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Abstract—Although heterogeneous multicore systems are
widely used in both academia and industry, system performance
of such systems does not scale when increasing the number of
processing cores. The main reason is due to the communication
overhead which increases greatly with the increasing number of
cores. In this paper, we propose an automated design approach
to build a heterogeneous hardware accelerator system, one
of the main trends in heterogeneous multicore, with hybrid
interconnect. Our approach takes communication patterns of
an application into account so that data communication of
computing cores is optimized while keeping hardware resources
usage for the whole system minimal. Experimental results in both
an embedded and a high-performance computing platforms show
that the design approach improves system performance by up
to 1.83× for the embedded platform and by up to 1.53× for
the high-performance computing platform. Energy consumption
of the embedded platform is reduced by up to 50.3% while
energy consumption of kernels in the high-performance platform
is reduced by up 54.2%, compared to baseline systems.

I. INTRODUCTION

In recent years, the need for computation grows, espe-
cially when we are entering the big data era. However,
CPU frequency growth has slowed over the last few years.
Consequently, alternatives should be sought to satisfy this
requirement. In the other hand, it is possible to integrate
more and more transistor on a single chip. At this time, more
than 20 billion transistors are able to be integrated on one
chip [1]. However, many challenges need to be addressed
when such a large number of transistors integrated on a chip
such as thermal emission, power consumption, and memory
access bottleneck. Therefore, homogeneous and heterogeneous
multicore architectures have been introduced to keep im-
proving system performance and to utilize such the large
number of transistors. Compared to homogeneous multicore
systems, heterogeneous ones offer more computation power
and efficient energy consumption [2] because of the utilization
of specialized cores for specific functions.

As one of the main trends in heterogeneous multicore,
hardware (HW) accelerator systems have been considered as
a main approach to continue performance improvement in the
future [3], [4]. In such systems, there is often one general
purpose processor (GPP) that acts as a host processor and
one or more HW accelerators (kernels) that work as co-
processors to accelerate the processing of computationally-
intensive functions of an application running on the host.
Due to the combination of both GPP and application specific
kernels, HW accelerators systems are more energy efficient
and have higher performance than GPP while still providing
a significant degree of flexibility.

Many HW accelerator systems have been proposed in
academia such as Molen [5], MORPHEUS [6], etc., and
more and more in industry championed by companies such as
Maxeler [7], Convey [8], IBM Power 8 [9], Microsoft Cata-
pult [10], etc. HW accelerator technology has been popular for
a while in both embedded and high-performance computing.
However, one of the open issues in HW accelerator systems
is the interconnect design [11]. In such systems, interconnect
that plays an important role is a predefined system backbone
upon which data is exchanged between all system components.
Although data communication is a primary anticipated bottle-
neck for system performance, interconnect design is not well
addressed in most HW accelerator systems in both academia
and industry.

Evidently, accelerator kernels and their communication be-
havior are different from one application to the other. A
specific application should have a specific interconnect dedi-
cated for its communication patterns. The specific interconnect
should have optimized performance while keeping HW re-
sources usage minimal. In this paper, we propose an automated
design approach that takes data communication patterns of
an application into account to implement a HW accelerator
system for the application with hybrid interconnect. The hybrid
interconnect provides the most appropriate support for the
communication patterns inside the application while using HW
resources as low as possible.

The main contributions of this paper include:
1) summarizing state-of-the-art HW accelerators and hybrid

interconnects in both the literature and industry;
2) proposing an automated design approach to design a

HW accelerator system with hybrid interconnect for each
specific application;

3) presenting the experimental results in both an embedded
and a high-performance computing platforms.

The rest of this paper is organized as follows. Section II
summarizes state-of-the-art HW accelerators in both acamedia
and industry as well as proposed hybrid interconnect archi-
tecture in the literature. Section III presents an overview of
our approach and our proposed design flow. The automated
approach to design a HW accelerator system with hybrid
interconnect is introduced in Section IV. Experimental results
using both an embedded and a high-performance computing
platforms are showns in Section V. Finally, Section VI con-
cludes the paper.

II. STATE-OF-THE-ART

In this section, we present state-of-the-art HW accelerator
systems in both academia and industry. We classify the sys-



tems based on their communication infrastructure. We also
summarize proposed hybrid interconnect in the literature.

A. Hardware accelerator systems
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Fig. 1. A generic HW accelerator architecture.

