
A Novel Phase-based Low Overhead Fault Tolerance

Approach for VLIW Processors

Anderson L. Sartor¹, Arthur F. Lorenzon¹, Luigi Carro¹, Fernanda Kastensmidt¹, Stephan Wong² and Antonio C. S.

Beck¹

¹ Institute of Informatics, Federal University of Rio Grande do Sul (UFRGS), Brazil

{alsartor, aflorenzon, carro, fglima, caco}@inf.ufrgs.br

² Computer Engineering Laboratory, Faculty of EEMCS, Delft University of Technology, The Netherlands

j.s.s.m.wong@tudelft.nl

Abstract— Because of technology scaling, the soft error rate

has been increasing in digital circuits, which in turn affects system

reliability. Therefore, modern processors, including VLIW

architectures, must have means to mitigate such effects to

guarantee reliable computation. In this scenario, our work

proposes two new low overhead fault tolerance approaches, with

zero latency detection, that correct soft errors in the pipelines of a

configurable VLIW processor. Each approach has a distinct way

to detect errors, but they both utilize the same rollback

mechanism. The first utilizes redundant hardware by having

specialized duplicated pipelines. The second uses idle issue slots to

execute duplicated instructions and does this by first identifying

phases within an application. Our implementation does not

require changes to the binary code and has negligible performance

losses. It has 50% of area overhead with 35% power dissipation

for the full pipeline duplication, and only 7% of extra area when

using idle resources. We compared our approach to related work

and demonstrate that we are more efficient when one considers the

area, performance, power dissipation and error coverage

altogether.

Keywords—fault tolerance; VLIW; soft errors; configurable

processor

I. INTRODUCTION

Technology scaling has been allowing high logic integration
and performance improvements of integrated circuits, as higher
frequencies can be achieved. However, their reliability is
compromised as they get more susceptible to soft errors [1]. Soft
errors affect processors by modifying values stored in memory
elements (such as pipeline registers, register files, and control
registers) and are caused by numerous energetic particles such
as protons and heavy ions from space or neutron and alpha
particles at ground-level. In order to harden the processor against
soft errors, fault-tolerant techniques implemented in hardware
and software are mandatory to detect those errors and correct
their effects before a failure in the system is observed [2].

Very Long Instruction Word (VLIW) processors are
representative examples of current architectures that may suffer
from the aforementioned issues. VLIW processors exploit
Instruction-Level Parallelism (ILP) by means of a compiler,
executing several operations per cycle depending on the
processor’s issue width and the intrinsic ILP available in the
application. They occupy less area and dissipate less power
when compared to superscalar processors, because their

hardware is much simpler, e.g., the instruction queue, reorder
buffer, and dependency-checking hardware are not needed.

In this paper, we propose two approaches for detecting and
correcting soft errors in VLIW pipelines. The first approach is
the full duplication based on a 4-issue configuration, with four
main pipelines and four duplicated ones. The other is a phase-
based configurable mechanism implemented in hardware that
uses idle issue slots to execute duplicated instructions based on
the application profiling. It is implemented on an 8-issue
processor that can have a variable number of duplicated
instructions depending on the application phase: between zero
(no fault tolerance) and four (full duplication). These techniques
are based on a modified dual modular redundancy (DMR) with
instruction rollback mechanism, called DMRr.

In order to validate our proposed techniques, a fault injection
campaign was performed in several benchmarks on four
configurations of the VLIW processor: unprotected 4-issue, 4-
issue with DMRr, unprotected 8-issue, and configurable DMRr
8-issue. We evaluated the results considering several axes, such
as error coverage, area, power dissipation, code size, and
performance. We also compared our approach to others,
showing that we are more efficient when one considers these
axes altogether.

The remainder of this paper is organized as follows. Section
II presents the fault tolerance techniques for VLIW processors
proposed in this work. Section III evaluates the implementation
and shows the results. Section IV discusses related works, while
Section V concludes this work.

II. PROPOSED PIPELINE DMR WITH INSTRUCTION ROLLBACK

The focus of this work is to protect the pipelines of a VLIW
processor against soft errors. The pipelines occupy about 45%
of the total area and the register file the other 55% (on the tested
4- and 8-issue configurations); however, the register file can be
protected with parity or ECC. The pipelines are duplicated in
hardware, and a checker compares the results (i.e., all output
signals) of the main and the duplicated pipeline. Therefore, the
checker will detect if there is any error in the execution (e.g.,
error in an arithmetic operation, jump address of a branch, or in
the values of a memory operation). The destination register, the
register file’s and memory’s write enable signal are also
compared by a checker.

