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Abstract—In modern safety-critical embedded systems relia-
bility and performance are two important criteria. In many
systems based on off-the-shelf processors software implemented
error recovery is the only option to improve the reliability
of the system. However, software methods typically introduce
large performance overheads. Another important factor in error
recovery schemes is the recovery time, especially in systems with
real-time requirements. A key observation that helps improve
software recovery methods is that only a defined number of
locations in the program are susceptible to errors. In this paper
we propose a fast software recovery scheme that instruments the
program only at locations vulnerable to control-flow errors. We
use a systematic bit-flip analysis to identify the exact locations
susceptible to control-flow errors in a given program. This
helps us to instrument the code with minimal overheads, while
maintaining high-level of correct-ability and low recovery times.
Our experiments show that using the result of our bit-flip analysis
and limiting the code instrumentation to only the susceptible
locations improves the efficiency by a factor of 80 when compared
to the latest control-flow error recovery methods.

I. INTRODUCTION

In modern processors, along with technology down-scaling

and the reduction of the operating voltages, the probability

that phenomena such as radiation or crosstalk change the state

of a transistor causing a transient fault becomes increasingly

higher. Therefore, reliability has emerged as a key factor

in embedded processor design. Different reliability optimiza-

tion schemes are proposed both in hardware and software.

Depending on application criticality and requirements, either

a scheme in hardware with special circuit checkers or a

method in software may be used. For example, safety-critical

applications on servers use specialized protecting hardware

against transient faults. Such computers are not bundled to

a tight power consumption and area. However, applications

on embedded processors with limited power and area budgets

can not afford extended hardware for reliability protection.

Moreover, in off-the-shelf processors the hardware can not be

modified and the only remaining solution to protect against

hardware transient faults is software optimizations. The target

of our work in this paper are such processors for embedded

reliable applications.

Transient hardware faults cause data or Control-Flow Errors

(CFE) at run time. Data-errors cause an erroneous value in

registers or memory and CFEs cause an erroneous execution

flow. Since the effect of data-errors and CFEs are different,

optimization techniques to protect the application against each

of the error types are also different. Software methods in-

strument the application with extra code (assertions) to detect

and recover from data or control-flow errors. CFE detection

methods employ signature monitoring inside basic blocks1

to detect illegal execution flow. Conventional CFE recovery

methods use checkpoints at the beginning of the basic blocks

in order to restart the execution in case a CFE is detected. Due

to the high overhead of using checkpoints for all basic block,

some methods select fewer basic blocks to add checkpoints.

However, decreasing the number of checkpoints increases the

recovery time from the moment an error is detected up to

the time the execution is fully recovered. In applications with

real-time requirements, the recovery time should be as low as

possible. The ideal case for CFE recovery is to know which

basic blocks are the source of the error and add checkpoints

only to those blocks. Previous research [1] has shown that a

significant number of basic blocks are not susceptible to CFEs.

Assertions and checkpoints that are added to protect the non-

susceptible blocks are unnecessary and, without improving

reliability, increase performance overhead.

In this paper, we propose a new CFE recovery method which

adds checkpoints only to basic blocks that are susceptible to

CFEs. We use the bit-flip analysis scheme proposed in [1].

This framework analyzes the impact of single bit-flips on

the control-flow misbehavior and identifies all basic blocks

that are the potential destinations of faulty transitions. These

basic blocks are the susceptible destinations of erroneous

branches caused by a CFE. In this work we extend the

previously proposed bit-flip analysis in order to identify the

basic blocks where CFEs are initiated from. These blocks are

the susceptible sources where the erroneous branch can occur.

The result of our extended analysis scheme gives the ordered

pairs of susceptible source and destination blocks. Using this

information, we instrument the code with necessary assertions

and checkpoints to protect susceptible blocks.

The main contributions of this work are:

• A novel fast control-flow error recovery method;

• Framework for identifying the potential source basic

blocks where an erroneous branch may stem from;

• Low-cost and effective check-pointing scheme by plac-

ing the checkpoints in the identified susceptible source

blocks;

1branch-free sections of the program
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• Efficiency metric to rank control-flow error recovery;

• Efficient recovery scheme with short recovery time of 28

cycles and low performance overhead compared to state-

of-the-art methods.