In recent years, many HW accelerator systems have been
proposed for general purpose computing as well as for specific
applications (domains). Figure 1 shows a generic architecture
of a HW accelerator. In such architecture, the host processor
can be a general high-performance CPU (e.g., x86 Intel CPU)
or an embedded processor (e.g., Xilinx PowerPC) or a soft
processor (e.g., MicroBlaze or Nios). The HW accelerator
kernels, or HW called kernels, are implemented in HW fabric
such as Field Programmable Gate Array (FPGA), Digital
Signal Processor (DSP), (Graphic Processor Unit) GPU, etc.
While the host processor uses the main memory to store
application data, the kernels have their local memories to store
local data (buffer) to improve the parallelism between the
kernels. A kernel communicates with the host, other kernels
and I/Os through a communication infrastructure.

The following review classifies the HW accelerator systems
in the literature and industry into four different groups based
on the communication infrastructure (the interconnect) of the
system: bus, network-on-chip (NoC), shared memory, and
crossbar.

• Bus-based interconnect: Molen [5], Warp processor [12],
IMORC [13], the target systems in [14], [15], [16], and
IBM’s PowerEN [17] use a bus as the communication
infrastructure.

• NoC-based interconnect: The MORPHEUS system [6],
[18] uses the Spidergon NoC for data communication
of kernels and memory modules. The target systems
presented in [19], and [20], use a CoRAM element in
each kernel to collect data input for the kernel from the
memory modules and to send the result back to the mem-
ory modules through a NoC. The P2012 architecture [21]
uses an asynchronous NoC for communication among the
kernels.

• Shared memory: Shared memory is used in many com-
mercial HW accelerator systems for high-performance
computing. Convey [8], the IBM Power 8 [9], Microsoft
Catapult [10], and Intel [22] use shared memory to
exchange data between their host processors and kernels
or among kernels. Shared memory is also used in [23]
through a remote memory access infrastructure.

• Crossbar: The research in [24] proposed a framework
for accelerating large graph problems using a crossbar

for data communication between their graph processing
elements (GPEs) and memory modules. The work in [25]
used an optimized HW resources and high routability
crossbar as interconnect of kernels and memory modules.

B. Hybrid interconnect architectures
The previous sections classified HW accelerator systems

in both the literature and industry into four different groups
based on the interconnect architecture. Each interconnect type
(bus, shared memory, NoC, crossbar) has its own advantages
and disadvantages. While buses are simple and area-efficient,
they suffer from low-performance and scalability problems
compared to the others because of the serialized communi-
cation [26]. A crossbar outperforms a bus in term of system
performance because it offers separate paths from sources to
destinations [27]. However, it has limited scalability since
the area cost increases quadratically when the number of
ports increases. While shared local memory can offer an area-
efficient solution, its scalability is limited by the finite number
of memory ports. Although NoCs have their certain advantages
such as high-performance and scalability, they suffer from a
high area cost [28]. Therefore, a hybrid interconnect with
high-performance, area-efficiency and high scalability is an
essential demand.

In recent years, many hybrid interconnect architectures have
been proposed. Those architectures can be classified into two
categories: mixed topology hybrid interconnect and mixed ar-
chitecture hybrid interconnect. While different NoC topologies
are combined together to form a hybrid interconnect in the
first group, the second group includes hybrid interconnects
that combine two interconnect types, for example a bus and
a NoC. Due to the space limitation, we summarize hybrid
interconnects in the second group only. Table I summarizes
the proposed mixed architectures hybrid interconnects in the
literature. As shown in the table, all the mixed architectures
hybrid interconnects combine buses and a NoC to form hybrid
interconnects. Beside the static designs, communication rate is
usually used as input data to design hybrid interconnects. How-
ever, communication rate may change from time to time. None
of the above proposed hybrid interconnects takes application
quantitative data communication patterns into account.

In contrast to those proposed hybrid interconnects, our hy-
brid interconnect design takes communication patterns inside
an application into consideration. In other words, we use
the application quantitative data communication profiling to
design a HW accelerator system with a hybrid interconnect.

