ADPCM benchmark  

 
   c. CRC         d. Matrix Multiplication 

 
   e. Sums       f. x264 

Fig. 3. Issue utilization and configurable duplication 
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The variation in the number of injected faults (executions) per 
benchmark is due to the difference between their simulation 
times. Also, the faults were injected randomly in both protected 
and unprotected versions because their hardware are different. 
Therefore, it would not be correct to randomly inject a fault in 
the unprotected version and inject the same fault in the protected 
version. 

There are three possible reasons for failures in the system: 

 Data failure: happens when there is a mismatch between 
the memory dump from the application and the golden 
memory dump. The dumps are compared once the 
application ends its execution. 

 Data flow failure: happens when the application does 
not stop within the number of cycles that it should (the 
one from the application without any failures). 

 Simulation failure: happens when some specific signals 
at specific times are flipped and crashes the simulation, 
(i.e.: ModelSim’s simulation is aborted without finishing 
the execution of the application). 

These failures are checked when the application finishes its 
execution. Not all injected errors cause failures: some of the 
errors are application masked, and some of the errors are 
detected by our proposed technique. Table I presents the failure 
rate of the chosen applications in all four VLIW configurations. 
The unprotected 8-issue has a lower failure rate than the 
unprotected 4-issue due to the elevated number of NOPs in the 
VLIW instruction; therefore, the probability of a flipping bit 
affecting the result of an instruction is lower than on the 4-issue 
configuration. Also, the 4+4-issue decreases the failure rate by 
121 times when compared to the 4-issue; and the phase-
configurable by 8 times when compared to the 8-issue 
configuration.  

On average, the 4+4-issue has a 99.95% error coverage, 
while the phase-configurable has 99.55%. The latter has a lower 
coverage because of the ADPCM and CRC benchmarks. In the 
former, there are three significant phases in which no duplication 
can be done because there are no idle issue slots (i.e.: they 
achieve the maximum ILP possible). In the latter, in most of the 
times only one issue is idle and available to execute duplicated 
instructions. For the benchmarks that present a significant phase 
with four idle issue slots, as the example of Sums and x264 
benchmarks, the coverage is close to the one achieved by the full 
duplication: 99.89% and 99.93%, respectively. Hence, when the 
application has idle phases to execute duplicated instructions, it 
is not only possible to provide the same level of fault tolerance 
as in the case of dedicated duplication; but also, keep the 8-
issue’s performance, which is better than the one from 4-issue 
configuration as more functional units are available to exploit 
the application’s ILP.   

The distribution of failures for each application running on 
each configuration is depicted in Fig. 4. Both protected and 
unprotected versions have a similar probability of simulation 
failures, because the simulation failure interrupts the execution 
of the application. Therefore, as the protected version is able to 
correct most of the errors that may lead to a data or control flow 

failure, the proportion of simulation failures in the protected 
configurations is bigger than the one from the unprotected ones. 

B.  Area and power dissipation evaluation 

The synthesis tools used to evaluate area, performance and 
power were: the Xilinx ISE synthesis tool to obtain the FPGA 
area and frequency to the Virtex 6 - XC6VLX240T FPGA; and 
the Cadence Encounter RTL compiler to obtain power 
dissipation and ASIC (Application Specific Integrated Circuit) 
area, using a 65nm CMOS cell library from STMicroeletronics. 

Table II presents the processor area for both FPGA and ASIC 
and power dissipation of the processor for all VLIW 
configurations. The operation frequency for these configurations 
was of 65MHz, and the speed up from the 8-issue configuration 
when compared to the 4-issue, for the aforementioned 
benchmark set, varies from 0.1% to 23.6%, with an average of 
5.4%. 

As it can be observed, the overhead of the full duplication 
(4+4-issue) is small in terms of area and power dissipation when 
compared to the 4-issue. The area overhead is of 30% for the 
FPGA (given in LUTs) and 50% for the ASIC cells, while the 
power dissipation overhead is of 35%. The overhead is almost 

TABLE I. FAILURE RATE WITH DIFFERENT CORE CONFIGURATIONS 

  
 

# Injected 

faults 
# Errors 

Failure 

rate (%) 

