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Abstract—Today’s computing systems suffer from mem-
ory/communication bottleneck, resulting in energy and perfor-
mance inefficiency. This makes them incapable to solve data-
intensive applications within economically acceptable limits.
Computation-In-Memory (CIM) architecture, based on the in-
tegration of storage and computation in the same physical loca-
tion using non-volatile memristor technology offers a potential
solution for the memory bottleneck. This paper presents a CIM
based parallel adder, and shows its potentials and superiority
for intensive computing and massive parallelism by comparing it
with state-of-the art computing systems including multicore, GPU
and FPGA architecture. The results show that CIM based parallel
adder can achieve at least two orders of magnitude improvement
in computational efficiency, energy efficiency and area efficiency.

I. INTRODUCTION

In the last several decades, CMOS down-scaling has been the
primary driver behind computer performance improvement
[1]. However, CMOS technology is reaching its physical -if
not economical- limits [2]. Down-scaling devices has led to
many challenges such as leakage power [2], reliability [3],
fabrication process and turnaround time [4], test complexity
[4], cost for mask and design [5], and yield [6]. Furthermore,
the performance gain by increasing clock speed has saturated
since early 2000 [7]; today, speed-up is no longer the result
of a faster clock, but rather a result of parallelization on
multi-core and many-core systems. However, the number of
parallel cores that can be programed and the computation
efficiency that can be extracted are tending to saturate as well
[8]. Obviously, all today’s computing systems are mainly built
on John von Neumann stored-program computer concept [9].
A major drawback of this computer design is the gap between
the processing units and the main memory, the so-called
memory bottleneck [7,10]. For data-intensive applications,
the memory bottleneck is becoming even more severe and
is putting major limitations both on performance and energy
consumption. All of these motivate the need for a new
architecture being able to (a) eliminate the communication
bottleneck and support massive parallelism to increase the
overall performance, (b) reduce the energy inefficiency to
improve the computation efficiency.

Getting the memory closer the processing unit and reducing
the memory bottleneck has attracted a lot of attention. In
1969, Logic-In-Memory (LIM) was originally introduced as
a memory accelerator [11]; i.e., add some processing units
close to main memory. In 1992, LIM concept re-appeared
and named computational RAM, and typically uses the same
accelerator concept where these are supposed to perform
operations needed by the memory such as address translations
[12]. In the late 1990s and early 2000s, Processor-In-Memory
(PIM) was proposed [13] and manufactured [14]. PIM is
based on splitting the main memory in different parts, each
with surrounded computing units to bring the computation

978-1-4673-7849-9/15/$31.00 (©2015 IEEE

57

near to the memory; the architecture has a master CPU that
takes care of the overall control. PIM concept was later
used and refined for different applications; examples are
EXECUBE [15], IRAM [16], FlexRAM [17], DIVA [18],
Gilgamesh [19]. In 2004, Memory-In-Logic (MIL), which
provides massive addressable memory on the processor, was
proposed for supercomputer systems [20]. All mentioned
above efforts have tried to close the gap between processor
and memory speed [21]. However, as the computation and
the storage are kept separately, they fundamentally use von
Neumann stored-program computer concept and therefore
suffer from memory bottleneck, which negatively impacts the
performance [7].

This paper uses Computation-In-Memory (CIM) concept, that
we have recently developed [22], to design a parallel adder
and illustrate the huge potential of such an architecture for a
simple case study: intensive arithmetic operations (additions).
The architecture uses a revolutionary approach based on
(a) the integration of storage and computation in the same
physical location, and (b) non-volatile memristor technology
[23]. It is worth noting that adding multiple numbers is a
basic yet very representative operation in big data applications
[24]. In existing architectures (e.g., multicore, GPU, and
FPGA), simple operations such as adding multiple numbers
already face the memory bottleneck. As the processors have
to fetch huge amounts of data from memory, the intrinsic
parallelism cannot be exploited fully in such architectures.
The main contributions of this paper are:

A CIM based parallel adder for intensive computing.
The evaluation of the proposed adder and comparison

of its performance with traditional architectures
including multicore, GPU and FPGA.

The proposed design achieves at least two orders
magnitudes improvements for big problems!

