
Communication-aware Parallelization Strategies for
High Performance Applications

(Invited Paper)

Imran Ashraf and Koen Bertels
Computer Engineering Lab,

Delft University of Technology, The Netherlands

Nader Khammassi and Jean-Christophe Le Lann
Lab-STICC UMR CNRS 6285,

ENSTA Bretagne, France

Abstract—With the advent of multicore processor architec-
tures and the existence of a huge legacy code base, the need for
efficient and scalable parallelizing compilers is growing. Where
multi-core processors were seen as the way forward to address
the known challenges such as the memory, power and ILP wall,
efficient parallelization to make use of the multiple cores, is still
an open issue. In this paper, we present two complementary
tools, MCROF and XPU which provide an alternative development
path to parallelise applications and that address the challenges
of identifying potential parallelism and exploiting it in a different
way. The MCROF tool provides a detailed profile of the data
flowing inside an application and the XPU programming paradigm
provides an intuitive and simple interface to express parallelism as
well as the necessary runtime support. We demonstrate through
two different use cases that better performance up to 4× can be
achieved than available commercial compilers.

Keywords—Data-communication profiling, program paralleliza-
tion, Multicore, Parallel Programming

I. INTRODUCTION

The number of transistors per chip is growing due to
technology scaling and increasing the clock rate of processors
is becoming technologically less viable [1]. The current trend
is therefore to integrate a growing number of processing cores
on chip, forcing parallelizing compilers to mature rapidly and
to provide efficient code for the multi-core processors. Most
parallelizing compilers focus on loop parallelization as most
of the execution time is spent in loops. However, scalable
parallelism is in many cases not realizable because memory ac-
cesses and interprocessor communication are the bottlenecks.
Recent research makes it clear that memory accesses and data
transfers account for the majority of the power consumption [2]
[3] and thus need to be addressed and handled more explicitly
in order to achieve (power) efficient performance. This paper
presents a tool chain that parallelizes an application based
the data flowing inside an application and how this helps in
mapping (manually) the algorithm on the architecture using
intuitive parallel constructs. We present in detail a use case,
Canny Edge Detection, as well as the performance numbers
for a second application, fluid animate.

The rest of the paper is organized as follows. Section II
discusses some of the available parallelizing compiler frame-
works. Section III presents the results of the Canny Edge De-
tection algorithm when using two state-of-the-art commercial
parallelizing compilers. Section IV introduces the tools used in

this paper and section V presents the proposed parallelization
methodology and achieved results.

II. RELATED WORK

Though static-analysis tools [4] can also track data-
communication, a large number of tools [5], [6] utilize
dynamic-analysis to collect producer-consumer relationship at
runtime. These tools have high run-time overhead, which limits
their use for realistic workloads affecting the quality of the
generated information. Furthermore, the provided information
lacks necessary dynamic details and is not linked to the source
code, making it hard to utilize this information. A number
of automatic parallelization compilers exist such as Par4All
[7], Cetus [8], Parallware [9], Polaris [10] or PolyCC/PLUTO
[11] which are source to source compilers that can produce
parallel code after analyzing the sequential code using different
parallelization techniques. The Intel ICC [12] is a popular com-
piler which provides an automatic parallelization feature which
allows both instruction-level and thread-level parallelization of
sequential regions of the input code.

Automatic parallelization of sequential code has had lim-
ited success [13]. Great advances have been made in automatic
parallelism extraction at the instruction level, however, in order
to exploit efficiently modern multicore platforms, compilers
need to capture parallelism also at thread-level which is a
challenging task. Pareon by Vector Fabrics [14] is an exam-
ple of a tool, which assists the programmer and guides the
parallelization process instead of performing automatic code
parallelization.