The rest of the paper is organized as follows: Next, the

motivation behind this work and the required background

information are given, including the target fault model and

the existing software methods for control-flow error recovery.

The detailed explanation over bit-flip analysis and our check-

pointing scheme is given in section III. Section IV describes

the experimental setup and the results analysis. Finally we

present the conclusions and future work.

II. BACKGROUND INFORMATION

A. Fault Model

The target fault model in our work is single bit transitions,

which are due to events such as crosstalk or radiation. As

investigated in [2], multiple bit transitions cause the same

misbehavior as single bit flips. Therefore, in this work we

consider only single bit transitions. Single bit transitions may

lead to Data-Error or CFE. Data-errors cause an erroneous

value in registers or memory. CFEs cause an erroneous exe-

cution flow. It should be noted that an error in the condition

of a conditional-branch is a data-error and is detectable with

specific detection methods for this fault category. CFEs may

occur due to three main reasons: 1) branch creation; 2) branch

deletion and 3) error in the branch destination. Branch creation

may occur if a non-branch instruction converts to a branch and

branch deletion may happen if a branch instruction converts

to a non-branch instruction. The probability of transforming a

non-branch opcode to a branch and vice versa due to a single

bit transformation is extremely low and depends on the opcode

coding of the instruction set architecture. It is important to note

that branch creation may also happen due to bit-flips in the

program counter. However, the probability of CFE occurrence

due to single bit-flip in the program counter is relatively low

as it is a small circuitry compared to the rest of the processor

components. For these reasons, in the recent works the main

cause of CFEs is considered to be erroneous branch instruction

destinations [3]. In this work, also, we target CFEs caused by

faulty bit-flips in branch instructions destinations. Since the

first two categories of CFE have very low probabilities, adding

high-overhead software assertions for detecting such errors in

embedded systems with high-performance requirements is not

efficient.

B. Related Works

Proposed methods for detection and recovery of transient

faults exploit some form of redundancy as redundant hardware,

redundant process and redundant thread or some additional

instructions in the executed program to detect the faults and

checkpoints to roll back the execution and recover from the

detected fault. Hardware redundancy, either if hardware is

replicated [4] [5] or extended with circuit checkers [6] has the

drawback of being costly and not being applicable in many off-

the-shelf-processors. Methods using redundant threads [7] or

process-level redundancy [8] for reliability optimization also

need parallel hardware resources which may not be available in

older processors used in current systems. Several software op-

timization methods to improve reliability instrument programs

with additional code to check run-time program execution.

Since the effect of data-errors and CFEs are different, the

detection mechanisms proposed for each error type are also

different and target only one of the two error types. Data error

detection methods, such as EDDI [9], add a duplicated version

of instructions and a corresponding compare checking the

consistency between the two versions. CFE detection methods

have a unique signature associated to each basic block. At run-

time set assertions update runtime Signature (S) to the current

basic block signature and test assertions check the correctness

of the S content to validate control-flow correctness.

Several software optimization methods for CFE detection

exist: CCA [10], ECCA [11], CFCSS [12], YACCA [13],

CEDA [14], ACFC [15], Abstract Control Signatures (ACS)

[3] and SWIFT [16]. SWIFT is a hybrid method combin-

ing CFCSS for CFE and EDDI for data error detection.

All the mentioned methods add set assertions to all basic

blocks to update the runtime signature along the control-flow

path. However, depending on the category of the detection

method test assertions are added in predefined locations of

the program. CFE detection methods can be divided into two

main categories: path-asserting and predecessor/successor-
asserting methods. A path-asserting method adds test in

one B-block per control-flow path2 to assert correct path

execution. Predecessor/Successor-asserting methods add tests
in all B-blocks to check if the previous (or next) B-block

in the execution flow is the correct predecessor (or succes-

sor). CFCSS, ECCA, CEDA, YACCA and CCA represent

predecessor/successor-asserting methods with high fault cover-

age and high overhead. ACFC and ACS add one test assertion

for group of basic blocks and are categorized as path-based

methods. Predecessor/successor assertions are also categorized

into two groups: 1) methods with incremental signatures up-

date; 2) methods with local signature updates. At incremental

signature updating, the global signature content at each basic

block is dependent on all set assertions in the predecessor

basic blocks along the execution path. Sample methods for

incremental signature update are CEDA, CFCSS and YACCA.