The rest of this paper is structured as follows. Section II briefly
describes the concept of CIM architecture, and presents the
CIM parallel adder. Section III provides estimations of CIM
parallel adder’s performance and compares it with other tra-
ditional architectures. Section IV shows our evaluation results
and analysis. Finally, section V concludes this paper.

of

II. CIM PARALLEL ADDER

This section briefly first describes the CIM architecture. There-
after, it presents the concept of the parallel adder. Finally,
it demonstrates how to map these adders efficiently on the
crossbar architecture.

A. Generic CIM Computer Architecture

The main advantage of CIM architecture over von-Neumann
architectures is the tight integration of both computing
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and storing operations using the same physical crossbar.
Hence, massive parallelism is achieved with minimized
communication.

Fig. 1a shows the main three CIM architecture components:
crossbar, communication network and controller. The crossbar
consists of memristors that are used to implement logic
functions and/or storage. The communication network is
either implemented within the crossbar or by using separate
metal layers. A controller that is implemented by CMOS
devices handles auxiliary operations such as distributing data
and controlling signals to the crossbar.

The crossbar is specialized to perform computation and
storage operations in cells organized in rows and columns.
Each cell can be a computational unit (such as an adder
or multiplier) or storage location (such as a memory cell).
The cells in a row or column can be configured with the
same or different functionality. The communication in CIM
architecture has maximum flexibility. The architecture allows
bi-directional communication in both horizontal and vertical
direction. The controller contains a router and a finite
state machine (FSM). The router provides the FSM with a
communication scheme for data distribution and movements.
The FSM fetches instructions from an instruction memory
(e.g. hard disk), converts fetched instructions to controlling
signals for the row/column voltage controller.

In this paper, our focus is to investigate the effectiveness of the
crossbar with respect to computation and storage. Details on
controller and communication are under further investigation.

B. A CIM-based Adder Tree

Fig. 1b shows a single CIM adder. The basic computational
unit is an n-bit adder [25,26], which is surrounded by a
number of memory cells (latches). An n-bit adder contains
three n-bit latches (two for the inputs and one for the sum), a
1-bit carry-in and a 1-bit carry-out latch.

The CIM parallel adder arranges multiple CIM adders in
a binary tree network. The carry-in and carry-out registers
of an adder are connected properly to generate correct
addition results. The binary tree network is ineffective using
traditional platforms due to the difference between processor
and memory fabrication. A processor coupled with a large
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amount of memory is unrealistic with traditional CMOS
technology. Using the new features of the CIM architecture
and its underlying memristor technology, the adder tree can
be effectively mapped to reduce addition latency and increase
resource utilization.

Fig. 1d shows a mapped binary adder tree with 16 inputs
(see Fig. 1c for an 8 input example) on the CIM architecture.
Each CIM adder corresponds to the adder presented in Fig
1b. Note that the output latches sum at each adder are reused
as input latches in the next adder stage. The first column of
the crossbar gets the first half of the inputs L_i. Add units
in the second column add every two corresponding input
latches L_i and store results in corresponding output latches
L_s in the third column. The fourth column adds up results
from output latches of the third column. Another direction
of computation happens from the final column backwards to
utilize as many resources as possible. In other words, a cell
in CIM architecture is configured to an add unit or a latch.
The interconnects (dotted lines) between multiple rows and
columns represent communication channels among cells.

The crossbar array for N additions contains at least — X

(log2(N)) CIM adders. Due to the multi-directional char-
acteristic of the CIM-based adder, additions can operate in
two direction flows (from left to right and vice versa) of the
array (as shown in Fig. 1d). These bi-directional operations
efficiently exploit resources in the architecture. Therefore, the
architecture is designed with one additional column and half
number of rows in comparison with the above-mentioned
size. Hence, for N inputs the delay and array size equals

loga(N)+1 and g X (2loga(N) +1) cells, respectively (each
adder processes two inputs). With this design, every operation
is performed on a distinct operational and storage unit; hence,
there is no operation overlapping at a particular location.
In addition, maximum number of adders in the architecture
are used to avoid idle adders. With smart communication
schemes, the architecture can be pipelined to increase overall
performance.

III. ARCHITECTURAL CONSIDERATIONS

To illustrate how the CIM architecture improves the state-of-
the-art, the performance of CIM is evaluated and compared
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Fig. 2: Multicore vs GPU vs FPGA vs CIM parallel adders

against modern computer architectures using the addition test
case. The binary tree addition algorithm (as shown in Fig.
1c) was mapped on four architectures. The following section
describes the architecture models and performance metrics.