III. PARALLELIZATION USING EXISTING COMMERCIAL

COMPILERS

In this section, we present the parallelization of the Canny
application by using two commercial compilers; we refer to
them as CC1 and CC2 in the rest of the discussion. CC1 can
be used both in automatic and semi-automatic way, whereas,
CC2 uses only a semi-automatic approach. We attempted
to use PolyCC/PluTo compiler [11] which uses polyhedral
analysis to tile and parallelize loops in sequential programs.
However, the compiler suggested significant manual modifi-
cation of the code in order to make it processable by the
compiler. For instance, the compiler requires removing all
affine expressions from the inner loop to be able to process it.
So the parallelization process is no longer transparent.

2015 IEEE Computer Society Annual Symposium on VLSI

978-1-4799-8719-1/15 $31.00 © 2015 IEEE

DOI 10.1109/ISVLSI.2015.89

539



Fig. 1. Performance comparison of automatically vectorized code using CC1
and manually vectorized code.

a) CC1: CC1 allows automatic parallelization of
sequential program at thread-level using OpenMP and at
instruction-level through vectorization using SSE/AVX intrin-
sics. In order to parallelize a sequential program, the compiler
searches for loops which do not expose cross-iteration depen-
dence and are good candidate for parallel execution. A data
flow analysis is performed to ensure correct and safe parallel
execution. The compiler then uses OpenMP to specify the
parallelism.
Default Automatic Mode: is a one shot fully automatic
parallelization mode in which the program is parallelized using
compile-time static analysis.
Run-time Controlled Mode: collects the run-time information
(profiling data) and uses it to guide the program parallelization.
Guided Parallelization Mode: in which compiler can be used
to perform run-time analysis to generate an advisory reports,
suggesting ways (often code modifications) to the programmer
to parallelize loops.

b) Parallelization of Canny Application using CC1:
For the canny application, the default automatic mode and run-
time controlled mode did not show any significant speedup
over the original sequential application, hence, we used the
guided parallelization mode. By using the advisory reports,
the loops in the gaussian_smooth were successfully par-
allelized, however, many other loops could not be parallelized
due to false data-flow dependences. Listing 1 illustrates an
example where a small manual modification made the loop
parallelizable. We made several manual modifications such as
nested loop fusion and iterator duplication to help the compiler.
The resulting parallel program achieved better speedups (up to
4× for 16 threads on a platform with two Intel Xeon E5-2670
processors at 2.6 GHz).

CC1 is capable of performing instruction-level parallelism
by vectorization. In this regard, we performed three experi-
ments to evaluate the vectorization quality in each case:

1) In order to evaluate the vectorization quality, we measured
the achieved performance of one of the two loops of the
gaussian_smooth function. This loop was reported as
auto-vectorized by the compiler.

2) In the original code, this loop contains control branches
(if) to handle loop bounds, which limit vectorization
efficiency. We removed these branches.

3) Finally, we vectorized the code manually using SIMD
intrinsics (SSE4.2).

The results of these three versions are shown in Figure 1.
It can be seen that the manual vectorization achieves signif-

icantly better performances than the automatic vectorization
performed by the compiler even after vectorization-friendly
code transformations.

c) CC2: CC2 aims at the parallelization of sequential
C/C++ code for ARM Cortex A9 and x86 as target systems.
To use CC2, an application is compiled with a C99 compliant
compiler to perform instrumentation of the application. The
instrumented application is then executed on the model of the
target architecture to generate the profile of the application.
The generated profile can be visualized in a GUI to select the
loops which have high execution contribution as the candidates
for parallelization. Furthermore, the dependencies are also
reported in a GUI.