In order to not only detect an error, but also correct it, a
rollback mechanism is used. When a mismatch is found in any
of the compared signals, the rollback executes the last
instruction again, and it flushes the pipeline in order to prevent
data corruption. As the checker has zero latency error detection,
the memory, and the register file will not be corrupted in case of
an error, because the writing to these components will be
disabled. The rollback overhead has a fixed cost of 5 cycles
(because of the pipeline length of five stages), which is
negligible when compared to the total number of cycles of an
application. In addition, this cost is only paid in case of an error,
having no overhead otherwise. Both the checkers and the
rollback mechanism do not affect the critical path of the
processor, as they operate in parallel to the pipelines, and the
area overhead for each checker is of about 1%.

The VLIW processor used in this work is the ρ-VEX softcore
VLIW processor [3], implemented in VHDL. The ρ-VEX core
has a five-stage pipeline, and it can be configured to have
different number of issue slots (e.g., 2, 4, or 8). Each issue may
contain different functional units from the following set: ALU
(always present), multiplier, memory, and branch units. In this
work, the 4-issue version has 4 ALUs, 2 multipliers, 1 memory
unit and 1 branch unit; while the 8-issue has 8 ALUs, 4
multipliers, 1 memory unit, and 1 branch unit, which are similar
to other VLIW processors (e.g., Intel Itanium [4]).

As already mentioned, two configurations using the DMR
with instruction rollback (DMRr) are evaluated:

A. 4+4-issue

In this configuration, the 4-issue VLIW processor has its
pipelines duplicated, and checkers compare the results from the
main pipelines to the ones from the duplicated pipelines.
Therefore, there is full duplication with dedicated pipelines to
execute replicated instructions, as depicted in Fig. 1. This
process is totally done in hardware, and the compiler is not
aware of it.

B. Phase-configurable

Based on the 8-issue VLIW, idle issue slots during a whole
given program phase (i.e., a sequence of instructions words that
always have NOPs in specific issue slots) are used to execute
duplicated instructions from other pipelines, and their results are
checked. Consequently, it is a configurable fault tolerance
mechanism, since it may have none (eight issue slots without
duplication) to full duplication (four main issue slots and four
duplicated ones), depending on the available resources.

The 8-issue configuration for this approach is depicted in
Fig. 2. In order to keep the low overhead (area and delay), the
duplication pairs are statically placed, i.e., pipeline 0 with
pipeline 4, pipeline 1 with pipeline 5, and so on. Therefore, the
issue slots are combined in a way that the first four pipelines are
compared with the four last ones. For example, if the pipeline 6
is going to execute NOPs in a given phase, then it will execute
the duplicated instructions from the pipeline 2 instead. Every
functional unit is capable of executing both main program
instructions and, in the case of pipelines P4, P5, P6, and P7,
duplicated instructions from another pipeline. The exceptions
are the memory unit in pipeline 4 and the branch unit in the
pipeline 7: these units execute only duplicated instructions, since

the ρ-VEX does not support more than one memory or branch
operations per cycle. The compiler used in this work (HP VEX
compiler) schedules the instructions starting from the lower
issue slots (from 0 to 7), considering the availability of the
functional units. Therefore, our approach in combining the pairs
of the duplicated pipelines will efficiently exploit this
scheduling mechanism.

For this approach to work, first, the application must be
profiled in order to detect the phases. After that, a table indexed
by the program counter and containing the configuration of each
application’s phase is statically created (a mechanism to
dynamically detect phases will be developed in the future). The
phase configuration represents the function of each pipeline in a
given phase, informing whether each issue slot will execute
regular instructions of the application or execute duplicated
instructions of another pipeline. Based on this table, the
processor will dynamically change the function of the pipelines
and will enable or disable the checkers in each phase.