III. DESIGN APPROACH

A. Overview
In conventional execution models of HW accelerator sys-

tems in the literature, data input required for kernel computa-
tion is fetched to its local memory when the kernel is invoked
and data output is sent back to the main memory when the
kernel is finished [16], [40]. This delays the start-up of kernel
calculations until the whole data is available. Although there
are some specific solutions to improve this communication
behavior, those solutions are ad-hoc approaches and have not
taken data communication patterns of the application into
consideration. In contrast to them, we aim to provide a more



TABLE I
MIXED ARCHITECTURE HYBRID INTERCONNECT SUMMARY

Proposal Combined
architectures

Input dataa Experimental
platform

Year

dTDMA/NoC
[29]

Bus/NoC Communication
rate

Simulation 2006

MECS [30] Bus-like/NoC Static Simulation 2006
BENoC [31] Bus/NoC Staticb Simulation 2009
Das et
al. [32]

Bus/NoC Static Simulation 2009

RAMS [33] Bus/NoC Memory
access rate

Simulation 2010

Tsai et
al. [34]

Bus/NoC Communication
bandwidth

Simulation 2010

HNoC [35] Bus/NoC Static Simulation 2010
Giefers et
al. [36]

Bus/NoC/
Barrier

Static FPGA-based
platform

2010

MORPHEUS
[18]

Bus/NoC Static ASIC-based
platform

2011

duo [37] Bus-like/NoC Communication
rate

Simulation 2012

Zhao et
al. [38]

Bus/NoC Static Simulation 2012

Todorov et
al. [39]

Bus/NoC
routers

Bandwidth
and Latency
constraints

Simulation 2014

aWhich input data the proposal uses to design the proposed architecture,
for example task graph or communication pattern.
bStatic means that the proposal does not use any data from any applica-
tion/domain.

generic solution and take data communication patterns of the
application into account. The hybrid interconnect dedicated for
each application helps deliver data from one kernel to the other
as soon as possible, thereby hiding the data communication
time needed for the kernel.

The main purpose of this work is to develop an automated
design approach to implement a specific application on an
existing HW accelerator system so that the interconnect of the
system is the most appropriate support communication patterns
inside the application while HW resource usage for the inter-
connect is minimal. In such system, computationally-intensive
functions of the application are accelerated by dedicated HW
kernels running on the HW fabric while the rest functions are
executed on the host processor. While the predefine system
communication infrastructure carries out data communication
between the host and the kernels, data exchanged among the
kernels is performed by our hybrid interconnect that consists
of a NoC, a crossbar, and directly shared local memory.

We target a generic HW accelerator system in which accel-
erator kernels can be implemented on any HW fabric such as
GPU, FPGA, or ASIC. GPU interconnect is not reconfigurable
in current day technology. Therefore, our discussion is mainly
based on reconfigurable computing platforms. Moreover, al-
most all well-known HW accelerator systems are implemented
on reconfigurable platforms as presented in Section II-A.

B. Design Flow

Figure 2 depicts our proposed design flow to implement a
specific application on an existing HW accelerator system with
hybrid interconnect. Below, we discuss each step in detail.

1) Profiling: The application is profiled by the QUAD
profiling tool [41] to extract communication patterns inside
the application and by gprof [42] to identify computationally-
intensive functions that should be accelerated. Outputs of those
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Fig. 2. The proposed design flow.

profiling tools are used in the HW/SW (software) partition
step.

2) HW/SW partition: Traditionally, the primary objective
of HW/SW partition in heterogeneous HW systems is to
improve system performance, hence, to gain speed-up. To
achieve this goal, the program parts with higher execution time
contributions (computationally-intensive functions) are usually
mapped onto the HW, while the parts with lower contributions
are executed on the host.

3) Hybrid interconnect: Using the detailed profile of data
communication patterns, an accelerator kernel knows exactly
which kernels will consume its output. Therefore, the kernel
can deliver its output directly to the consuming kernels when
the output is available (instead of transferring its output back
to the host as in conventional execution models). To support
this model in an existing HW accelerator system, beside the
existing communication infrastructure, a hybrid interconnect
for the kernels is implemented. Section IV will discuss this
hybrid interconnect design in detail.

4) Hardware generation: As aforementioned, we use re-
configurable computing platforms as target platforms. High
level synthesis tools such as Xilinx Vivado [43], DWARV [44],
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Fig. 3. An example of data communication profiling.

etc., are used to generate synthesizable HW descriptions for
accelerated parts from original application source code.