U
n

p
ro

te
ct

ed
 

4-issue 

ADPCM 287,398  19,911  6.93  

CJPEG 250,441         23,911  9.55  

CRC        79,346           4,128  5.20  

DFT        52,531           2,432  4.63  

Expint        69,221           2,911  4.21  

FIR          5,649              618  10.94  

Matrix        59,906           5,934  9.91  

NDES        35,651           1,424  3.99  

Sums      322,495         17,814  5.52  

x264        55,502           2,891  5.21  

8-issue 

ADPCM      143,077           5,234  3.66  

CJPEG      154,789           9,399  6.07  

CRC        43,444           1,280  2.95  

DFT        32,383              869  2.68  

Expint        53,949           1,281  2.37  

FIR          2,797              166  5.93  

Matrix        60,287           3,423  5.68  

NDES        20,574              430  2.09  

Sums      200,363           5,937  2.96  

x264        28,807              847  2.94  

P
ro

te
ct

ed
 4+4-issue 

ADPCM      183,168              103  0.06  

CJPEG      160,527                28  0.02  

CRC        39,157                22  0.06  

DFT        21,054                15  0.07  

Expint        70,396                37  0.05  

FIR          2,750                  1  0.04  

Matrix        33,760                28  0.08  

NDES        17,755                  7  0.04  

Sums      239,239                94  0.04  

x264        11,961                11  0.09  

Configurable 

ADPCM        36,958              366  0.99  

CRC        16,720              107  0.64  

Sums        65,221                75  0.11  

x264        14,448                10  0.07  

A
v

er
ag

e Unprotected 4-issue 6.61 

Unprotected 8-issue 3.73 

4+4-issue 0.05 

Configurable 0.45 

 
 



negligible when one compares the phase-configurable approach 
with the base 8-issue configuration: 3% for the FPGA and 7% 
for the ASIC; with almost no overhead in power dissipation. 
This overhead comes from the checkers only, since no extra 
circuitry, such as duplicated functional units, is necessary for the 
latter approach. 

IV. RELATED WORK 

Several works have been proposed for the detection and 
correction of soft errors in VLIW and superscalar processors. 
These works aim to improve the fault tolerance of the target 
system, typically based on redundancy, which may be 
implemented either in software, in hardware, or both.  

Dual modular redundancy (DMR) with rollback was used by 
[6] and [7] to detect and correct errors. These works used 
checkpoints in order to rollback, whenever an error is detected, 
to a state in which the execution was correct. Therefore, the 
latency to detect the error on these approaches will vary 
according to the periodicity of the checkpoints. On the other 
hand, the DMRr has zero latency detection as it compares the 
results at all times and executes again only the instruction that 
presented the error. Therefore, in addition to the zero latency 
detection, the control structure of the rollback is much simpler 
than the ones that use checkpoints. 

Another common approach is to triplicate a processor and 
use a majority voter to vote the correct answer (triple modular 
redundancy - TMR), as implemented in [8] and [9]. In these 
cases, they only triplicate the functional units of a VLIW 
processor rather than the entire processor; therefore, reducing 
the area and power dissipation costs. In [8], both hardware and 
software needed to be changed, and if the two operations (main 
and duplicated) compute different results, the operation is 

executed a third time. This approach is called Reduced TMR. 
Both approaches only cover errors that happen in the 
computation of a given operation, therefore, not begin able to 
detect an error if the operands were wrong in a stage prior to the 
execution or after the operation was computed by the functional 
unit. DMRr has higher coverage than [9], occupying less area 
and dissipating less power than [8] and [9], and the proposed 
approach does not change the binary code of the application, as 
it is done in [8]. In [10], the authors propose a similar approach 
to [8], with the instruction replication done in software. In the 
same way, the replication is done partially to some instructions 
in order to avoid significant performance losses, but it also 
affects the capacity of providing fault tolerance. Therefore, the 
code is changed, performance is affected as well as the error 
coverage, even though there is no area or power overheads. In 
[11] the authors also propose a TMR approach on the 
synchronous flip-flops, with an area and power dissipation 
overhead higher than the one created by the DMRr, even when 
comparing to the full duplication configuration. 

In [12] and [13], the authors propose a software-based 
redundancy based on duplication with comparison (DWC) for 
VLIW data paths aiming to reduce the performance overhead by 
using the idle functional units. However, these techniques still 
present performance degradation and increase code size, as they 
are in software. Authors in [14] propose an optimization to the 
DWC’s generated code by reducing the impact of the basic block 
fragmentation caused by the check instructions, having lower, 
but still not negligible, performance degradation than the 
previous two techniques. Authors in [15] propose a compiler 
assisted multiple word retry scheme for VLIW architectures, and 
the authors evaluate the performance and code growth of having 
a rollback mechanism with different number of instructions.  