On the other hand, local signature updates set the signature

at the current basic block independent of global signature

content. ECCA and CCA are examples of methods with local

signature update. The shortcomings of local signature updates

are high overheads and low fault-detection capability for

basic blocks with multiple predecessors. A recently proposed

detection method with local signature update is FCFC [1]

which does not have the downside of not detecting errors in

basic blocks with multiple predecessor.

In [17], the authors investigate that the majority of transient

faults can either be ignored (because they do not ultimately

propagate to user-visible corruptions at the application level)

2a group of B-blocks executed in an uninterrupted sequence
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or are easily masked by lightweight symptom-based detection.

They use compiler analysis to find high-value portions of the

application code that are both susceptible to soft errors and

statistically unlikely to be covered by the timely appearance

of symptoms. They protect these portions of the code with

instruction duplication. Their solution offers optimization for

the coverage and performance trade-off for detecting data

errors. Another work that analyzes the effect of single-bit

flips on the CFEs and finds the potential faulty destinations

of erroneous branches was proposed in [1]. In this work, the

instrumentation for CFE detection is limited to the identified

susceptible basic blocks.

Recovery methods use a detection mechanism to detect first

the fault and then use checkpoints to roll back in order to

recover the execution. Traditional methods place checkpoints

at critical points of the program [18]. However checkpoints

impose a high performance overhead. Previous works have

tried to find the optimum locations to add checkpoints in order

to avoid excessive performance overhead while limiting the

recovery time [19] [20]. These studies use a mathematical

model to compute the optimal checkpointing intervals. In

the proposed solutions the performance is traded off for the

recovery time. A recently proposed lightweight checkpointing

method, uses static analysis of applications to find code regions

without Write-After-Read dependencies, the so called idempo-

tent regions [21]. These lightweight checkpoints save only the

registers state at the beginning of the idempotent regions. The

starting address of the idempotent region is saved to roll-back

the execution in case an error is detected. This lightweight

checkpointing imposes low runtime performance overhead.

However, the recovery time from the moment that an error

is detected until the moment that the execution is recovered to

the location where the error has occurred is dependent on the

size of idempotent regions. Larger idempotent regions result

in low performance overhead but higher recovery time. One of

the recently proposed methods is ACCE [22]. It does not use

checkpoints due to the high performance cost. The authors

propose a roll-back mechanism using a global error-handler

and recovery routines for each function in the compilation

unit. To the best of our knowledge ACCE provides the

fastest recovery mechanism among the previously proposed

recovery techniques. The global error-handler is responsible to

determine from which function the error has initiated. After

it is determined which function is the source of the error, the

recovery routine of that function finds the basic block in which

the error has occurred and the execution is rolled-back to the

start of that basic block. The recovery time in this mechanism

is equal to the total number of cycles for executing the

global error-hander and the corresponding recovery-routine.

One shortcoming of ACCE is that the data is not restored

after the roll back. In order to restore data after roll-back

the authors suggest to use data duplication mechanism. But

the cost of data duplication and comparison is not lower than

using checkpoints.