After selecting the number of cores in the architecture,
CC2 predicts the achievable speedup at the loop-level as well
as the application-level. Based on the selected parallelization,
refactoring steps are presented by the tool to be applied on
the sequential code by the programmer to parallelize it. CC2
suggests parallelizations in terms of a low level threading API
and OpenMP pragmas.
1

/ / Loop c a r r i e d dependency on pos i n o r i g n a l s e q u e n t i a l l oop2
f o r ( i n t pos =0 , r =0 ; r<rows ; r ++ , pos ++ )3

f o r ( i n t c =0; c<c o l s ; c ++ , pos++ )4
image [ pos ] = x ;5

6
/ / e q u i v a l e n t p a r a l l e l i z a b l e loop7
f o r ( i n t pos =0; pos<rows∗ c o l s ; pos ++)8

image [ pos ] = x ;

Listing 1. CC1 fails to resolve an easily removable data dependencies which
prevents parallelization.

d) Parallelization of Canny Application by CC2: For
the loops in gaussian_smooth, CC2 detected that there
are no loop dependencies and suggested an OpenMP pragma.
For a 4-core system, loop speedup of 4× was predicted,
whereas the achieved speedup is only 2.58×. Similarly, a
2.2× application speedup was predicted, however, the actual
application speedup is 1.64×.

For the loop in magnitude_xy, CC2 detected r as an
induction variable, however, for pos variable, synchronization
was suggested. This synchronization resulted in slowdown, in-
stead of speedup. By changing the code, as already discussed in
Listing 1, programmer can avoid this synchronization. Hence,
a loop speedup of 2.84× and an application speedup of 1.7×
was achieved. Finally, for the third loop in non_max_supp,
CC2 predicted no speedup, hence, it was not parallelized.

e) Lessons Learned: It can be summarized from the
discussion in this section that Parallel compilers, such as
CC1, may significantly improve programmer’s productivity by
automatic code parallelization, however, such compilers suffers
from inherent difficulties. Hence, manual code analysis and
modifications are required.

CC2 performs run-time analysis to detect dependencies
and suggest parallelization. However, there are cases in which
even simple loop carried dependencies are not resolved au-
tomatically. Therefore, these dependencies are either resolved
manually or synchronization is suggested. This synchroniza-
tion can result in loop (and hence application) slow-down,
instead of speedup, requiring manual inspection and modi-
fication of application by the programmer. Furthermore, the
information is provided among loop iterations, not across loop

540



0

 1

 2

 3

 4

 5

 6

 7

 8

320x240 640x480 800x600 1,024x768

N
o
rm

al
iz

ed
 F

ra
m

es
/S

ec
o
n
d

Frame Size (Pixels)

gpu
gpuOpt

2.75x

2.41x
2.08x

1.43x

Fig. 2. Normalized Frames per seconds achieved by the GPU and data-
communication optimized GPU implementation.

nests or functions in the application to exploit coarse-grained
application parallelization and data-flow optimizations.

This outlines the need for tools which analyze the programs
dynamically to provide data-flow information to highlight real
data-dependences. This information should be provided at
various granularity levels to extract and express various forms
of parallelization available in the application.

IV. TOOLS DESCRIPTION

This section briefly introduces the tools involved in this
discussion, namely MCROF and XPU.

MCPROF [15] is a runtime memory and communication
profiler which generates detailed application profile in terms of
memory access patterns and data-communication at function
and loop-level granularity. It is based on Intel Pin Dynamic Bi-
nary Instrumentation (DBI) framework [16]. MCROF performs
instruction-level instrumentation to track memory reads and
writes by each instruction. Furthermore, routine-level instru-
mentation is utilized to keep track of the currently executing
function. These are tracked by maintaining a call-stack of the
functions executing in the application. To track the dynamic
allocations in the application, image-level instrumentation is
utilized to selectively instrument library images for memory
(re)allocation/free routines.

The tracked memory reads/writes are associated with parts
of the source code depending upon the selected granularity
i.e. functions, loops or other marked regions in the source
code. In this way, a producer-consumer relationship is es-
tablished between functions/loop/objects in the source code
and reported in the form of a communication graph. This
production-consumption relation is expressed by edges in the
graph where the color of the graph shows the intensity of the
communication. Furthermore, the generated graph also shows
percentage of the dynamically executed instructions and the
number of calls to each function. In this way, communication
as well as the computation intensive parts of the application
are shown in the generated graph.