A. Architecture Models

For this estimation, we build simplified models that embed the
basic characteristics of multicore, GPU and FPGA platforms.
These models are referred to as multicore, GPU and FPGA
architecture. To prevent an unfair comparison between the
different architectures, optimistic assumptions are being
made for the modern architectures (multicore, GPU and
FPGA architecture) while pessimistic ones for CIM. For the
multicore, GPU and FPGA architecture, an architecture with
only parallel adder (not a complete processor) is used. For
the CIM architecture, we use the dedicated adder tree of Fig.
1d. We assume that all modern architectures have processing
units, working data sets, a proper controller and memories.
Fig. 2 depicts assumed architecture for the multicore, GPU
and FPGA. The CIM architecture, in contrast to the other
architectures, only requires an instruction memory as the data
is stored inside the crossbar. For the other architectures, a data
memory is required. As this paper focuses on the computation
and storage only, the cost for initial data load, controller and
memories are not considered for all evaluated platforms.

The main assumptions for all the architectures are described
in Table I. All of them are evaluated assuming 22 to 22!
inputs using 32-bit adders. For each architecture, the most
optimistic available technology data is used. That is, multicore
and GPU are based on data from 22nm technology, while
the adder tree in the FPGA architecture was simulated
with Virtex-7 (FFG1157 FPGA) using the 28nm technology
library. For CIM architecture, assumptions are based on the
ITRS 5nm memristors [28]. Though the physical memristor
size has an order of magnitude benefit in comparison with
other architectures, the estimation aims to show architectural
impact more than technology dependence. In addition, worst-
case assumptions are made for CIM architecture while the
best-case for the other architectures. It is important to note
that the comparison is one-by-one between CIM and other
architectures. Indirect comparisons among multicore, GPU
and FPGA are not relevant in this paper due to the optimistic
assumptions made for each architecture.

Each processing unit is an adder that is organized depending
on the architecture’s characteristics. For the multicore
architecture, 32 adders are grouped in a cluster (mimicking
a 32-core system). Multiple clusters together form the

architecture. Each adder gets its inputs from a cache. For
the GPU architecture, each GPU core contains only a single
adder. Hence, the GPU architecture has a large number of
adders. The adders in multicore and GPU architecture are
assumed to execute as many parallel tasks as possible. For
FPGA architecture, the adders are connected in a binary tree
network, the same one used in Fig 1c for CIM. The difference
between multicore or GPU architecture versus FPGA or
CIM architecture is whether the adders are organized in
a binary tree network or not. Adders in FPGA and CIM
architecture are organized using a binary tree addition
network, while multicore and GPU architecture use as many
adders as possible at every stage of computation. Note that
the logarithmic addition algorithm is also used in these cases.
However, the organization of adders impacts the area and
power metrics of each architecture.

The working data set (WDS) differs for each architecture.
Data is loaded initially from a data or program memory
(e.g. hard disk, etc.) to this WDS. For multicore architecture,
the WDS is an 8KB cache for each cluster. For GPU
architecture, the WDS includes a 6GB GPU global memory
and a 64KB global cache for the whole architecture. As
data is loaded from memories, a particular hit rate, hit delay,
miss rate, and miss penalty are assumed for multicore and
GPU architecture. These memory characteristics are based
on optimistic estimations on existing multicore and GPU
architectures. In particular, the area and power data for cache
is derived from data of 512KB-cache. The area and power
of GPU global memory are provided by NVIDIA GPU
datasheets [37]. As hit delay for a cache in multicore and
GPU is assumed as fast as 1 cycle (with 1GHz clock rate),
the register file is not considered in these architectures. For
FPGA architecture, the WDS consists of a big register file.
For CIM architecture, the WDS consists of interleaved latches
with adders as described in Section II-B. Four architectures
with different configurations of processing units and working
data sets show the diversity of computer architectures in this
estimation.

For multicore, GPU and CIM architecture, estimations were
performed on assumptions listed in Table 1. The FPGA
implementation is generated by Vivado HLS tool [27]
to ensure a good FPGA design and simulated by Xilinx
ISE [27]. Due to large simulation time and limited FPGA
chip area, measurements from a small-scale implementation
simulation are scaled up for large-scale FGPA implementation.
The calculations and measurements include only evaluated
architecture components such as memory and adders.
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TABLE I: Assumptions for each architecture

Arch.