C. Motivation
A significant percentage of transient faults causing CFEs

lead an execution outside the program boundary scope. Since

CFE detection and recovery methods instrument the program

within its memory boundary, errors outside this boundary

are not recoverable with currently existing software program

instrumentation techniques. Recovery from such errors is only

possible with the help of the operating system to detect the

error as segmentation fault and re-executing the program from

the beginning. However, nowadays there exist many tiny em-

bedded processors without an operating system. CFEs which

lead the execution into an erroneous destination inside the

program boundary can be detected and recovered by software

methods that instrument the program. Current CFE detection

and recovery methods add assertions to all basic blocks of the

program. Recovery methods that use checkpoints to save the

processor’s state at specific points of the program, trade-off

the recovery time for performance. Placing less checkpoints

and dividing the program in larger sections reduces the high

cost of checkpoints, but increases the recovery time in case

an error is detected. An important observation by one of the

previous works is that many of the program basic blocks are

not realistic destinations of the erroneous branches caused by

single bit-flips in the destination of control instructions [1]. We

use this observation to implement an effective CFE detection

and recovery scheme with low performance overheads and

low recovery time. In this scheme, our main motivation is

to limit the CFE detection and recovery instrumentation only

to susceptible basic blocks. The checkpoints, which are the

main cause of high performance overheads in CFE recovery

schemes, should only protect basic blocks that are potential

destinations of CFEs.

D. Assessing software error recovery methods
The three crucial factors that a software recovery technique

should have are correct-ability, low recovery time and high per-

formance. Software recovery methods instrument the program

with assertions and checkpoints. High number of assertions

and checkpoints located in short intervals improve the correct-

ability and the recovery time of the method. However, it has

a negative impact on the performance. Therefore, in order to

asses a software recovery technique the three of these metrics

should be considered at the same time. For this reason we

introduce a new metric to quickly assess software recovery

methods for a given workload. We define Recovery Efficiency

Factor (REF) that depends on performance-overhead3, the

number of execution cycles from the moment an error is

detected until the moment it is recovered and the percentage of

correct outputs among a defined number of program samples

with injected faults:

REF =
correct.output.ratio

Performance.overhead ∗ recovery.cycle.count
REF is a suitable metric for evaluating reliability optimiza-

tion techniques in real-time and high-performance embedded

3the percentage of additional clock-cycles in the instrumented program
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br  RS !=S1, recovery

br  saveRegs

B1

br  RS !=S4, recovery

br  saveRegs

B4

br  RS !=S3, recovery

br  saveRegs

B3

br  RS !=S2, recovery

br  saveRegs

B2

CFE

(1)

(2)

SaveRegs():

sw [R1], #1
sw [R2], #2

.

.

.
sw [Rn], #n

sw [LR], #rolbckAdr

br    [LR]

recovery():
lw [#1], R1
lw [#2], R2

.

.

.
lw [#n], Rn 

lw [LR], [#rolbckAdr

br    [LR]

(3)

(4)

Fig. 1: Recovery flow

systems. In order to explain how REF distinguishes between a

weak and a strong recovery method, we use an example of two

methods with different recovery capabilities. An example of

a poor recovery method causes 100% performance overhead

while the correct output ratio is only 1% and the recovery

cycle count is 100 cycles. The calculated REF for such a

method is (1%)/(100% ∗ 100) = 0.0001. On the other hand,

an example of good recovery method has 1% performance

overhead with 100% correct output ration and 10 cycles of

recovery latency. The calculated REF for this method would

be (100%)/(1% ∗ 10) = 10. These examples that are opposite

cases show that for real-time and high-performance systems a

weak recovery method has a lower REF than a good recovery

method.

III. OVERVIEW OF FAST RECOVERY WITH WORKLOAD

SPECIFIC CHECKPOINTS

In our proposed recovery method, at compile time instruc-

tions are added to the program in order to detect and recover

from the error. Complete recovery from CFEs is accomplished

using Workload Specific Checkpoints (WSC). The error de-

tecting instructions are executed during the normal flow of the

program. However, the instructions added for error recovery

are executed only when an error is detected and the execution

control is transferred to the special function for error recovery.

The goal of our scheme is to have an efficient recovery scheme

with low recovery time, low performance overhead and high

fault coverage. To have the lowest possible recovery time, we

need to provide an arrangement that the recovery process is

done at the smallest possible granularity, which is basic block

level. Moreover, to have low performance overhead, we need

to add error detecting and recovery instructions only to the

necessary locations of the program that are the potential basic

blocks where CFEs can occur. It is important to note that not

all CFE detection methods have the flexibility to instrument

only a selected number of basic blocks [1]. Therefore, in order

to be able to fulfill the second requirement, we need to use

a flexible error detection method such as FCFC [1]. FCFC

is an efficient CFE detecting method with the flexibility to

assert the correct execution flow by adding instructions only

to the required subset of basic blocks. In what follows, the

three important aspects of the proposed recovery method are

explained.

