
Intra-Application Data-Communication
Characterization

Imran Ashraf, Vlad-Mihai Sima, and Koen Bertels

Computer Engineering Lab, Delft University of Technology, The Netherlands
{I.Ashraf,V.M.Sima,K.L.M.Bertels}@TUDelft.nl

Abstract. The growing demand of processing power is being satisfied mainly
by an increase in the number of computing cores in a system. One of the main
challenges to be addressed is efficient utilization of these architectures. This de-
mands data-communication aware mapping of applications on these architec-
tures. Appropriate tools are required to provide the detailed intra-application
data-communication information and highlight memory-access patterns to port
existing sequential applications efficiently to these architectures or to opti-
mize existing parallel applications. In this work, we present an efficient data-
communication profiler which provides a detailed data-communication profile
for single and multi-threaded applications. In contrast to prior work, our tool
reports such information with manageable overheads for realistic workloads.
Experimental results show that on the average, the proposed profiler has at
least an order of magnitude less overhead as compared to other state-of-the-art
data-communication profilers for a wide range of benchmarks.

Keywords: Memory-profiling, Data-communication characterization, Hetero-
geneous computing, communication-aware mapping, shadow memory

1 Introduction

Although transistor scaling yields to more transistors per chip, inherent physical limits
prevent further cost-effective down scaling due to multiple challenges such as increased
power consumption and complex fabrication process [13]. As a result, designers have
shifted the computational paradigm by integrating more and more homogeneous and
heterogeneous processing cores in general-purpose (Kaveri by AMD), embedded (Zynq
by Xilinx) and high-performance computing platforms (Hybrid-core by Micron). This
emerging trend poses specific challenges regarding their programmability as an effec-
tive use of these platforms demands architecture-aware application mapping.

To exploit core-level parallelism, applications must be divided into smaller parts
which are mapped to the available cores in the architecture. This is a critical task as
an improper partitioning may diminish the anticipated performance improvements.
The main identifiable reasons for such performance degradation are the inefficient
memory assignments and huge inter-core data-communication overhead [9]. With the
increasing number of cores the degradation in performance exacerbates as this commu-
nication is typically more time-consuming than computation. Hence, it is considered
as the major design challenge in multi-core architectures [16]. In addition, it is a major
source of energy consumption [4].

Efficient application partitioning demands the understanding of the data-flow in an
application. With the growing program complexity, driven by an increasing demand



2 Imran Ashraf, Vlad-Mihai Sima, and Koen Bertels

of processing, it is time-consuming, tedious and error-prone to manually analyze these
complex applications. Hence, program analysis tools are required to identify the hot-
spots and/or bottlenecks pertaining to the target platform [16].

Well maintained open-source and commercial performance analysis tools exist
which report communication in programs where communication is explicit, such as
MPI [5, 6]. We would like to highlight here that these tools are not designed to pro-
vide the communication profile of sequential applications. These tools are based on
the technique which requires MPI parallel program as input. Hence, it only helps in
validating the parallel program written only in MPI, rather than constructing one.

Data-communication profilers based on static-analysis tools can be developed [10],
but they can only be used for regularly-structured applications and are inapplica-
ble for most of the real-world programs due to their irregular structure. Addition-
ally, pointer-analysis and their dynamic nature makes it hard to track the data-
communication statically. Hence, dynamic methods are required to characterize the
data-communication for such programs. Dynamic analysis tools generally have a high
overhead as compared to static ones. To generate a realistic profile of applications
dynamically requires the use of realistic workloads, which results in an increase in
overhead. Another challenge with such tools is the difficulty of pinpointing the exact
source-code location that is responsible for the data-communication. This informa-
tion, though very useful for developers, makes the design of such tools challenging
and increases their overhead.

In this work, we present an open-source memory-access and data-communication
profiler which addresses these issues. The proposed tool provides detailed information
which is not provided by existing tools. As a case-study, we analyze memory-access
patterns and data-communication bottlenecks for a feature tracking application. Ex-
perimental results show that the proposed tool generates this information at consid-
erably reduced execution-time and memory-usage overhead due to its well-thought
design. The main contributions of this work can be summarized as follows.

– The design of a novel data-communication profiler.
– The analysis of memory-accesses and data-communication behavior of a feature

tracking application as a case-study. Subsequently, this information is utilized to
port this application to a GPU based platform.