The information generated by MCROF has been utilized
earlier [15] to perform data-communication aware partitioning
of sequential applications on a heterogeneous architecture.
Kanade-Lucas-Tomasi Feature Tracker (KLT) [17] application
was mapped to a GPU-based platform. After applying the opti-
mizations based on MCROF to the initial GPU implementation
(gpu), a data-communication optimized version of the GPU
implementation (gpuopt) was obtained. Figure 2 shows the
Frames Per Seconds (fps) achieved by both the implemen-
tations normalized to the CPU implementation. Increasing the
frame size, results in an increase in the amount of computation

performed on the GPU. Increased computation results in better
utilization of the available resources of the GPU, resulting in
higher speedup as can be observed from this figure. On the
other hand, increasing the frame size also increases the amount
of frame data transferred to the GPU for processing and getting
results back. This data-communication has been optimized
in the case of gpuopt based on the information provided by
MCROF. Hence, gpuopt implementation achieves up-to 2.75×
higher speedup as compared to gpu implementation where this
communication is not optimized.

XPU [18] [19] is a structured parallel programming frame-
work which aims to easily express and exploit parallelism.
XPU allows the expression of different types of parallelism at
different levels of granularity. Supported parallelism types in-
cludes data parallelism [20], task parallelism [19] and pipeline
parallelism [21]. These different parallelism types can be
composed hierarchically in the same application [22].

XPU utilizes C++ meta-programming techniques [23] [24]
exploiting the potential of the standard C++ language and thus
does not require any particular tool except standard C++ com-
piler. XPU provides a friendly and light weight programming
interface which enables the programmer to design parallel
applications or parallelize sequential applications with minimal
code changes without any significant alteration.

XPU is mainly composed of a set of recurrent parallel
execution patterns which specifies execution configuration of a
group of tasks. In order to promote reuse of sequential legacy
code, these tasks are designed to encapsulate different pieces of
code including functions, class methods or lambda expressions.
XPU’s execution patterns handle transparently many issues
such as communication, synchronization and task scheduling.
An intelligent run-time system exploits the information which
is extracted transparently from both the available hardware
resources and perform the resource allocation through cache-
aware and load-balanced task scheduling [20], [21].

V. MCROF-XPU APPROACH

The XPU parallel programming model is designed for
easing explicit parallelism expression and therefore requires
locating the hot-spots in the program and extracting parallelism
by analyzing task-dependencies (producer-consumer relation-
ships). Usually this analysis is performed manually by reading
and analyzing the code and profiling the application, which is
a time-consuming and error-prone task. MCROF can automate
this analysis phase and provides a clear picture of the program
with all the required information including task-dependencies,
compute-intensive and communication-intensive hot-spots in
the application. Hence, MCROF and XPU can form a paral-
lelization tool-chain which offers a much smoother transition
from the sequential-code to the parallel-code. The MCROF-XPU

parallelization methodology follows the traditional paralleliza-
tion steps which can be summarized as follows:

1) Profiling sequential code: to locate hot-spots.
2) Extracting parallelism and granularity adjustment:

analyzing data and task dependencies and decomposing
tasks to extract more parallelism, if available, at finer grain.

3) Expressing parallelism: using the parallel programming
API.

541



4) Executing the parallel code efficiently: parallel program-
ming libraries are often based on a run-time which is
responsible of efficient scheduling to optimize execution.

A. Profiling The Sequential Application using MCROF

Figure 3 shows the MCROF output graph of Canny, where
nodes represent functions. Each node contains the function
name, the percentage of dynamically executed instructions by
this function with respect to the whole application, as well
as the total number of calls to this function. For instance,
gaussian_smooth is executed once and it is a computa-
tionally intensive function as it covers 80% of the instructions
executed by the whole application.