The simulation was conducted in the Mentor Graphic’s
ModelSim. In this way, it was possible to save which instruction
was executed in each cycle to generate the application profile.
The benchmark set chosen is composed of the following 10
applications, which comprises a subset of the WCET benchmark
suite [5]: ADPCM, CJPEG, CRC, DFT, Expint, FIR, Matrix
Multiplication, NDES, Sums (recursively executes multiple
additions on an array) and x264. The profiling was performed
for all applications from our benchmark set. The results for five
benchmarks are depicted in Fig. 3. The dots demonstrate when
a given pipeline, identified by its ID (Y-axis), is being used in a

Fig. 1. DMRr 4+4-issue configuration

Fig. 2. DMRr phase-configurable duplication

Register file

Dec

M
E

M

Pipeline[0]

Exe

ρ-VEX

Main Duplicated

WB

A
L

U

C
h

ec
k
er

Fetch Memory

Dec

M
E

M

Exe

WB

A
L

U

Dec

M
U

L

Pipeline[1]

Exe

Main Duplicated

WB

A
L

U

C
h

ec
k
er

Dec

M
U

L

Exe

WB

A
L

U

Dec
M

U
L

Pipeline[2]

Exe

Main Duplicated

WB

A
L

U

C
h

ec
k
er

Dec

M
U

L

Exe

WB

A
L

U

Dec

B
R

Pipeline[3]

Exe

Main Duplicated

WB

A
L

U

C
h

ec
k
er

Dec

B
R

Exe

WB

A
L

U

Register file

Dec

M
E

M

P0

Exe

ρ-VEX

WB

A
L

U

Fetch Memory

Dec

M
U

L

P1

Exe

WB

A
L

U

Dec

M
U

L

P2

Exe

WB

A
L

U

Dec

B
R

P3

Exe

WB

A
L

U

Dec

M
E

M
*

P4

Exe

WB

A
L

U

Dec

M
U

L

P5

Exe

WB

A
L

U

Dec

M
U

L

P6

Exe

WB

A
L

U

Dec

B
R

*

P7

Exe

WB

A
L

U

Checker
Checker

Checker
Checker* Duplication only

given moment of the application’s execution (X-axis). The
profiling for the other five benchmarks has a similar behavior to
the one from the Matrix Multiplication benchmark.

The idle phases that were used to execute duplicated
instructions are highlighted in Fig. 3. An example of each phase
for the ADPCM benchmark is depicted in Fig. 3b: the P0-P7
represent the pipelines 0 to 7. The white background on the
pipelines indicate that they are executing duplicated instructions
from the other pipeline in their pairs (as discussed in Fig. 2), and
the black background represents that the pipeline is executing
main program instructions (no duplication). On this example,
there are phases with full duplication (phase 4), partial
duplication (phases 2 and 5) and no duplication (phases 1 and
3). As it can be noticed, the ADPCM, CRC, Sums, and x264
benchmarks have phases when some issue slots are not utilized.
On the other hand, as the Matrix Multiplication, CJPEG, DFT,
Expint, FIR, and NDES benchmarks do not have such phases,
they cannot take advantage of the phase-configurable approach,
because it would have the same behavior as the unprotected 8-
issue, once no issue slot would be duplicated and compared.
Therefore, this second approach, even though it has no costs in

terms of performance and negligible power overhead, can be
only used when the application has phases with lower levels of
ILP than the processor supports.

III. RESULTS

In this section, the results will be discussed regarding the
fault tolerance, area, performance, and power dissipation of the
proposed mechanism and compared to those from the
unprotected processor.

A. Error Coverage Analysis

An extended fault injection campaign was performed to
inject soft errors in the pipeline, making it possible to evaluate
the failure rate of the processor. Scripts in TCL (Tool Command
Language) were created to inject transient faults in all pipelines
and checkers of the processor. The script chooses a random bit
from an arbitrary signal to be flipped at a random time during
the execution of the application. The fault duration is one clock
cycle, and one fault is injected per application’s execution. The
total number of injected faults was 2.882.376 (so there was the
same number of application executions), varying from 2.750 to
322.495 injected faults per benchmark for each configuration.