A. Fast Recovery Scheme

In order to decrease the amount of time between the moment

a CFE occurs and the moment the program is recovered, we

implement the detection and recovery processes at basic block

level. FCFC fault detecting instructions are able to detect

CFEs immediately after occurrence in the faulty target block.

Moreover, our proposed recovery method is arranged in a way

that the execution control will be transferred right to the basic

block that was the source where the CFE occurred.

Figure 1 shows how the recovery scheme transfers the

control immediately to the block before CFE occurrence.

As depicted in the figure, two statements are added in the

beginning of each basic block to provide recovery. The first

statement in the basic blocks (br RS!=Sig, recovery) is the

test assertion of CFE detection scheme. In this figure for the

matter of readability the statements related to set assertions

of detection scheme are not shown. In case the test assertion

finds a mismatch between the runtime signature content and

the signature value it should have at the current basic block the

recovery function is called. The second statement is a simple

function call that calls saveRegs function. Calling saveRegs

function will transfer the execution to this function. Moreover,

it saves the return address (which is the original start address

of the basic blocks before adding the recovery statements) into

the Linked-Register (LR). In the figure a CFE occurrence is

depicted by the dashed edge from B1 to B4. Also the steps

of code executions that leads to recovery from the depicted

CFE are shown. The first step, before the CFE occurs in the

beginning of the source basic block where CFE will stem

from, the control transfers to saveRegs function. This function
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binary-
dump

Step
2

Step
3Step

1

br-trgt flipped 
br-trgt

err-dst
in-range

inst.adr inst.adr inst.adr

dstsrc
SBL

Step 4

inst.adr instruction
0x0010
0x0014
0x0018
0x001c
0x0020
0x0024
0x0028
0x002c
0x0030
0x0034
0x0038
0x003c
0x0040

ori r5, r0, 0x0000
addi r5, r5, 0x0001 
ori r7, r0, 0x0008
cmpne  r7, r5, r7
bne r7, 0x0014

ori r4, r0, 0x0000
cmpne r3, r4, r3
blt r3, 0x0034 

subi r3, r3, 0x0001
cmpne r3, r5, r3
blt r3, 0x0040

subi r3, r3, 0x0008
...

0x0020
0x002c
0x0038

0x0014
0x0034
0x0040

0x0020
...

0x0015
...

0x002c
...

0x0035
...

0x0038
...

0x0041
...

0x0020
0x0020
0x0020
0x002c
0x002c
0x002c
0x002c

0x0010
0x001c
0x0034
0x0030
0x003c
0x0024
0x0014

B1
B1
B1
B2
B2
B2
B2

B0
B1
B4
B3
B5
B2
B1

src.s (assembly)

ori r5, r0, 0x0000
addi r5, r5, 0x0001 
ori r7, r0, 0x0008
cmpne  r7, r5, r7
bne r7, 0x0014

ori r4, r0, 0x0000
cmpne r3, r4, r3
blt r3, 0x0034 

subi r3, r3, 0x0001
cmpne r3, r5, r3
blt r3, 0x0040

subi r3, r3, 0x0008
...

B0:
B1:

B2:

B3:
B4:

B5:
B6:

(a) Snapshot of the memory code segment (b) Bit-flip analysis to extract susceptible source and destination blocks

Fig. 2: Bit-flip analysis scheme illustration

acts as a checkpoint and saves the contents of all registers in

the register file. Moreover, it saves the content of the linked

register that holds the start address of the basic block. This

address is the address where the execution should roll-back to,

when the error is detected. In the second step, the execution is

transferred back to B1. After CFE occurs, the test statement

in B4 detects the error and calls the recovery function, shown

as step 3. The recovery function restores the saved contents

of the register file in the previous checkpoint (which is at B1)

and loads the roll-back address (which is the start address of

B1) into the linked register. Finally, in the fourth step, the

execution rolls back to the beginning of B1.