In addition, the inter-function data-flow is represented by
edges. Furthermore, the statically and dynamically allocated
objects involved in each flow are also detected by MCROF

and represented by rectangles containing object names and
allocation sizes. The communication intensity is quantitatively
shown by the number of bytes on each edge and also illustrated
by the color the edges from red (highest) to green (lowest). In
this way, programmer is able to visualize the computation- and
communication-intensive parts of an application, in a single
graph, without manual source code inspection.

To extract parallelism, coarse-grained functions should be
decomposed to extract potential finer-grain parallelism, we
refer to this decomposition step as granularity adjustment.

B. Granularity Adjustment

As seen in Figure 3, gaussian_smooth has 80% exe-
cution contribution in the application. In order to extract paral-
lelism inside this function, we use the MCROF feature of split-
ting functions at loop level granularity. Figure 4 shows the sim-
plified output graph generated by MCROF where the loops in
gaussian_smooth are split as separate nodes represented
by gaussian_smooth1 and gaussian_smooth2. A
similar split of derivative_x_y is also shown as
derivative_x_y1 and derivative_x_y2.

As depicted in the Figure 4, the gaussian_smooth
function exposes dependencies between its two loop nests,
thus they cannot be executed concurrently. However, each of
these loops can be parallelized individually since they operate
independently on columns and rows of the image. On the other
hand, the two parts of the derivative_x_y do not expose
any dependency and therefore can be executed in parallel,
since these loops are using a common read-only input while
producing separate outputs. A similar analysis is performed on
other functions to extract the available parallelism.

C. Parallelization Using XPU

After analyzing the data-flow dependencies and extracting
parallelism, we use the XPU framework to express the par-
allelism. In this regard, XPU skeletons are utilized to exploit
various forms of parallelism available in the application.

1) Thread-level parallelism: Thread-level data parallelism
can be achieved by parallelizing sequential loops. In XPU,
this is expressed by using parallel_for pattern. For
instance, Listing 2 shows how the gaussian_smooth is
parallelized using the XPU parallel loop skeleton. The task

 gaussian_smooth 
80%, 1

 smoothedim 
1.6 MB

1.6 MB

 tempim 
3.1 MB

3.1 MB

 derrivative_x_y 
2%, 1

6.3 MB

47.0 MB

 delta_x 
1.6 MB

1.6 MB

 delta_y 
1.6 MB

1.6 MB

 magnitude_x_y 
2%, 1

1.6 MB

 non_max_supp 
8%, 1

1.6 MB

1.6 MB

2.3 MB

 magnitude 
1.6 MB

1.6 MB

7.8 MB

 apply_hysteresis 
4%, 1

279.5 kB

 follow_edges 
1%, 54972

108.3 kB

 nms 
786.4 kB

784.7 kB

786.4 kB

132.3 kB

 edge 
786.4 kB

1.5 MB 2.4 MB

439.8 kB53.8 kB

 image 
786.4 kB

11.8 MB

 kernel 
60 B

67.1 MB

Fig. 3. Task dependency graph of Canny application generated by MCROF.

 gaussian_smooth1 
40%, 1

 tempim 
3.1 MB

3.1 MB

 gaussian_smooth2 
40%, 1

47.0 MB

 smoothedim 
1.6 MB

1.6 MB

 derrivative_x_y1 
1%, 1

3.1 MB

 derrivative_x_y2 
1%, 1

3.1 MB

 delta_x 
1.6 MB

1.6 MB

 delta_y 
1.6 MB

1.6 MB

 image 
786.4 kB

11.8 MB

 kernel 
60 B

47.0 MB

47.0 MB

Fig. 4. MCROF profile at loop-level granularity showing independence of the
two loop nests inside the derivative x y function.