 a. ADPCM b. Configurable duplication example for the ADPCM benchmark

 c. CRC d. Matrix Multiplication

 e. Sums f. x264

Fig. 3. Issue utilization and configurable duplication

0

1

2

3

4

5

6

7

0 100 200 300 400 500 600

P
ip

el
in

e
ID

Cycles

Phase 1 Phase 2 Phase 3 Phase 4 Phase 5 Phase 1

P7

P6

P5

P4

P3

P2

P1

P0

Phase 2

P7

P6

P5

P4

P3

P2

P1

P0

Phase 3

P7

P6

P5

P4

P3

P2

P1

P0

Phase 4

P7

P6

P5

P4

P3

P2

P1

P0

Phase 5

P7

P6

P5

P4

P3

P2

P1

P0

0

1

2

3

4

5

6

7

0 5000 10000 15000 20000 25000

P
ip

el
in

e
ID

Cycles

0

1

2

3

4

5

6

7

0 1000 2000 3000 4000

P
ip

el
in

e
ID

Cycles

0

1

2

3

4

5

6

7

0 50 100 150 200 250 300

P
ip

el
in

e
ID

Cycles

0

1

2

3

4

5

6

7

0 5000 10000 15000

P
ip

el
in

e
ID

Cycles

The variation in the number of injected faults (executions) per
benchmark is due to the difference between their simulation
times. Also, the faults were injected randomly in both protected
and unprotected versions because their hardware are different.
Therefore, it would not be correct to randomly inject a fault in
the unprotected version and inject the same fault in the protected
version.

There are three possible reasons for failures in the system:

 Data failure: happens when there is a mismatch between
the memory dump from the application and the golden
memory dump. The dumps are compared once the
application ends its execution.

 Data flow failure: happens when the application does
not stop within the number of cycles that it should (the
one from the application without any failures).

 Simulation failure: happens when some specific signals
at specific times are flipped and crashes the simulation,
(i.e.: ModelSim’s simulation is aborted without finishing
the execution of the application).

These failures are checked when the application finishes its
execution. Not all injected errors cause failures: some of the
errors are application masked, and some of the errors are
detected by our proposed technique. Table I presents the failure
rate of the chosen applications in all four VLIW configurations.
The unprotected 8-issue has a lower failure rate than the
unprotected 4-issue due to the elevated number of NOPs in the
VLIW instruction; therefore, the probability of a flipping bit
affecting the result of an instruction is lower than on the 4-issue
configuration. Also, the 4+4-issue decreases the failure rate by
121 times when compared to the 4-issue; and the phase-
configurable by 8 times when compared to the 8-issue
configuration.

On average, the 4+4-issue has a 99.95% error coverage,
while the phase-configurable has 99.55%. The latter has a lower
coverage because of the ADPCM and CRC benchmarks. In the
former, there are three significant phases in which no duplication
can be done because there are no idle issue slots (i.e.: they
achieve the maximum ILP possible). In the latter, in most of the
times only one issue is idle and available to execute duplicated
instructions. For the benchmarks that present a significant phase
with four idle issue slots, as the example of Sums and x264
benchmarks, the coverage is close to the one achieved by the full
duplication: 99.89% and 99.93%, respectively. Hence, when the
application has idle phases to execute duplicated instructions, it
is not only possible to provide the same level of fault tolerance
as in the case of dedicated duplication; but also, keep the 8-
issue’s performance, which is better than the one from 4-issue
configuration as more functional units are available to exploit
the application’s ILP.

The distribution of failures for each application running on
each configuration is depicted in Fig. 4. Both protected and
unprotected versions have a similar probability of simulation
failures, because the simulation failure interrupts the execution
of the application. Therefore, as the protected version is able to
correct most of the errors that may lead to a data or control flow

failure, the proportion of simulation failures in the protected
configurations is bigger than the one from the unprotected ones.

B. Area and power dissipation evaluation

The synthesis tools used to evaluate area, performance and
power were: the Xilinx ISE synthesis tool to obtain the FPGA
area and frequency to the Virtex 6 - XC6VLX240T FPGA; and
the Cadence Encounter RTL compiler to obtain power
dissipation and ASIC (Application Specific Integrated Circuit)
area, using a 65nm CMOS cell library from STMicroeletronics.

Table II presents the processor area for both FPGA and ASIC
and power dissipation of the processor for all VLIW
configurations. The operation frequency for these configurations
was of 65MHz, and the speed up from the 8-issue configuration
when compared to the 4-issue, for the aforementioned
benchmark set, varies from 0.1% to 23.6%, with an average of
5.4%.