It is important to notice that this recovery scheme has

minimal recovery time, since the extra code that is added to

transfer the execution control back to the point before CFE

occurrence is minimal. The recovery steps in a similar recovery

method (ACCE) [22] consist of four function calls that have in

total higher number of recovery code compared to our scheme.

Compared to ACCE, which is also at basic block level, the

added amount of recovery code in our method is less than

half. Another disadvantage of ACCE is that it does not support

full recovery from CFEs. This is due to the fact that ACCE

does not save and restore the modified data in the register file

due to re-execution of the rolled-back basic block. In order to

provide data integrity and full recovery from CFEs, ACCED

is proposed where the data values are protected by having a

duplicated version and comparison between the two versions.

This is a very expensive solution for data restoration.

B. Efficient Checkpoints at Identified Susceptible Blocks

Instrumenting all basic blocks with checkpoints as described

above is too costly. Fortunately, previous studies about the

effect of single-bit transitions on the control-flow mis-behavior

has shown that not all basic blocks are susceptible to CFEs

[1]. In other words, only a number of basic blocks in the CFG

are susceptible to CFEs and need to be protected by assertions

and checkpoints.

In order to minimize the imposed performance overhead by

checkpoints, we use the bit-flip analysis framework proposed

in [1]. This framework gets the program binary dump and

assembly as input and generates a list containing all sus-

ceptible blocks that are the potential destinations of CFEs

due to single-bit transitions. In order to use this information

to limit the number of checkpoints, we also need to know

the susceptible source basic blocks that the CFEs can stem

from. We have easily extended the framework to add this

information to the generated list. Figure 2 shows a schematic

view of the extended framework to extract susceptible source

and destination blocks. An example snapshot of the memory

code segment is depicted in figure 2.a and the steps for

extracting the list of susceptible blocks for this part of the

code segment is illustrated in figure 2.b. At the first step, all

branch targets (br-trgt) and the branch instruction addresses

(inst.adr) are extracted. In the second step a set of XORs with

MASKs, generate flipped branch target addresses. For instance

“addr XOR 0001” flips the first bit of the target addresses and

generates a realistic erroneous address. The resulting flipped

addresses are saved in flipped-br-trgt. In the figure the first

bit flipped-target is shown. In the third step, a simple script

compares each of the erroneous addresses in flipped-br-trgt

file to the extracted instruction addresses within the program

scope. The result of the comparison at this step is a list

of potential erroneous target addresses (susceptible to be the

target of CFEs) within the program scope and is saved into err-

dstin-range file. Finally in the fourth step, the corresponding

source and destination basic blocks of the susceptible target

addresses (in err-trgtsin-range file) are extracted. To extract

the susceptible basic blocks, we compare the susceptible

instructions offset to the corresponding code section in the

assembly. Having basic block labels in the assembly file, the
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B1

B2 B3

B5B4

B6

B7

CFE

CFE

Susceptible
Bocks List:

(B1 , B4)
(B3 , B7)

(a) CFG sample with potential CFEs and the generated 
susceptible block list using bit-flip analysis framework

NOP

br  saveRegs

B1

NOP

NOP

NOP

B2

set assertions

NOP

br  saveRegs

B3

set assertions

NOP

br  RS !=S4, recovery

B4

NOP

NOP

NOP

B5

NOP

NOP

NOP

B6

set assertions

NOP

br  RS !=S4, recovery

B7

NOP

(b) Instrumentation for CFE recovery only 
to protect the  susceptible blocks 

NOP

NOP

Bi

NOP

(c) A non-susceptible block 
with rescheduled NOPs

NOP

NOP

Bi

NOP

Fig. 3: Instrumentation and checkpoints in susceptible blocks

susceptible basic block labels are easily extracted and saved

in the SBL file.