542



1 i n t g a u s s i a n s m o o t h 1 ( char ∗ inImg , f l o a t ∗k e r n e l , char ∗
outImg , /∗ more args ∗ / )

2 { /∗ p r o c e s s an image row ∗ / }
3 i n t main ( ) {
4 / / t a s k d e f i n i t i o n
5 xpu : : t a s k g a u s s t a s k ( gauss i an smoo th1 , image , k e r n e l ,

tempim , /∗ more args ∗ / ) ;
6 / / p a r a l l e l l o op c o n s t r u c t i o n
7 xpu : : p a r a l l e l f o r p a r a l l e l g a u s s ( 0 , s i z e ,1 ,& g a u s s t a s k ) ;
8 / / p a r a l l e l l oop e x e c u t i o n
9 p a r a l l e l g a u s s i a n . run ( ) ;

10 }

Listing 2. XPU parallel for loop construction and execution.

image
0 1 2 3 4 5 6 7 8 ...

kernel
0 4 8 52 56...

Operations

tmpimg
0 4 8 1612 ...

Fig. 5. Fine-grain access-pattern of gaussian smooth1 loop reading
image, kernel and writing tmpimg objects. Accesses in same iteration are
represented by the same color.

which processes the data elements is constructed and named
parallel_gaussian. We note that data partitioning and
tasks scheduling are handled transparently by the XPU run-time
to ensure dynamic forward-scalability and execution-efficiency
across different platforms.

2) Instruction-level parallelism: Beside loop paralleliza-
tion, vectorization can act as a great performance multiplier
by allowing SIMD operations on the pixels of the image. XPU

provides transparent vectorization through built-in vectorized
types such as vec4f or vec8s, which are implemented
using x86 SSE intrinsics. For instance, using vec4f allows
vectorization of standard operations on single precision float
and other composite operations which are not available na-
tively in SSE instruction-sets, such as trigonometric functions.
Similarly, by using the vec8s type, the programmer can
operate implicitly on 4 floats simultaneously.

Understanding the data-access pattern is one of the major
challenging task in the vectorization process especially in the
case of irregular or non-contiguous memory-accesses (load
and stores). Tracking data-accesses across loops iterations can
be a time-consuming and error-prone task. To address this
issue, MCROF can generate a graphical view of the data-access
pattern of both input and output data in a user-delimited region
of the code, particularly loops. Figure 5 shows the data-access
patterns in the first three iterations of the gaussian loop. Each

1 xpu : : v e c 4 f v1 , v2 , v3 , acc , k1 , k2 , k3 , k4 ;
2 f o r ( i n t i = b e g i n ; i<end ; i ++) {
3 v1 = &i n [ i ] ; v2 = &i n [ i + 4 ] ; / / l oa d i n p u t s
4 v3 = &i n [ i + 8 ] ; v4 = &i n [ i + 1 2 ] ;
5 / / v e c t o r i z e d o p e r a t i o n s :
6 acc = k1∗v1 + k2∗v2 + k3∗v3 + k4∗v4 ;
7 sum = ( k1+k2+k3+k4 ) . sum ( ) ;
8 acc /= sum ;
9 o u t [ i−( k e r n e l s i z e / 2 ) ] = acc . sum ( ) ; / / s t o r e o u t p u t

10 }

Listing 3. Code Vectorization using XPU.

1 / / t a s k s d e f i n i t i o n
2 xpu : : t a s k dx t ( d e r r i v a t i v e x , smoothed img , dx ) ;
3 xpu : : t a s k dy t ( d e r r i v a t i v e y , smoothed img , dx ) ;
4 / / p a r a l l e l e x e c u t i o n
5 xpu : : p a r a l l e l (& dx t , &dy t )−>run ( ) ;

Listing 4. Task-level parallelism in derivative xy expressed in XPU.

Fig. 6. Achieved speedups over the sequential execution for the Canny
application when parallelized by various approaches.

color corresponds to an iteration. In each iteration, we used
the XPU vectorized type vec4f to load the required inputs
from both image and kernel at the indicated position. Four
multiplications and the sum is then performed simultaneously.
This allowed us to achieve a significant speedup over both
the sequential code and the automatically vectorized code
generated by the compiler. Listing 3 shows an example of
vectorized code using XPU.