As it can be observed, the overhead of the full duplication
(4+4-issue) is small in terms of area and power dissipation when
compared to the 4-issue. The area overhead is of 30% for the
FPGA (given in LUTs) and 50% for the ASIC cells, while the
power dissipation overhead is of 35%. The overhead is almost

TABLE I. FAILURE RATE WITH DIFFERENT CORE CONFIGURATIONS

Injected

faults
Errors

Failure

rate (%)

U
n

p
ro

te
ct

ed

4-issue

ADPCM 287,398 19,911 6.93

CJPEG 250,441 23,911 9.55

CRC 79,346 4,128 5.20

DFT 52,531 2,432 4.63

Expint 69,221 2,911 4.21

FIR 5,649 618 10.94

Matrix 59,906 5,934 9.91

NDES 35,651 1,424 3.99

Sums 322,495 17,814 5.52

x264 55,502 2,891 5.21

8-issue

ADPCM 143,077 5,234 3.66

CJPEG 154,789 9,399 6.07

CRC 43,444 1,280 2.95

DFT 32,383 869 2.68

Expint 53,949 1,281 2.37

FIR 2,797 166 5.93

Matrix 60,287 3,423 5.68

NDES 20,574 430 2.09

Sums 200,363 5,937 2.96

x264 28,807 847 2.94

P
ro

te
ct

ed
 4+4-issue

ADPCM 183,168 103 0.06

CJPEG 160,527 28 0.02

CRC 39,157 22 0.06

DFT 21,054 15 0.07

Expint 70,396 37 0.05

FIR 2,750 1 0.04

Matrix 33,760 28 0.08

NDES 17,755 7 0.04

Sums 239,239 94 0.04

x264 11,961 11 0.09

Configurable

ADPCM 36,958 366 0.99

CRC 16,720 107 0.64

Sums 65,221 75 0.11

x264 14,448 10 0.07

A
v

er
ag

e Unprotected 4-issue 6.61

Unprotected 8-issue 3.73

4+4-issue 0.05

Configurable 0.45

negligible when one compares the phase-configurable approach
with the base 8-issue configuration: 3% for the FPGA and 7%
for the ASIC; with almost no overhead in power dissipation.
This overhead comes from the checkers only, since no extra
circuitry, such as duplicated functional units, is necessary for the
latter approach.

IV. RELATED WORK

Several works have been proposed for the detection and
correction of soft errors in VLIW and superscalar processors.
These works aim to improve the fault tolerance of the target
system, typically based on redundancy, which may be
implemented either in software, in hardware, or both.

Dual modular redundancy (DMR) with rollback was used by
[6] and [7] to detect and correct errors. These works used
checkpoints in order to rollback, whenever an error is detected,
to a state in which the execution was correct. Therefore, the
latency to detect the error on these approaches will vary
according to the periodicity of the checkpoints. On the other
hand, the DMRr has zero latency detection as it compares the
results at all times and executes again only the instruction that
presented the error. Therefore, in addition to the zero latency
detection, the control structure of the rollback is much simpler
than the ones that use checkpoints.

Another common approach is to triplicate a processor and
use a majority voter to vote the correct answer (triple modular
redundancy - TMR), as implemented in [8] and [9]. In these
cases, they only triplicate the functional units of a VLIW
processor rather than the entire processor; therefore, reducing
the area and power dissipation costs. In [8], both hardware and
software needed to be changed, and if the two operations (main
and duplicated) compute different results, the operation is

executed a third time. This approach is called Reduced TMR.
Both approaches only cover errors that happen in the
computation of a given operation, therefore, not begin able to
detect an error if the operands were wrong in a stage prior to the
execution or after the operation was computed by the functional
unit. DMRr has higher coverage than [9], occupying less area
and dissipating less power than [8] and [9], and the proposed
approach does not change the binary code of the application, as
it is done in [8]. In [10], the authors propose a similar approach
to [8], with the instruction replication done in software. In the
same way, the replication is done partially to some instructions
in order to avoid significant performance losses, but it also
affects the capacity of providing fault tolerance. Therefore, the
code is changed, performance is affected as well as the error
coverage, even though there is no area or power overheads. In
[11] the authors also propose a TMR approach on the
synchronous flip-flops, with an area and power dissipation
overhead higher than the one created by the DMRr, even when
comparing to the full duplication configuration.