5) Implementation on target platforms: Finally, all the
design components are synthesized and implemented on target
platforms using vendor tools such as Xilinx tools when im-
plementing on Xilinx platforms or Convey PDK toolchain [8]
when Convey machines are used. The SW part is executed
on the host while the HW part is accelerated on HW fab-
ric. The system communication infrastructure takes care data
communication between HW and SW parts while our hybrid
interconnect carries out data communication among the ker-
nels.

IV. AUTOMATED HYBRID INTERCONNECT DESIGN

In this section, an automated design strategy using data
communication profiling of an application is introduced to
build a hybrid interconnect that connects all accelerator kernels
of the application. The design strategy results in a system
with optimized execution time and resources usage. Data
communication profiling of the application can be extracted by
the QUAD profiling tool as mentioned in Section III. Figure 3
shows output of the QUAD profiling tool in a graph-based
view. Based on this profiling, a kernel knows exactly to where
its output should be sent (to the host or to other kernels).
To further improve system performance, parallelizing kernel
processing is also introduced in this section.

A. Interconnect components

1) Shared local memory: In this work, we consider to share
the local memories of two accelerator kernels (kernels and
kernelr) if the two following conditions are asserted: 1) the
two accelerator kernels communicate together; 2) the receiving
kernel, kernelr, only processes data generated by the sending
kernel, kernels, or both kernels and the host. Two accelerator
kernels dquantz lum and j rev dct in Figure 3 are an example.
With the shared local memory, kernelr can process output of
kernels, called Dij byte, without any data transfer. Due to the
fact that the system does not need to transfer Dij byte from
local memory to the main memory when kernels is finished
and copy this data from the main memory to local memory
when kernelr starts, compared to the conventional models,
the communication time for this data movement is reduced by
∆c = 2Dijθ, where θ is the average time for transferring one
byte of data between the local memory and the main memory.

When implemented on reconfigurable platforms, most accel-
erator systems use block RAM (BRAM) as the local memory.
BRAM in modern FPGA usually has two ports. Therefore,

we use a crossbar to share the local memories of two com-
municating kernels because one port is usually used for the
host communication, receiving data input from the host or
sending data output to the host (the same situation is reported
in [45]). The crossbar does not introduce any communication
overhead because it does not change the structure of data.
In a special case in which the receiving kernel does not
communicate with the host, the two kernels can share their
local memories without the crossbar. Figure 4 illustrates the
shared local memories solution with the crossbar (kernel 1 and
kernel 2) and without the crossbar (kernel 3 and kernel 4).

Fig. 4. Shared local memories with and without crossbar in an FPGA-based
accelerator system

2) NoC: NoCs are an established and widely used as
interconnect mechanism providing parallelism and high-
performance. In this work, we use a NoC as the interconnect
of a group of kernels. The NoC is used to transfer data from
one kernel to the local memories of other kernels. Figure 5
shows a group of kernels using an NoC as their interconnect.
An alternative solution is using only the NoC as interconnect
of the whole system, i.e., the communication infrastructure
in Figure 5 is eliminated. However, this solution will in-
cur a higher HW overhead for the network adapters at the
host and other components. Moreover, most HW accelerator
systems have a predefined communication infrastructure to
connect system components (the host, the shared memory,
the I/O, etc.). In some HW accelerator systems (such as the
Convey architecture [8]), the communication infrastructure is
not reconfigurable. Therefore, adding a NoC to accelerate the
communication behavior of the kernels in a HW accelerator
system is more suitable than modifying the whole system.

With the NoC, data communication of the kernels is done in
parallel with their execution. In other words, the output of one
kernel is sent directly to the local memories of the consuming
kernels rather than stored in its local memory. Hence, a kernel
does not need to collect data input produced by other kernels
from the main memory and send data output consumed by
other kernels back to the main memory as in the conventional
models. Compared to the conventional models, the NoC re-
duces the execution time by ∆n = 2

∑n−1
i=0 D

K
i(out)θ, where

n is the number of kernels connected to the NoC; DK
i(out) is

the amount of data generated by kernel i-th and consumed by
other kernels.