3) Task Parallelism: As depicted in the MCROF output
in Figure 4, derivative_x and derivative_y do not
expose any producer-consumer dependencies and thus can be
executed as parallel tasks. This can be easily specified using
XPU as shown in Listing 4.

Figure 6 shows the speedup achieved for the Canny ap-
plication parallelized by MCROF-XPU methodology, CC1 and
CC2. The theoretical speedup based on Amdahl’s law and
estimated speedup while considering SIMD support is also
shown. It can be seen that a speedup of 15× is achieved
for 16 cores on an Intel Xeon E5-2670, which is about
4× higher than what achieved by CC1 and Pareon. Similar
performances are achieved on 64 cores platform with four
AMD Opteron 6274 processors.

Apart from the Canny application, we have also paral-
lelized fluidanimate application which is a part of the PARSEC
Benchmark [25]. This benchmark includes three versions of
the application: a serial version, a parallel version which uses
POSIX Thread API and another parallel version which uses
Intel Thread Building Blocks. Another parallel version using
XPU has been developed in [18] [20]. We developed a new
version using the MCROF-XPU methodology. In the original
XPU-based fluidanimate version, all the five processing stages
were parallelized. However, the MCROF analysis report have
shown that some of these stages are not hot-spots which are
not worth parallelization. Parallelizing these stages introduces
a communication overhead which affects the overall perfor-
mance. The granularity adjustment using MCROF showed that
splitting the computeForces processing stage in three sub-
stages clearly isolate the computationally intensive regions
which should be parallelized.

543



Fig. 7. Performance comparison of the PThread, TBB, XPU only and XPU-
MCROF versions of the PARSEC Fluidanimate application.

The XPU parallel_for skeleton has been used to
express the thread-level data parallelism exposed by different
processing stages. The later skeleton provides a scalable data
partitioning and uses a cache-aware scheduling policy which
promote data reuse and improve spatial and temporal data
locality. This scheduling techniques appeared to be particularly
beneficial in this study case since each fluid cell is processed
on the processor core. Furthermore, we replaced the fluid
cells arrays by XPU vec3f arrays to take advantage of SSE
vectorization. In the reference sequential code, these fluid cells
are expressed using regular float arrays.

Figure 7 shows the achieved performance by the four
versions. We observe that using MCROF profiling information
improved the performances of the original XPU-only version.
We note that the performances of the PThread version suffers
from significant degradation when more than two processors
(32 threads) on the AMD platform (64 cores/4 processors)
are used, our investigation have shown that this degradation
is caused by the use of barriers which results to an expensive
many-to-many communication which affect the performances
especially when the four processors are used. The XPU ver-
sion uses a synchronization mechanism that follows a less-
expensive one-to-many communication pattern.

VI. CONCLUSION

With the emergence of multicore processor architectures,
we can no longer avoid parallelizing applications and making
parallelizing compilers more efficient is an important objective.
In this paper, we have presented the integrated use of two
tools which are very complementary in their functionality. As
data is in many cases the bottleneck blocking scalable use of
multiple computing cores, the need for a detailed analysis of
the data flowing through the application (and thus the hardware
resources). MCROF provides such a detailed profile which can
then be used by XPU, a parallel middle layer and programming
approach which provides minimally invasive code changes to
express and exploit in a natural way the available parallelism in
an application. Not only does the combined approach provide
better performance it also reduces substantially the overall time
needed to parallelize sequential applications. Future research
will allow to fully integrate the approach such that automatic
code changes can be introduced.

ACKNOWLEDGMENT

This research is supported by Artemis EMC2 Project (grant
621429), Artemis Almarvi Project (grant 621439) and Artemis
CRAFTERS Project (grant 295371). The authors would like
to thank Valery Kritchallo for useful discussions.