In [12] and [13], the authors propose a software-based
redundancy based on duplication with comparison (DWC) for
VLIW data paths aiming to reduce the performance overhead by
using the idle functional units. However, these techniques still
present performance degradation and increase code size, as they
are in software. Authors in [14] propose an optimization to the
DWC’s generated code by reducing the impact of the basic block
fragmentation caused by the check instructions, having lower,
but still not negligible, performance degradation than the
previous two techniques. Authors in [15] propose a compiler
assisted multiple word retry scheme for VLIW architectures, and
the authors evaluate the performance and code growth of having
a rollback mechanism with different number of instructions.

The main limitations of software-based redundancy are the
increase in the code size, energy consumption and performance
overheads that come with it. On the other hand, hardware-based
redundancy approaches increase area, power dissipation with
little or no performance overhead. The approach proposed in this
paper, even though implemented in hardware, has low overhead
in area and power dissipation.

TABLE II. AREA AND POWER DISSIPATION COMPARISON

 FPGA ASIC

 Registers LUTs Cells

Power

dissip. (nW)

Unprotected
4-issue 3,058 16,006 28,041 2,298,962.51

8-issue 3,974 35,075 68,977 7,556,643.89

Protected
4+4-issue 4,102 20,819 42,121 3,109,613.33

Configurable 4,133 35,973 73,988 7,484,929.91

Fig. 4. Failure distribution

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

A
D

P
C

M

C
JP

E
G

C
R

C

D
F

T

E
x
p
in

t

F
IR

M
at

ri
x

N
D

E
S

S
o
m

a

x
2

6
4

A
D

P
C

M

C
JP

E
G

C
R

C

D
F

T

E
x
p
in

t

F
IR

M
at

ri
x

N
D

E
S

S
o
m

a

x
2

6
4

A
D

P
C

M

C
JP

E
G

C
R

C

D
F

T

E
x
p
in

t

F
IR

M
at

ri
x

N
D

E
S

S
o
m

a

x
2

6
4

A
D

P
C

M

C
R

C

S
o
m

a

x
2

6
4

U
n
p

ro
t

4
-i

U
n
p

ro
t

8
-i

4
+

4
-i

ss
u
e

C
o

n
fi

g
u

ra
b

le

4-issue 8-issue 4+4-issue Configurable

Unprotected Protected Average

Control flow failure Data failure Simulation failure

Table III presents the comparison, in several axes, between
the results from the DMRr and the other works previously
discussed in this section. These axes comprise error coverage,
area, performance, power dissipation and code size increase. As
it can be noticed, the DMRr has the lowest area and power
dissipation overhead when compared to other hardware-based
techniques (in bold). Software-based techniques (in italic)
naturally do not affect the area nor the power dissipation, but
they create a performance overhead and increase the code size,
both affecting total energy consumption of the system, as the
application will take longer to execute, and the memory will be
more stressed when executing more instructions. In addition,
several hardware-based techniques also have performance
and/or code size overheads, besides the power and area
overheads, impacting even more on the energy consumption of
the system.

By using DMRr, on the other hand, the application’s code is
not changed, the performance overhead is negligible, and the
power and area overheads are much lower than the other
techniques. Therefore, being able to provide good coverage at a
low cost, considering all axes: performance, power dissipation,
energy consumption, and area. In addition, for benchmarks that
have idle phases, the configurable duplication can be used in
order to execute duplicated instructions in the idle pipelines,
having only 7% of area overhead and negligible overhead on the
other axes.

V. CONCLUSIONS AND FUTURE WORK

The pipelines of a VLIW processor occupy a significant area
of the processor core; therefore, it is important to protect them
against soft errors with minimum cost while providing good
coverage. In this work, a fault tolerance mechanism based on
duplication and instruction rollback is proposed, which is able to
not only detect a fault, as a conventional DMR approach, but
also correct the error by executing the faulty instruction again
via rollback. The performance overhead that a rollback causes is
negligible (5 cycles) compared to the application’s total number
of cycles. In addition, this mechanism is able to provide fault
tolerance with a minimum cost, by using idle resources of the
VLIW processor or by duplicating the pipelines with low area
and power overhead.

As future work, we will consider two more processor
configurations: a phase-based approach with dynamic phase
detection and an instruction-adaptive configuration that will
duplicate instructions during runtime whenever a pipeline is
executing a NOP instruction. In addition, a mechanism to detect
permanent faults will be developed.