– A comparison with the state-of-the-art focusing on two criteria: execution-time
and memory-usage overhead.

The remainder of this paper is structured as follows. We start by providing the
related work in Section 2. The design of the proposed profiler is detailed in Section 3.
In Section 4, we discuss the use of generated information as a case-study to map an
application on a platform using GPU as accelerator. An empirical comparison of the
overheads is presented in Section 5, followed by conclusions in Section 6.

2 Related Work

Various open-source [7,17,20] and proprietry [2,3] tools exist which perform memory
profiling. However, these tools only provide the information about the cache misses
and do not report data-communication information in an application to perform par-
titioning or communication-aware mapping.



Intra-Application Data-Communication Characterization 3

Though static-analysis tools [10] can also track data-communication, a large num-
ber of tools utilize dynamic-analysis to collect accurate information at runtime. A well-
known dynamic-analysis technique used by large number of tools is instrumentation.
Various tools based on this technique are used for finding memory-management [22]
and threading bugs [21,22]. However, very few tools exist, as discussed in this section,
which perform detailed data-communication characterization, especially in sequential
applications for efficient application partitioning.

Redux [18] a Valgrind based tool, draws the detailed Dynamic Data-Flow Graphs
(DDFGs) of programs at the instruction-level. This tool has huge overhead as it
generates fine-grained DDFGs. Hence, it can only be used for very small programs
or parts of programs, as discussed by authors. Secondly, the purpose of the tool as
reported by authors is to represent the computational history of a program and not
to report its communication behavior.

Pincomm [12] reports the data-communication and it it is based on Intel Pin Dy-
namic Binary Instrumentation (DBI) framework [15]. Pincomm uses a hash-map to
record the producer of a memory location. Due to this map, the tool has high memory
overhead. Due to this overhead, Pincomm stores the intermediate information to the
disk and reads it later by a script to generate the communication graph. This disk
writing incurs high execution-time overhead. Furthermore, the authors also mention
the use of markers in the source-code to reduce the overhead and manage the out-
put complexity. However, in complex applications inserting these markers manually
is time-consuming. Secondly, this marking requires knowledge of the application to
understand what are the important parts of the program, which is not trivial.

Quad [19], also based on Pin [15], provides data-communication information be-
tween functions by tracking memory access at byte-granularity. Trie is used to store
producer-consumer relationships and it does so with less memory overhead as mem-
ory allocations in the Trie are done on demand at granularity of each byte. However,
this approach has high execution-time overhead, mainly because of the access-time of
Trie and the frequent memory allocations. Furthermore, the cumulative information
is reported at the application-level, which makes it difficult to utilize. In addition, the
information generated is not really useful when the application has different mem-
ory access behavior per call. Moreover, the provided information is without suitable
relationship to the application source-code, which makes its use tedious for developers.

Summarizing, existing approaches have high execution-time and memory-usage
overhead, which limits their use for realistic workloads. This may affect the quality of
the generated profile. Furthermore, the provided information lacks necessary dynamic
details and is not linked to the source-code, making it hard to utilize this information.

3 MCPROF: Memory and Communication PROFiler

In this section, we present the design of mcprof 1 which can conceptually be divided
into three main blocks as depicted in Figure 1 and detailed in this section.

3.1 Memory Access Tracer

The memory access tracer uses Intel’s Pin [15] DBI framework to trace memory reads
and writes performed by the application. We utilize instruction-level instrumentation

1 https://bitbucket.org/imranashraf/mcprof/downloads

https://bitbucket.org/imranashraf/mcprof/downloads


4 Imran Ashraf, Vlad-Mihai Sima, and Koen Bertels

Shadow
Memory

Unit

Memory Access
Tracer

Data
Collection
Engines

Engine 1

Engine 2

...

Engine N

Table
Lookup

Direct
Mapping

Communication Profile

Instrumentation APIs

VM

Pin

JIT Compiler Code
Cache

Emulation Unit

Instruction-Level
Instrumentation

Image-Level
Instrumentation

Routine-Level
Instrumentation

Call-stack

DOT
Comm. 
Matrix XML

Symbol
Table

R/W 
Access

Controller

Write Addr,
Write Size,
Producer

Read Addr,
Producer

Collected Information

Inter Func. 
Comm. Matrix

Inter Thread 
Comm. Matrix

...

Fig. 1: Block Diagram of mcprof.