Figure 3.a shows a sample CFG, corresponding to another

example code, with potential erroneous CFE edges and the

output list of the bit-flip analysis framework containing pairs

of susceptible source and susceptible destination blocks. In

this sample execution flow graph, the potential CFEs are

depicted by the dashed edges from B1 to B4 and from B3

to B7. Our framework identifies the potential destinations of

the erroneous branches due to single bit-flip transitions in the

branch instructions targets and generates the susceptible block

list. The result of the bit-flip analysis is the list containing two

pairs of susceptible blocks as depicted in Figure 3.a. The first

elements are the susceptible source blocks, B1 and B3, and the

second elements in the block pairs are susceptible destinations,

B4 and B7.

Figure 3.b depicts the same sample CFG, which is instru-

mented with CFE detecting assertions and checkpoints only in

necessary locations using the susceptible blocks list informa-

tion. Only the susceptible source blocks need to have a call to

the saveRegs function to checkpoint the register file contents.

In the sample graph only B1 and B3, which are susceptible

source blocks, have the call to saveRegs function. Accordingly,

only susceptible destination blocks need to have test assertions

to check if the basic block is reached through a valid control-

flow or due to a CFE occurrence. In the example graph only

B4 and B7 contain ”br RS!=Sig, recovery” statement, which is

the test assertion. The predecessors of susceptible destination

blocks are the only blocks that should have set assertions to

update the runtime signature to a valid signature. These blocks

in the sample CFG are B2, B3 and B6.
Assertions and checkpoints in non-susceptible blocks are

replaced with NOP instructions. In order to impact the per-

formance, we reschedule the replaced NOPs after the branch

instruction at the end of the basic block. As a result, at runtime

the replaced NOP instructions are not executed. Consequently,

the recovery instrumentations does not impose any perfor-

mance overhead in non-susceptible blocks.

IV. EXPERIMENTAL SETUP AND RESULTS

To investigate the proposed recovery scheme, we compare

it to a recent state-of-the-art work to show its effectiveness

in removing unnecessary assertions and checkpoints in non-

susceptible blocks. We have implemented and optimized a

compiler using CoSy compiler development framework [23].

The generated compiler targets a basic, 32-bit, five-stage, in-

order RISC processor. This processor is the template pro-

cessor available in Synopsys Processor Designer simulator. It

has no advanced micro-architectural features but has similar

load/store-based ISA as any ARM processor. The only signif-

icant difference is the higher number of registers in the ARM

case. As a result in such processors the additional instructions

used for detection and recovery will cause lower register

pressure. Therefore, the overhead of our instrumentations in

a standard processor (such as ARMv7m) is expected to be

lower than presented here. We have implemented compiler

passes for our proposed recovery method and ACCE. We

use a representative set of workloads from Mibench [24].

For each workload three different binaries are generated; the

515



Workloads
ACCE Recovery with WSC

correct output not recoverable errors correct output not recoverable errors
wrong output out of program boundary wrong output out of program boundary

basicmath 90 125 785 259 303 434
qsort 83 47 871 376 94 531

pbmsrch 67 84 850 333 159 509
sha 58 58 885 318 218 465

dijkstra 87 28 886 409 124 468
CRC 76 32 893 313 102 586

Average 76.83 62.33 861.66 334.66 166.66 498.83

TABLE I: Categorization of programs output in 1000 program runs with random control-flow errors

original binary without any optimization, binaries compiled

with ACCE optimization pass, and binaries compiled with our

recovery pass. To get the error coverage of each optimization

scheme we inject CFEs (by flipping single bits in the branch

instruction operands) into the respective binary and inspect the

number of detected errors. In what follows, first we explain our

error injection framework and second we analyze the results.

A. Realistic Fault Injection

Error injection: We have implemented a runtime error-

injection mechanism in the Synopsys Processor Designer

simulator. A special instruction is designed and included in

the processor instruction set architecture to inject an error at a

random execution cycle. The error-injector instruction is added

in the beginning of the program-under-test. A random value,

generated by random linux command, is given as the operand

of the error-injector instruction. The random value determines

the number of execution cycles that should pass before the

occurrence of the error. A dedicated flag for error injection is

set after the given random number of cycles. When this flag

is set, the first branch instruction in the execution path will be

corrupted and hence CFE initiated. The latter is achieved by

flipping a single random bit of the chosen branch instruction

operand. Changing a single bit at a time simulates a realistic

error injection environment as single bit flips are the most

probable faults in real systems [2].