REFERENCES

[1] P. Shivakumar, M. Kistler, S. Keckler, D. Burger and L. Alvisi,
"Modeling the effect of technology trends on the soft error rate of
combinational logic," International Conference on Dependable Systems
and Networks, pp. 389-398, 2002.

[2] A. C. S. Beck, C. A. L. Lisbôa and L. Carro, Adaptable Embedded
Systems, Springer Publishing Company, 2012.

[3] S. Wong, T. v. As and G. Brown, "ρ-VEX: A reconfigurable and
extensible softcore VLIW processor," International Conference on
ICECE Technology, pp. 369-372, 2008.

[4] H. Sharangpani and K. Arora, "Itanium processor microarchitecture,"
IEEE Micro, vol. 20, no. 5, pp. 24-43, 2000.

[5] J. Gustafsson, A. Betts, A. Ermedahl and B. Lisper, "The Mälardalen
WCET benchmarks – past, present and future," International Workshop
on Worst-Case Execution Time Analysis (WCET), p. 137–147, 2010.

[6] R. Xiaoguang, X. Xinhai, W. Qian, C. Juan, W. Miao and Y. Xuejun,
"GS-DMR: Low-overhead soft error detection scheme for stencil-based
computation," Parallel Computing, vol. 41, pp. 50-65, 2015.

[7] J.-M. Yang and S. Kwak, "A checkpoint scheme with task duplication
considering transient and permanent faults," Industrial Engineering and
Engineering Management (IEEM), IEEE International Conference on,
pp. 606-610, 2010.

[8] M. Scholzel, "Reduced Triple Modular Redundancy for built-in self-
repair in VLIW-processors," Signal Processing Algorithms,
Architectures, Arrangements and Applications, pp. 21-26, 2007.

[9] Y.-Y. Chen and K.-L. Leu, "Reliable data path design of VLIW processor
cores with comprehensive error-coverage assessment," Microprocessors
and Microsystems, vol. 34, no. 1, pp. 49-64, 2010.

[10] Y. Li, J. Lee, Y. Ko, K. Lee and Y. Paek, "Compiler-directed instruction
duplication for soft error detection," Workshop on Synthesis And System
Integration of Mixed Information technologies, pp. 54-59, 2012.

[11] F. Anjam and S. Wong, "Configurable fault-tolerance for a configurable
VLIW processor," Reconfigurable Computing: Architectures, Tools and
Applications, vol. 7806, pp. 167-178, 2013.

[12] C. Bolchini, "A software methodology for detecting hardware faults in
VLIW data paths," IEEE Transactions on Reliability, vol. 52, no. 4, pp.
458-468, 2003.

[13] J. Hu, F. Li, V. Degalahal, M. Kandemir, N. Vijaykrishnan and M. J.
Irwin, "Compiler-assisted soft error detection under performance and
energy constraints in embedded systems," ACM Transactions on
Embedded Computing Systems (TECS), vol. 8, no. 4, p. 27, 2009.

[14] K. Mitropoulou, V. Porpodas and M. Cintra, "DRIFT: Decoupled
CompileR-Based Instruction-Level Fault-Tolerance," Languages and
Compilers for Parallel Computing, pp. 217-233, 2014.

[15] S.-K. Chen and W. Fuchs, "Compiler-assisted multiple instruction word
retry for VLIW architectures," IEEE Transactions on Parallel and
Distributed Systems, vol. 12, no. 12, pp. 1293-1304, 2001.

TABLE III. VLIW FAULT TOLERANCE TECHNIQUES COMPARISON

Technique
Error

Coverage
Area overhead Performance overhead Power dissipation overhead Code size increase

DMRr - 4+4 configuration ~100% 50% ~0% 35% 0%

DMRr - Configurable ~100% 7% ~0% ~0% 0%

DMR with rollback [5] and [6] ~100% 0% 51%-100% 0% 100%

TMR ~100% 200% ~0% ~200% 0%

Partial TMR [8] 95%-99% 100% 0.6%-34.3% ~100% 0%

Reduced TMR [7] ~100% 100% 0%-100% ~100% > 0%

Reduced TMR - SW [9] ~100% 0% 30%-60% 0% 100%

Flip-flops TMR [10] ~100% 200% ~0% ~200% 0%

DWC - SW [11] and [12] ~100% 0% 28%-106% 0% 109-217%

DWC opt. - SW [13] ~100% 0% 29% 0% 100-150%