Additionally, to further optimize HW resources usage, based
on the communication patterns of each specific application,
we define a connection topology of the kernels and the local



Fig. 5. The NoC is used as interconnect of the kernels in a HW accelerator
system

memories to the NoC and the communication infrastructure;
i.e., not all the kernels and the local memories which are not
applied the shared local memory solution are connected to the
NoC. A kernel is connected to the NoC if and only if it sends
data output to other kernels. A local memory is connected to
the communication infrastructure if the corresponding kernel
communicates (sending output or receiving input) with the
host while it is connected to the NoC if the kernel receives data
input generated by other kernels. For example, in Figure 5,
kernel 1 and local memory of kernel 2 are not connected to
the NoC because we assume that kernel 1 does not send its
output to any other kernels and kernel 2 receives data input
from the host only.

B. Parallelizing kernel processing

Given the fact that HW accelerator systems have been
increasingly used to address parallelizable and data intensive
application domains [22] such as image or video process-
ing [40], datacenter services [10], etc., the parallelizing kernel
processing can be used to further improve system performance
beside the proposed hybrid interconnect. Parallelism can be ex-
ploited at two different levels: data parallelism and instruction
parallelism.

1) Data parallelism: Data parallelism is an execution sce-
nario in which data is partitioned into segments, and concur-
rent processing kernels process those segments in parallel. In
other words, one computationally intensive function can be
accelerated by a number of concurrent kernels. Each kernel
processes each data segment. Assume that a computationally
intensive function has n accelerator kernels, data input for
the function is partitioned into n segments. The reduction in
processing time of this function compared to one accelerator
kernel is ∆dp = τi(n−1)

n − O where τi is the time for
processing the whole data with only one kernel and O is
the overhead for data parallelism processing. This overhead
depends on the application’s algorithm and occurs because
extra data needs to be processed to achieve the correct result
for each segment [46]. Figure 6 shows a comparison between
serial processing and data parallelism processing in which the
function is accelerated by three different kernels (Kernel i 1,
Kernel i 2, and Kernel 3) and data is partitioned into three
segments.

Fig. 6. An example of data parallelism processing compared to serial
processing

2) Instruction parallelism: Instruction parallelism is an
execution scenario in which accelerator kernels of functions
form a pipeline to process a stream of data segments. Each
kernel of each accelerated function establishes a pipeline stage.
Data segments are streamed through those stages. Different
from the serial execution scenario, in instruction parallelism,
the kernels are working at the same time. The pipeline depth
is the number of data segments processed. Assume that there
are n processing stages, the total execution time in the serial
scenario when the proposed hybrid interconnect takes care of
the data communication between the kernels is evaluated by
Equation 1.

Tserial =

n−1∑
i=0

τi +

n−1∑
i=0

(DH
i(in) +DH

i(out))θ (1)

where DH
i(in) and DH

i(out) are the total amount of the kernels’
input data produced by the host and of the kernels’ output data
consumed by the host.

When instruction parallelism is exploited with depth m
(assume that m ≥ n), the total execution time is approximated
by Equation 2.

Tpipeline =(
τ0
m

+O0) + max
0≤i≤1

(
τi
m

+Oi) + ...

+ max
0≤i≤n−1

(
τi
m

+Oi)× (m− n+ 1) (2)

+ max
1≤i≤n−1

(
τi
m

+Oi) + ...+ max
n−2≤i≤n−1

(
τi
m

+Oi)

+ (
τn−1

m
+On−1) +

n−1∑
i=0

(DH
i(in) +DH

i(out))θ

where Oi is the overhead explained in the previous section.
The instruction parallelism is beneficial when Tpipeline <
Tserial.

Figure 7 shows a comparison between serial processing
and instruction parallelism processing. In the instruction paral-
lelism processing approach, the number of pipeline stage, the
number of kernels, is 3 (n = 3) while the pipeline depth, the
number of data segments, is 4 (m = 4).

C. Design algorithm

This section presents the proposed algorithm using quantita-
tive data communication to implement a specific application on
an existing HW accelerator platform. The algorithm results in a
HW accelerator system with an optimized hybrid interconnect
in terms of communication time while keeping HW resources



Fig. 7. An example of instruction parallelism processing compared to serial
processing

usage for the interconnect minimal. The hybrid interconnect
includes the above mentioned interconnect components.

Algorithm 1 shows the pseudo code of the proposed al-
gorithm. The algorithm, first, selects functions which are the
most computationally intensive and suitable for accelerating on
HW fabrics (i.e., those functions that can be implemented in
HW) (line 1). The most computationally intensive functions
are considered for data parallelism if acceptable (line 2-
8). The algorithm, then, uses the QUAD profiling tool to
generate the quantitative data communication profiling of the
application (line 9). Based on this profiling, an efficient hybrid
interconnect is defined.