SM1H

Shadow Mem0 (8 GB)

Mem0 (2 GB)

Shadow Mem1 (8 GB)

Mem1 (2 GB)

128 TB - 20 GB

Level 1 
Table

Level 2 
Tables

Level 3 
Tables

...
...

...

...

...
...

...

M0L

SM0L

SM0H

M0H

SM1L

M1L

M1H

Fig. 2: Hybrid Shadow Memory
Scheme Utilized by mcprof.

to track memory reads and writes by each instruction. Furthermore, routine-level
instrumentation is utilized to keep track of the currently executing function. These
are tracked by maintaining a call-stack of the functions executing in the application.
Static symbols are obtained by reading Executable and Linkable Format (ELF) [8]
header. To track the dynamic allocations, image-level instrumentation is utilized to
selectively instrument library images for memory (re)allocation/free routines.

An important point to mention here is that although in the current implementation
we have used the Pin framework to trace memory accesses, in the future, if desired,
with minor modifications, it is possible to use any other DBI framework or any other
technique to trace memory accesses.

3.2 Data Collection Engines

On each memory access traced by the Memory Access Tracer, a specific callback func-
tion is triggered based on the selected engine. In the case of a write, the producer of
the memory address is recorded in the shadow memory. On a read access, the producer
is retrieved from the shadow memory, while the consumer of the memory access is the
function at the top of the call-stack. Furthermore, based on the information required
by each engine, extra information is also recorded. For instance the source-line and
filenames of the allocated blocks as well as the allocation size, which is stored in the
symbol-table. Currently we have implemented the following three engines in mcprof.

Engine-1: This engine reports the memory-intensive functions and objects in the
application. This information, combined with the execution profile of the application,
can be automatically used, if desired, to reduce the overhead by performing selective
instrumentation and also reduce the complexity of generated profile.

Engine-2: This engine records inter-function/inter-thread data-communication
at the application level. The data-communication information is stored in a data-
communication matrix, where indices of the matrix are the producer and consumer
function/threads. When object-tracking is enabled, the data-communication is re-
ported to/from the objects in the source-code.

Engine-3: This engine generates per-call data-communication information. This
is important for applications with irregular memory access behavior per-call. Each
call is also given a unique sequence number which helps in identifying the temporal
information of each call.



Intra-Application Data-Communication Characterization 5

3.3 Shadow Memory

This block is responsible for recording the producer of each byte. On each write access,
the selected engine sends the address, size, thread ID and the function at the top of the
stack, which is the writer (producer) of this byte to the shadow memory unit. When
a function reads a byte, the reader (consumer) is the currently executing function,
while the the producer is retrieved from the shadow memory unit. These reads and
writes can happen anywhere in the 128 TB user address space, so keeping track of
the producer efficiently, is not trivial. Hence, the design of this shadow memory block
has a great impact on the execution-time and memory-usage overheads of a profiler.
Hence, we have combined the following two techniques in the design of the shadow
memory unit.
Direct Mapping in which an application’s address is translated to a shadow memory
address by using a Scale and Offset. Given an address Addr, its shadow address will
be (Addr × Scale) + offset. Although this address translation is fast, it assumes a
particular OS memory layout and requires the reservation of a huge amount of virtual
memory at fixed addresses.
Table-lookup in which multi-level tables are used to map addresses in an application
to their shadow addresses. This is similar to the page look-up tables utilized in OSes.
This approach is more flexible as it does not require neither a fixed memory layout,
nor an initial reservation of huge memory, as tables are allocated on demand. The
downside of this approach is that the multi-level table look-up is slower than the
address translation in direct mapping.

In order to make a well-informed trade-off between flexibility, execution-time and
memory-usage overheads, we have utilized a hybrid design of the shadow memory
unit as shown in Figure 2. We analyzed the access frequency in the memory map and
found out that the most frequently accessed memory is the bottom (Mem0) and the
top (Mem1) regions in the memory map. For most of the applications, N and M can
be 2 GB as shown in Figure 2. To make accesses to these regions faster, we reserve2 in
advance two shadow memories corresponding to these two memory regions, shown as
Shadow Mem0 and Shadow Mem1, respectively. This results in a simpler mapping of
addresses in these regions to the shadow addresses by Equation (1), without requiring
any lookup.