B. Results

Table I shows the result of fault injection for one thousand

runs of the Mibench workloads instrumented with ACCE and

our recovery scheme. The selected set of Mibench workloads

is comprehensive to exemplify the advantages and the limi-

tations of both methods. In the table the programs behavior

to the injected CFE is categorized into three columns: correct

output, wrong output and execution out of program boundary.

The errors that are not recoverable are the ones that cause

wrong output and the ones that lead the execution outside

the program boundary. In one thousand execution runs of the

workloads with control-flow error, ACCE recovers on average

76.83 of the cases, while the average recovery number of our

scheme is 334.66. The main reason for the higher recovery

number of our scheme compared to ACCE is due to the

fact that in our scheme register file content is saved at the

checkpoints in only the necessary blocks and restored when

needed. In [22] the number of faults causing wrong output

for ACCE is reported, but unfortunately the number of faults
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Fig. 5: REF factors of our method and ACCE

causing out-of-boundary execution is not reported explicitly.

Our implemented ACCE results, compared to our recovery,

show that a higher number of injected faults lead the execution

out of the program boundary. The two reasons for the higher

number of such executions is that, first, in this work we

target branch-destination corruption fault model that has a high

probability to lead the execution out of the program scope.

Second, ACCE recovery code introduces many new branch

instructions that become themselves the target of the injected

faults and cause out of boundary execution.

The performance overhead imposed by the extra instructions

of each recovery method (ACCE and our method) compared

to the baseline program binaries (which do not have any

optimizations) is illustrated in Figure 4. The high performance

overhead imposed by both methods for qsort and crc work-

loads is due to the fact that they are tiny programs and the extra

assertion instructions added by the recovery schemes cause

higher overheads in small programs. We deliberately selected

these two workloads to investigate the worst-case-scenario.

In the chart of Figure 5 the normalized recovery efficiency

factor of ACCE and our method are presented for the set of

workloads. The efficiency factor (REF) of ACCE is calculated

using its minimum recovery time. In ACCE instrumentation,
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the recovery time depends on the number of basic blocks in

the functions and whether the erroneous branch destination is

inside the same function or it targets a basic block in another

function. If it is inside the same function the recovery time

is shorter and if the faulty target block belongs to another

function the latency is higher. The minimum recovery time in

ACCE is when the CFE initiates in the first basic block of the

function and targets a faulty block in the same function. In

ACCE implementation for our target processor, the minimum

recovery time is 32 cycles. This is the minimum recovery

time just to roll back the execution to the correct point, but

without restoring the correct data of the modified registers. The

constant recovery time in our method including the restoration

of the correct data content of the register file is 28 cycles. As

depicted in the chart, REF number of our scheme is about 80

times higher than REF number of ACCE.

V. CONCLUSION

In this paper we have introduced a lightweight, low-latency

CFE recovery method with checkpoints only in the susceptible

source basic blocks. Our proposed recovery scheme is able to

detect the CFE and roll back the execution to the beginning

of the basic block where the CFE has occurred with a latency

of only 28 cycles. We have modified a previously proposed

bit-flip analysis framework to identify the susceptible sources

of CFE in the program. This information is used to limit

the checkpoint locations only to the susceptible source blocks

and decrease the imposed overhead dramatically. In order to

assess our recovery method fairly we have to consider the three

metrics of correctability, performance and recovery time. For

this reason we have introduced the recovery efficiency factor

that is calculated based on all three crucial metrics. Comparing

our scheme to a well known recovery scheme (ACCE), our

method is more efficient by a factor of eighty. The main

reason behind the efficiency of our proposed method is that the

instrumentations for detection and recovery are added exactly

at the identified vulnerable spots of the program.
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