REFERENCES

[1] M. Horowitz and W. Dally, “How scaling will change processor
architecture,” in ISSCC, 2004, pp. 132–133 Vol.1.

[2] S. Borkar, “Exascale computing - a fact or a fiction?” in IPDPS, 2013.

[3] R. Nair, “Active memory cube: A processing-in-memory approach to
power efficiency in exascale systems,” in WoNDP, 2014.

[4] M. D. Ernst, “Static and dynamic analysis: Synergy and duality,” in
WODA, Portland, Oregon, 2003, pp. 24–27.

[5] W. Heirman et al., “A communication profiler to optimize embedded
resource usage,” ProRISC, 2009.

[6] S. Ostadzadeh, “Quantitative application data flow charac. for heteroge-
neous multicore architectures,” Ph.D. dissertation, TU Delft, Dec 2012.

[7] M. Amini et al., “Par4All: From Convex Array Regions to Heteroge-
neous Computing,” Jan 2012.

[8] C. Dave et al., “Cetus: A Source-to-Source Compiler Infrastructure for
Multicores,” Computer, Dec. 2009.

[9] Appentra, “Parallware,” http://www.appentra.com/products/parallware/.

[10] W. Blume et al., “Polaris: Improving the Effectiveness of Parallelizing
Compilers,” ser. LCPC, London, UK, UK, 1995.

[11] U. Bondhugula et al., “PLuTo: A Practical and Fully Automatic Poly-
hedral Parallelizer and Locality Optimizer,” The Ohio State University,
Tech. Rep., Oct 2007.

[12] Intel, “Automatic Parallelization with Intel Compilers,”
https://software.intel.com/en-us/articles/automatic-parallelization-
with-intel-compilers.

[13] J. Shen and M. Lipasti, Modern Processor Design: Fundamentals of
Superscalar Processors. McGraw-Hill Higher Education, 2002.

[14] Vector Fabrics, “Pareon profile.” URL: {http://www.vectorfabrics.com}
[15] I. Ashraf et al., “MCProf: Memory and Communication Profiler,” Delft

University of Technology, Tech. Rep., November 2014.

[16] C. Luk and et al., “Pin: Building Customized Program Analysis Tools
with Dynamic Instrumentation,” in PLDI, 2005, pp. 190–200.

[17] B. D. Lucas and T. Kanade, “An Iterative Image Registration Technique
with an Application to Stereo Vision,” 1981, pp. 674–679.

[18] N. Khammassi, “High-Level Structured Programming Models For Ex-
plicit and Automatic Parallelization on Multicore Architectures.” Ph.D.
dissertation, ENSTA Bretagne, Lab-STICC, Brest, France, 2014.

[19] N. Khammassi et al., “MHPM: Multi-Scale Hybrid Programming
Model: A Flexible Parallelization Methodology,” ser. HPCC, Washing-
ton, DC, USA, 2012, pp. 71–80.

[20] N. Khammassi et al., “Design and implementation of a cache hierarchy-
aware task scheduling for parallel loops on multicore architectures,” in
PDCTA, Sydney, Australia, 2014.

[21] N. Khammassi and J.-C. Le Lann, “A high-level programming model
to ease pipeline parallelism expression on shared memory multicore
architectures,” ser. HPC, San Diego, CA, USA, 2014.

[22] Khammassi, N. and Le Lann, J.C., “Tackling Real-Time Signal Pro-
cessing Applications on Shared Memory Multicore Architectures Using
XPU,” ser. ERTS, Toulouse, France, Feb 2014.

[23] J. Koskinen, “Metaprogramming in C++.” URL: www.cs.tut.fi/∼kk/
webstuff/MetaprogrammingCpp.pdf

[24] H. Singh, “Introspective C++,” Ph.D. dissertation, Virginia Polytechnic
Institute, Virginia, VA, USA, 2004.

[25] C. Bienia et al., “The PARSEC Benchmark Suite: Characterization and
Architectural Implications,” in PACT, 2008.

544