Addrsh = ((Addr&M0H) << log2(SCALE)) + (Addr&(SM1L + SM0L)) + SM0L (1)

where, Addr is the address of the original byte, Addrsh is the address of the
corresponding shadow bytes, SCALE is 4, and M0H, SM1L and SM0L are constants
as shown in Figure 2. For the middle (128 TB − 20 GB) less frequently used region,
we utilize a 3-level table-lookup scheme as shown in Figure 2.

Initially, the level-1 table is created and all its entries are marked as UNAC-
CESSED. Tables in the remaining two levels are created on demand when the address
in that range is touched for the first time. The address of the memory accessed in this
region is used to index these tables to reach level-3 where 4 shadow bytes are written
for each byte memory accessed in the original program. One byte for the function ID,
one byte for thread ID and 2 bytes for the ID of the object this address belongs to.
Therefore, we currently restrict the number of function and thread IDs to 256. In the

2 These regions are only reserved in the memory map, actual memory-usage is 4 B for each
byte of memory used by the program.



6 Imran Ashraf, Vlad-Mihai Sima, and Koen Bertels

future we will investigate more applications, and if required, increase the number of
bytes to store the IDs, as it is simply a parameter in the tool.

4 Case-study

The focus of this case study is on the utilization of data-communication information
provided by mcprof to map an application onto the GPU, without performing algo-
rithmic modifications. The use case involves Kanade-Lucas-Tomasi Feature Tracker
(KLT) application [14]. This application detects interesting features in a frame and
tracks them in the subsequent frames. We have used version 1.3.4, which is the latest
version of KLT [1]. This C implementation has 102 functions in 17 source-files making
up 5033 lines of code.

For the experiments performed in this case study, we used 64 bit, 2.5 GHz Intel(R)
Xeon(R) CPU with 32 GB RAM. Nvidia GeForce GT 640 GPU, with 2 GB memory,
is used as an accelerator which is connected to the PCIe slot of the CPU. Ubuntu
12.04 is running on the machine with Linux kernel 2.6.32-24-server and Nvidia driver
version 319.37. Nvidia CUDA toolkit V 6.0 is used to program the GPU.

4.1 Implementation without Data-communication Optimization

In order to efficiently map an application onto an accelerator based platform, compute
intensive functions, known as kernels, are off-loaded to the accelerator. We used gprof
[11] to identify the kernels in the application as shown in Table 1. For this run, 30
frames have been used with frame size chosen as 1024 × 768, to accumulate enough
number of samples to generate representative profile of the application. The total
percentage contribution of these kernels 91.7%.

As a first step in the mapping process, we mapped these kernels to the GPU. Table
2 provides the timing results of the first mapping step. For these experiments, 1024
features were tracked from frames of size 1024 × 768. Column 1 contains the names
of the compute-intensive kernel. Column 2 lists the execution-time of these kernels
on CPU (tcpu) in seconds. tgpucomp

is the time spent in performing the computation
on GPU which is shown in Column 3. The communication time tgpucomm

is listed in
Column 4 which is the time spent in transferring data to GPU before computation
and reading the results back, after the computation is complete. The execution-time
speedup is the ratio of the execution-time on CPU and GPU. Total kernel speedup
(SKtotal

) is reported in Column 5, which is calculated as
tcpu

tgpucomp+tgpucomm
. In order

to highlight the effect of data-communication, Column 6 lists the kernel speedup
(SKcomp

) for only the computation, calculated as
tcpu

tgpucomp
.

From Column 5 in Table 2, it can be seen that speedup has been obtained for all
the kernels except for trackFeature kernel. Hence, this kernel should not be mapped
to GPU. Another important result that can be deduced by comparing Column 5 to
Column 6 is that the communication has significantly reduced the achieved speedup.
In the next sub-section we will perform the optimization of this data-communication
by utilizing mcprof.



Intra-Application Data-Communication Characterization 7

Table 1: gprof flat profile for
the KLT application.

Function Name %Time

KLTSelectGoodFeatures 54.07

convolveImageVert 19.65

convolveImageHoriz 10.17

trackfeature 7.81

%Total Contribution 91.7

Table 2: Execution Time (sec) and Speedup results for
the initial KLT implementation.