The main limitations of software-based redundancy are the 
increase in the code size, energy consumption and performance 
overheads that come with it. On the other hand, hardware-based 
redundancy approaches increase area, power dissipation with 
little or no performance overhead. The approach proposed in this 
paper, even though implemented in hardware, has low overhead 
in area and power dissipation. 

TABLE II. AREA AND POWER DISSIPATION COMPARISON 

 FPGA ASIC 

 Registers LUTs Cells 

Power 

dissip. (nW) 

Unprotected 
4-issue 3,058  16,006  28,041  2,298,962.51  

8-issue 3,974  35,075  68,977  7,556,643.89  

Protected 
4+4-issue 4,102 20,819 42,121 3,109,613.33 

Configurable 4,133 35,973 73,988 7,484,929.91 

 

 

Fig. 4. Failure distribution 
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Table III presents the comparison, in several axes, between 
the results from the DMRr and the other works previously 
discussed in this section. These axes comprise error coverage, 
area, performance, power dissipation and code size increase. As 
it can be noticed, the DMRr has the lowest area and power 
dissipation overhead when compared to other hardware-based 
techniques (in bold). Software-based techniques (in italic) 
naturally do not affect the area nor the power dissipation, but 
they create a performance overhead and increase the code size, 
both affecting total energy consumption of the system, as the 
application will take longer to execute, and the memory will be 
more stressed when executing more instructions. In addition, 
several hardware-based techniques also have performance 
and/or code size overheads, besides the power and area 
overheads, impacting even more on the energy consumption of 
the system. 

By using DMRr, on the other hand, the application’s code is 
not changed, the performance overhead is negligible, and the 
power and area overheads are much lower than the other 
techniques. Therefore, being able to provide good coverage at a 
low cost, considering all axes: performance, power dissipation, 
energy consumption, and area. In addition, for benchmarks that 
have idle phases, the configurable duplication can be used in 
order to execute duplicated instructions in the idle pipelines, 
having only 7% of area overhead and negligible overhead on the 
other axes. 

V. CONCLUSIONS AND FUTURE WORK 

The pipelines of a VLIW processor occupy a significant area 
of the processor core; therefore, it is important to protect them 
against soft errors with minimum cost while providing good 
coverage. In this work, a fault tolerance mechanism based on 
duplication and instruction rollback is proposed, which is able to 
not only detect a fault, as a conventional DMR approach, but 
also correct the error by executing the faulty instruction again 
via rollback. The performance overhead that a rollback causes is 
negligible (5 cycles) compared to the application’s total number 
of cycles. In addition, this mechanism is able to provide fault 
tolerance with a minimum cost, by using idle resources of the 
VLIW processor or by duplicating the pipelines with low area 
and power overhead. 

As future work, we will consider two more processor 
configurations: a phase-based approach with dynamic phase 
detection and an instruction-adaptive configuration that will 
duplicate instructions during runtime whenever a pipeline is 
executing a NOP instruction. In addition, a mechanism to detect 
permanent faults will be developed. 
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TABLE III. VLIW FAULT TOLERANCE TECHNIQUES COMPARISON 

Technique 
Error 

Coverage 
Area overhead Performance overhead Power dissipation overhead Code size increase 

DMRr - 4+4 configuration ~100% 50% ~0% 35% 0% 

DMRr - Configurable ~100% 7% ~0% ~0% 0% 

DMR with rollback [5] and [6] ~100% 0% 51%-100% 0% 100% 

TMR ~100% 200% ~0% ~200% 0% 

Partial TMR [8] 95%-99% 100% 0.6%-34.3% ~100% 0% 

Reduced TMR [7] ~100% 100% 0%-100% ~100% > 0% 

Reduced TMR - SW [9] ~100% 0% 30%-60% 0% 100% 

Flip-flops TMR [10] ~100% 200% ~0% ~200% 0% 

DWC - SW [11] and [12] ~100% 0% 28%-106% 0% 109-217% 

DWC opt. - SW [13] ~100% 0% 29% 0% 100-150% 

 