Multicore

GPU

FPGA

CIM |

Technology

22nm

28nm

Snm |

Adder design

Rippled eight 4-bit Carry-look-ahead adder

auto-mapped on FPGA

Aachen Toggle-Cell-Adder

Area-parameter

208 CMOS gates [24]

0.248um?/gate [28]

51.6um>/adder

1.47mm?>/adder [27]

34 memristors [25]

100nm?

3400nm?

Delay-parameter

18 gates [24]

9ps/gate [29,30]

162ps/adder

7.17ns/adder [27]

133 steps [25]

200ps/step [31]

26600ps/adder

Energy-parameter

Static power + Dynamic power

Leakage power consumption

Licakage * Vad
6.15pA [28] * 0.86V

Dynamic power consumption

67mW/gate [29,32]

0.0173W/adder [27]

Dynamic power

246f] [28]

Memory design 8KB cache/cluster | 64KB cache [ 6GB GPU global memory Register file Scalable memristor-based memory
Memory operating frequency 1GHz
Hit rate 0.95 0.90 0.995
Load delay on hit 1 cycle 1 cycle 96 cycles [33,34]
Missed penalty 165 cycles [35] 96 cycles [33,34] 165 cycles [35] No cache miss No cache miss

Area

0.0092mm?/cache [36]

0.0737mm?/cache [36]

529mm?/memory [37]

Static power

0.0156W/cache [38]

0.125W/cache [38]

68W/memory [37]

Dynamic power

25% static power

25% static power

25% static power

Adders are designed specifically for their target architecture.
Multicore and GPU architecture use a ripple carry adder with
eight 4-bit Carry-Look-Ahead adders. The delay of an adder
is calculated based on the gate delay and the number of
required gates per adder in the longest path. Area is calculated
based on the required number of CMOS gates per adder. The
characteristics of a FPGA adder are extracted from ISE and
shown in Table I. However, as the FPGA implementation
is generated and mapped automatically by synthesis tools,
the measurements of a large scale implementation are not
scaled up using a single FPGA adder characteristics. Instead,
an FPGA implementation of 256 adders is used to estimate
larger implementations. CIM architecture uses a 32-bit
Carry-Ripple-Adder based on memristor [25]. The delay of
an adder is calculated by the number of steps to perform an
addition. Each step corresponds to one memristor delay, which
is the worst-case estimated as 200ps [31]. Area is calculated
based on the required number of memristors per adder [25].
The above memristor-based adder is the fastest memristor-
based adder available in literature. Meanwhile, other adder
designs (multicore and GPU) are optimized for delay and area.

In order to make a realistic estimation, we investigated two
cases: infinite resources and limited resources. In the first case,
we assume architectures’ resources is infinitely scalable. In
the second case, we assume a maximum amount of resources
based on existing devices that implement each architecture.
In particular, the most recent finfet chip of 22nm data is
used for multicore and GPU architecture while Virtex-7 chip
data is used for FPGA architecture. When required resources
cannot fit on a chip, we assumed multiple chips are used for
multicore, GPU and FPGA architecture, respectively. Hence,
extra area was counted for extra chips, which made delay
and energy increase accordingly. We ignored additional delay
and energy for transferring data among chips/GPUs/FPGAs.
This makes their delay/area estimation optimistic. Memristor
device currently has no implementation, hence we assumed
maximum size of a memristor chip was 0.7mm?, in which
30% extra area is assumed for inter-chip communication. The
chip area defined the limit of multicore architecture’s area.
Similar numbers for GPU and FPGA were chosen.
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B. Performance Metrics

The estimation was performed and verified in Matlab. We
consider three metrics: total_delay (D), total_energy (E),
and total_area (A) described by Equation 1. Each parameter
consists of two components: computation made by adders
and communication made by local data memory access. The
interconnection and controller are not considered in this es-
timation. Energy is calculated by delay and power. Both
static power and dynamic power are considered for energy
estimation. Static power is mainly caused by leakage current
while dynamic power is consumed by switching activities.
Computational activities related to working adders consume
dynamic power while idle adders and WDS consumes mostly
static power. CIM architecture is based on memristor; hence,
it is claimed to consume no static power [39]. From the
three above metrics, we derived three performance metrics:
computation efficiency (7¢), energy efficiency (ng) and area
efficiency (n4). Equations for these parameters are described
in Equation 2.

DxFE
D= Dcomp + Dcomm nc = #
ops
E= Ecomp + Emem (1) #OpS
A= Acomp + Aco’m'm e = B (2)
#ops
A

IV. RESULTS
A. Infinite Resources

Fig. 3 shows the performance of the four architectures when
resources are assumed to scale up infinitely.