Kernel tcpu tgpucomp tgpucomm SKtotal
SKcomp

KLTSelectGoodFeatures 13.53 1.17 0.36 8.8× 11.52×
convolveImageVert 3.93 0.14 0.76 4.35× 28.08×
convolveImageHoriz 1.77 0.18 0.76 1.87× 9.89×
trackFeature 1.96 1.49 0.52 0.96× 1.31×

Table 3: Memory Intensive Objects in KLT reported by mcprof.
Objects Reads Writes Reads/Writes Total %Total

tmpimgCS 3.8e8 5.1e7 7.4 4.3e8 26.6
pointlist 1.3e8 1.3e8 1 2.6e8 16.3
pyramidImg 1.3e8 3.5e7 3.8 1.7e8 10.3
grady 1.34e8 3.1e6 42.7 1.3e8 8.3
gradx 1.34e8 3.1e6 42.7 1.3e8 8.3
tmpimgTF 6.7e7 9.4e6 7.1 7.6e7 4.6
guassderiv kernel 6.7e7 4.7e3 14063.1 6.7e7 4.1
guass kernel 6.7e7 4.6e3 14500.6 6.7e7 4.1

%Total Contribution 82.6

4.2 Optimization of Data-communication

Optimization of the data-communication requires understanding of the data-flow in
the application. Understanding this data-communication by manual source-code is
not trivial, especially for applications like the one we have considered in this case
study involving a large number of functions and objects. Furthermore, pointer arith-
metic exacerbates this problem making it is hard to determine the real producer and
consumer of the data.

mcprof provides this production-consumption information in the form of a data-
communication graph in various formats. An overview of this information is shown as
communication matrix in top right corner of Figure 3 representing inter-function com-
munication intensity. mcprof also generates the detailed quantitative data-communication
information in the form of a directed graph. As there are large number of functions
in the KLT application, the complete graph is too large to present here. Secondly,
such large graphs are hard to be utilized by developers. Typically, the most compute-
intensive functions are selected for analysis. mcprof detects memory-intensive ob-
jects and the functions communicating with these memory-intensive objects. Table
3 lists the memory-intensive objects of the KLT application reported by mcprof.
Apart from mentioning the reads and writes accesses, the percentage accesses are also
reported in the last column. The last row of the table shows that memory accesses
through these 9 objects correspond to 82.6% of the total application memory accesses.

Figure 3 shows the data-communication graph of KLT application generated by
mcprof while tracking 256 features in 3 frames of size 1024 × 768. The ovals repre-
sent the functions in the application whereas the objects are represented by rectangles
where the number inside the rectangle is the allocation size. The kernels in the appli-
cation are shown in Grey ovals. The amount of communication in bytes is represented
by directed edges, where the color of the edges represent the intensity of the commu-
nication. To simplify the discussion, the dotted lines are used to mark the functions
in the main stages of applications.

tmpimgSF and tmpimgTF are generated by KLTToFloatImage on CPU and trans-
ferred to GPU as an input to convolveImageHoriz. KLTToFloatImage, though not



8 Imran Ashraf, Vlad-Mihai Sima, and Koen Bertels

pgmRead

img1
768 KB

786432 Bytes

img2
768 KB

786432 Bytes

KLTToFloatImage

1.57286e+06 Bytes 786432 Bytes

tmpimgSF
3 MB

3.14574e+06 Bytes

tmpimgTF
3 MB

6.29147e+06 Bytes

convolveImageHoriz

1.67772e+07 Bytes 1.67772e+07 Bytes

tmpimgCS
3 MB

3.14573e+06 Bytes

tmpimgCS
3 MB

3.14573e+06 Bytes

tmpimgCS
3 MB

3.14573e+06 Bytes

convolveImageVert

gradx
3 MB

3.14573e+06 Bytes

grady
3 MB

3.14573e+06 Bytes

pyramidImg
768K B

1.57286e+07 Bytes

1.67772e+07 Bytes 1.67772e+07 Bytes

...

1.67772e+07 Bytes

computeKernels 3792 Bytes

gauss_kernel
284 B

3560 Bytes

gaussderiv_kernel
284 B

3672 Bytes

1.67772e+07 Bytes

1.67772e+07 Bytes

5200 Bytes

1.67772e+07 Bytes

1.67772e+07 Bytes

2500 Bytes

KLTSelectGoodFeatures

1.67772e+07 Bytes1.67772e+07 Bytes

pointlist
9 MB

8.43264e+06 Bytes

pointlist
9 MB

8.43264e+06 Bytes

computeGradientSum

gradxTF
900 B

1.6011e+06 Bytes

gradyTF
900 B

1.6011e+06 Bytes

computeIntensityDifference

imgdiff
900 B

2.0619e+06 Bytes

trackFeature

2.0619e+06 Bytes 3.2022e+06 Bytes 3.2022e+06 Bytes

8.16786e+06 Bytes

1.67772e+07 Bytes

1.67772e+07 Bytes 1.67772e+07 Bytes1.67772e+07 Bytes

IMAGE INPUT

CONVOLUTION

KERNEL COMPUTATION

FEATURE SELECTION

FEATURE TRACKING

KLT
Sele

ctG
oo

dF
ea

tur
es

co
nv

olv
eIm

ag
eH

ori
z

co
nv

olv
eIm

ag
eV

ert

so
rtP

oin
tLi

st

co
mpu

teG
rad

ien
tSum

co
mpu

teI
nte

ns
ityD

iff
KLTSelectGoodFeatures

convolveImageHoriz

convolveImageVert

sortPointList

computeGradientSum

computeIntensityDiff

10

100

1e+03

1e+06

1e+07

1e+08

1e+05

1e+04

tra
ckf

ea
tur

e

trackfeature

Data-communication Matrix
Producers on Y-Axis
Consumer on X-Axis

Fig. 3: KLT Communication Matrix (top right) and communication graph generated
by mcprof. Functions (ovals), compute-intensive functions (Grey ovals) and the
objects(rectangles) involved in the communication are also shown.

compute-intensive, still mapping it to GPU will be better as it will make tmpimgSF

and tmpimgTF internal to GPU and reduce CPU-GPU communication.

guassderiv_kernel and guass_kernel are generated by computeKernels on the
CPU and consumed by convolveImageHoriz and convolveImageVert on GPU. How-
ever, mapping computeKernels to GPU is not required as guassderiv_kernel and
guass_kernel are consumed heavily but produced very infrequently. This is also ev-
ident from the very high Reads/Write ratio (Table 3) implying very less production
and a lot of consumption of data from these objects. Furthermore, these objects are
very small in size (284 Bytes), hence can be easily mapped to GPU’s constant memory.

Another optimization which can be performed in the convolution stage is the
allocation and de-allocation of large number of tmpimgCS objects for each frame. Al-
locating a single object in the start and re-using it in the subsequent frames instead of
re-allocating it will reduce the execution-time. Similar optimization can be performed
for pointlist in the Feature Selection stage.

gradx and grady generated in the Convolution Stage are consumed in the Feature
Selection stage by KLTSelectGoodFeatures. Hence, these objects can be kept on the
GPU for utilization in these stages. Furthermore, these objects should be mapped to
GPU’s shared memory. This is because of high Reads/Writes ratio depicted in Table 3,
suggesting high re-use of these objects. This will result in performance improvement
as shared memory has higher bandwidth as compared to global memory. On the
contrary, pointlist has Reads/Writes ratio of 1, which suggests no reuse, hence it
should be kept in the global memory. Mapping pointlist to shared memory will
only increase the overhead of the data transfer between global memory and shared
memory without being reused.



Intra-Application Data-Communication Characterization 9

0

 1

 2

 3

 4

 5

 6

 7

 8

320x240 640x480 800x600 1,024x768

N
or

m
al

iz
ed

 F
ra

m
es

/S
ec

on
d

Frame Size (Pixels)

gpu
gpuOpt

2.75x

2.41x

2.08x

1.43x

Fig. 4: Normalized Frames per seconds achieved by the GPU and data-
communication optimized GPU implementation.

1

 10

 100

 1,000

 10,000

canny KLT ocean−NC fmm raytrace bwa−mem Mean

E
xe

cu
ti

on
−

ti
m

e 
O

ve
rh

ea
d 

(l
og

 s
ca

le
)

Applications

35
30

 x
18

55
 x

54
 x 83

 x

Pincomm
QUAD
MCPROF
MCPROFx

Fig. 5: Execution-time Overheads.

1

 10

 100

 1,000

 10,000

canny KLT ocean−NC fmm raytrace bwa−mem Mean

M
em

or
y−

us
ag

e 
O

ve
rh

ea
d 

(l
og

 s
ca

le
)

Applications

10
2 

x
57

5 
x

4.
7 

x
5.

3 
x

Pincomm
QUAD
MCPROF
MCPROFx

Fig. 6: Memory-usage Overheads.