With respect to delay, Fig. 3 shows that CIM architecture
performs slowest among four architecture. As all four
architectures perform the same rn-additions using binary tree
algorithm, the delay for computation is log(n) stages. The
differences among four architectures are memory access delay
and the amount of time to perform a single addition. As
architectures with adders organized in a binary tree network
(FPGA and CIM architecture) benefit from fewer data loads
and stores, they have lower delay in memory accessing. In
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addition, the FPGA architecture has no cache and data is
loaded from registers, while multicore architecture has the
highest miss rate in comparison with other architectures with
cache. However, memristor has slower switching speed [28]
and large number of addition steps [25]. Hence, an addition
using CIM takes much more time than FPGA, multicore and
GPU architecture. CIM performs nearly four times slower
than FPGA architecture while GPU and multicore architecture
perform twice faster than CIM architecture.

For energy and area, CIM architecture consumes the least
while GPU and multicore architecture consume much more
in energy and area (as shown in Fig. 3). The high energy
and area consumption was caused mostly by the cache and
memory. As unlimited available resources are assumed,
area and energy scale up with the input size. For multicore
architecture, only a small cache (8kB) was included in each
cluster. However, as the number of inputs scales up, the
amount of caches in the whole architecture increases. For
GPU architecture, the WDS contain 6GB of global memory
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and 64kB of cache in a default configuration. However, this
increased amount of memories does not scale up linearly as
in multicore architecture. The default amount of GPU WDS
corresponds to 1536 adders. When the number of inputs
requires more adders, a scale-up-ratio is applied on the default
WDS size. This practically means more GPU platforms have
to be used, hence more energy and area are consumed. For
FPGA architecture, the same principle applies as if resources
are required more than a single platform (default size is
taken from Virtex-7 platform) can support, multiple platforms
are used. CIM architecture has an advantage of low power
consumption, no static power, and small area. The advantage
reflects clearly in the results as CIM architecture achieve
low energy consumption and area cost. GPU architecture
consumes energy linearly with the input size while other
architectures’ energy scales up 2 to 4 order magnitude less
than GPU architecture. GPU and FPGA architecture also
consume more area in comparison with multicore and CIM a
factor of five and ten order of magnitude, respectively.
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Using performance metrics (nc, ng and 74), we observed
that although CIM architecture has the highest delay metric
in comparison with other architectures (as shown in Fig. 4),
it performs the best with respect to the three performance
metrics. Note that for computation efficiency, the lower values
are better.

B. Limited Resources

Fig. 5 shows the performance of four architectures when
resources are assumed to be limited. The maximum resources
are dependent on the latest available chip size for each
architecture. For multicore architecture, a chip size of
700mm? is used for 22nm technology. For GPU architecture,
a chip size of 300mm? is used with 1536 adders. For FPGA
architecture, a chip size of 400mm? is used corresponding to
Virtex-7 platform. For CIM architecture, no fabrication data
is available yet; hence we assume the area constraint for a
menmristor chip around 0.7mm? (1000 times smaller than the
multicore architecture as memristor has advantage of physical
size). With these resource constraints, area constantly stays at
a particular input size. If the required resources are larger than
the provided resources, the architecture has to reuse resources
several times to perform the same amount of additions.
Hence, the delay increases, which leads to increasing static
power consumption of local memories and dynamic power
consumption of adders.

Fig. 6 shows that CIM performs better than other architectures
in all performance metrics. There is a large gap among CIM
and other architectures. For computational performance, CIM
architecture performs three order magnitude better than FPGA
and seven order magnitude than multicore and GPU archi-
tecture. Indeed, CIM architecture achieves even lower delay
in the case of limited resources. This gain comes from the
advantage of smaller devices and lower energy consumption.
Even though, the delay of a single memristor and memristor-
based adder are high, an efficient architecture without the WDS
(e.g. caches) shows significant performance improvement.

V. CONCLUSION

In this paper, we have presented a CIM-based parallel adder
and estimated its performance. Despite the simplicity of the
case study, the results clearly show that CIM architecture
has a huge potential and orders of magnitude improvements.
This is mainly due to reducing/eliminating memory accesses,
using the non-volatile technology, and exploiting the high level
of parallelism. CIM architecture seems to be very promising
and could enable computation of current infeasible big data
applications, fuelling important societal changes.
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