Based on the preliminary results in Table 2, it was concluded that trackFeature
should not be mapped to GPU because of slow-down. Even if this kernel is not so
efficient on the GPU, we should still port it to the GPU to avoid the bulk of data-
communication regarding the transfer of pyramidImg between GPU and CPU. This
is clearly shown by the communication edges to the computeIntensityDifference

and computeGradientSum function in the Feature Tracking stage.
After applying these optimizations to the initial GPU implementation (gpu),

we obtained a data-communication optimized version of the GPU implementation
(gpuopt). Figure 4 shows the normalized Frames Per Seconds (fps) achieved by both
the implementations for various frame sizes ranging from 320×240 to 1024×768 while
the number of tracked features is set to 1024. Increasing the frame size, results in an
increase in the amount of computation performed on the GPU. Increased computation
results in better utilization of the available resources of the GPU, resulting in higher
speedup as can be observed from this figure. On the other hand, increasing the frame
size also increases the amount of frame data transferred to the GPU for processing
and getting results back. This data-communication has been optimized in the case of
gpuopt based on the information provided by mcprof. Hence, gpuopt implementation
achieves up-to 2.75× higher speedup as compared to gpu implementation where this
communication is not optimized.

5 Overhead Comparison with Existing Profilers

In this section, we present the overhead comparison of mcprof with other state-
of-the-art data-communication profilers Quad and Pincomm as these are particu-
larly designed to report data-communication. For these experiments, we used Pin



10 Imran Ashraf, Vlad-Mihai Sima, and Koen Bertels

Fig. 7: Execution-time Comparison of
Data-structure access only.

Fig. 8: Memory-usage Comparison of
Data-structure access only.

v2.13 on the machine used in case-study. Figure 5 depicts the execution-time and
memory-usage overhead of Pincomm, Quad and mcprof for applications from vari-
ous domains, namely; image-processing (canny, klt) domain, SPLASH-2 benchmarks
(ocean-NC, fmm, raytrace) and a bio-informatics application (bwa-mem). Each bar
represents the ratios of the application execution-time with and without profiling for
each profiler. Similarly, Figure 6 reports the ratios of application memory-usage with
and without profiling.

We have reported mcprof results with two different settings depicted as MCPROF
and MCPROFx in these figures. Results with MCPROF legend are overheads while
providing the common basic information which Pincomm and Quad can also gen-
erate. Whereas, MCPROFx report overheads of complex engine while generating the
detailed data-communication information with stack recording and object detection.
Mean overhead results are also depicted in these figures. These results show that
mcprof has, on the average, an order of magnitude less execution-time and memory-
usage overheads. Main reason for this reduction in overhead is the well-thought design
of the shadow memory scheme utilized by mcprof. Due to the design, we were able
to shift most of the processing from analysis-time to instrumentation-time. Moreover,
the access-time and memory-usage overhead of the hybrid shadow memory scheme is
consisderably less as compared to Trie or Hash map utilized by Quad and Pincomm,
respectively. In order to clearly illustrate this, we have plotted the execution-time and
memory-usage of accessing only the data-structures of the three tools in Figure 7 and
Figure 8, for the canny application for various image sizes.

Another important observation from Figure 5 is that mcprof has an average
memory-usage overhead of 4.7 − 5.3×, which is mainly because 4 shadow bytes are
allocated for each byte used in the original program, plus some additional memory
for storing extra information.

6 Conclusions

Both the memory wall and the multi-core trend create the need for detailed data-
communication profiling. In this work, we presented the design of mcprof, a memory-
access and data-communication profiler. The unique design of the proposed profiler
resulted in significantly reduced execution-time and memory-usage overheads as com-
pared to the state-of-the-art, making the profiler useful for real applications with
realistic workloads. The reduced overheads allowed us to generate additional memory-
access and data-communication information which is not provided by existing tools.



Intra-Application Data-Communication Characterization 11

References

1. KLT: An Implementation of the Kanade-Lucas-Tomasi Feature Tracker, http://www.
ces.clemson.edu/~stb/klt/installation.html

2. Purify by IBM. http://www-03.ibm.com/software/products/us/en/

rational-purify-family

3. vTune by Intel. http://software.intel.com/en-us/intel-vtune
4. Borkar, S., Chien, A.A.: The future of microprocessors. Commun. ACM 54(5), 67–77

(May 2011), http://doi.acm.org/10.1145/1941487.1941507
5. Brunst, H., Mohr, B.: Performance analysis of large-scale OpenMP and hybrid

MPI/OpenMP applications with vampir NG. In: Mueller, M., Chapman, B., de Supin-
ski, B., Malony, A., Voss, M. (eds.) OpenMP Shared Memory Parallel Programming,
Lecture Notes in Computer Science, vol. 4315, pp. 5–14. Springer Berlin / Heidelberg
(2008), http://www.springerlink.com/content/h704195763x6l25l/abstract/

6. Chung, I.H., Walkup, R., Wen, H.F., Yu, H.: Mpi performance analysis tools on blue
gene/l. In: SC 2006 Conference, Proceedings of the ACM/IEEE. pp. 16–16 (Nov 2006)

7. Cohen, W.: Multiple Architecture Characterization of the Build Process with OProfile
(2003), http://oprofile.sourceforge.net

8. Committee, T.: Tool Interface Standard (TIS) Executable and Linking Format (ELF)
Specification Version 1.2 (May 1995)

9. Duato, J.: Beyond the power and memory walls: The role of hypertransport in future
system architectures. In: WHTRA (February 2009)

10. Ernst, M.D.: Static and dynamic analysis: Synergy and duality. In: WODA 2003: Work-
shop on Dynamic Analysis. pp. 24–27. Portland, Oregon (May 9, 2003)

11. Graham, S.L., Kessler, P.B., Mckusick, M.K.: Gprof: A Call Graph Execution Profiler.
SIGPLAN Not. 17(6), 120–126 (1982)

12. Heirman, W., et al.: PinComm: characterizing intra-application communication for the
many-core era. In: ICPADS. pp. 500–507 (Dec 2010)

13. Horowitz, M., Dally, W.: How scaling will change processor architecture. In: ISSCC. pp.
132–133 Vol.1 (2004)

14. Lucas, B.D., Kanade, T.: An Iterative Image Registration Technique with an Application
to Stereo Vision. pp. 674–679 (1981)

15. Luk, C., et al.: Pin: Building Customized Program Analysis Tools with Dynamic Instru-
mentation. In: PLDI ’05. pp. 190–200. ACM, New York, NY, USA (2005)

16. Martin, G.: Overview of the MPSoC design challenge. In: 43rd ACM/IEEE DAC. pp.
274–279 (2006)

17. Nethercote, N.: Dynamic Binary Analysis and Instrumentation. Ph.D. thesis, University
of Cambridge, United Kingdom (November 2004)

18. Nethercote, N., Mycroft, A.: Redux: A dynamic dataflow tracer. Electronic Notes in
Theoretical Computer Science (2), 149–170 (Oct 2003)

19. Ostadzadeh, S.: Quantitative Application Data Flow Characterization for Heterogeneous
Multicore Architectures. Ph.D. thesis, TU Delft (Dec 2012)

20. Pesterev, A., Zeldovich, N., Morris, R.T.: Locating cache performance bottlenecks using
data profiling. In: Proceedings of the 5th European Conference on Computer Systems.
pp. 335–348. EuroSys ’10, ACM, New York, NY, USA (2010)

21. Serebryany, K., Iskhodzhanov, T.: ThreadSanitizer: Data race detection in practice. In:
WBIA. pp. 62–71. ACM, New York, NY, USA (2009)

22. Seward, J., Nethercote, N.: Using valgrind to detect undefined value errors with bit-
precision. In: USENIX ATC. ATEC ’05, Berkeley, CA, USA (2005)

http://www.ces.clemson.edu/~stb/klt/installation.html
http://www.ces.clemson.edu/~stb/klt/installation.html
http://www-03.ibm.com/software/products/us/en/rational-purify-family
http://www-03.ibm.com/software/products/us/en/rational-purify-family
http://software.intel.com/en-us/intel-vtune
http://doi.acm.org/10.1145/1941487.1941507
http://www.springerlink.com/content/h704195763x6l25l/abstract/
http://oprofile.sourceforge.net

	Intra-Application Data-Communication Characterization
	Introduction
	Related Work
	MCPROF: Memory and Communication PROFiler
	Memory Access Tracer
	Data Collection Engines
	Shadow Memory

	Case-study
	Implementation without Data-communication Optimization
	Optimization of Data-communication

	Overhead Comparison with Existing Profilers
	Conclusions