Algorithm 1 System design
Input: Application source code
Output: A HW accelerator system with an optimized inter-
connect

1: Lhw ← List of the most computationally intensive func-
tions suitable to implement on HW

2: repeat
3: for each HW in Lhw do
4: if HW satisfies the data parallelism (∆dp > 0) &

resource is available then
5: Replicate HW in Lhw
6: end if
7: end for
8: until Lhw does not change
9: G← Quantitative data communication profiling for func-

tions in Lhw
10: for each data communication in G do
11: if Shared local memory conditions are asserted then
12: Apply the shared local memory solution for the

two kernels of this data communication
13: Remove the sending kernel from Lhw
14: end if
15: end for
16: Map all HW in Lhw to the NoC as proposed in Sec-

tion IV-A2
17: Apply instruction parallelism for all kernels if possible

In this algorithm, shared local memory (line 10-15) is
investigated first as explained in Section IV-A1. This commu-
nication can also be performed by the NoC. However, with the

NoC, we need four routers (two for kernels and two for their
local memories). Keeping in mind that the HW resources usage
for four routers is 6× larger than the HW resources usage for
shared local memory (in the Xilinx xc5vfx130t FPGA device,
the four routers require 1221 Look-up Table (LUT) while it
is 201 LUT for the crossbar). Shared local memory represents
an optimized solution compared to the NoC in terms of HW
resources usage. Therefore, it is considered before the NoC.
The next step is to map all the remaining kernels which are not
connected using the shared local memory solution to the NoC
(line 16) as presented in Section IV-A2. Finally, instruction
parallelism is considered to further reduce execution time if
acceptable (line 17).

V. EXPERIMENTS

In this section, we present our experimental results in
both an embedded system and a high-performance computing
system. We analyze system performance, HW resources usage,
and energy consumption.

A. Experimental setup
The Molen system implemented in the Xilinx ML510

board [47] is used as the embedded platform while the
Convey HC2-ex [8] machine is used as our experimental high-
performance computing platform. In order to implement our
proposed hybrid interconnect for the kernels, we develop a
2×2 crossbar for shared local memory and adapt the NoC
presented in [48] into our systems.

In the Molen platform, the PowerPC processor - an em-
bedded hardwired processor of the FPGA device - acts as the
host processor while accelerator kernels are mapped onto the
reconfigurable area of the device. SDRAM memory connected
directly to the PowerPC through a Xilinx core is the main
memory of the system. While the host processor works at
400MHz, the kernels work at 100MHz. The Xilinx PLB bus
is used as the communication infrastructure which connects
the host processor, the kernels and other modules such as I/O,
Interrupt, Timer, etc., together. The Convey HC-2ex system
consists of one host Intel Xeon X5670 processor and four
Virtex-6 xc6vlx760 FPGA devices where kernels are mapped
on. While the host that consists of 6 physical hyper-threading
cores works at 2.93GHz, the kernels works at 150MHz. The
host processor and the accelerator kernels can communicate
through a Hybrid-core Globally Shared Memory (HGSM) -
the communication infrastructure - controlled by a Convey’s
HCMI. In both systems, BRAM inside the FPGA devices are
used as local memory of accelerator kernels.

Our experiments use two applications: Canny edge detec-
tion [49] and KLT feature tracker [50]. We first run these
applications on host processors of both systems to get SW
execution time. In the Molen system, the single core PowerPC
performs these applications. In the Convey system, the func-
tions that are accelerated on the FPGA devices are processed
by all the 12 cores of the host processor using the OpenMP
library, i.e. the host processor is fully utilized. The applications
are compiled by GCC 4.2 with −O2 optimization level.

Thereafter, we develop these applications on both systems
without our hybrid interconnect, called baseline systems. In
these systems, data communication is carried out by the system



communication infrastructure, the PLB bus in the Molen plat-
form and HGSM in the Convey machine. The DWARV [44]
compiler automatically generates the HDL description for the
kernels on Molen from their C code while Xilinx Vivido
HLS is used for kernels on Convey. We use different high
level synthesis tools to illustrate that our proposed approach
is flexible and compatible with different design tools. The
systems are synthesized with Xilinx ISE without any manual
optimization.

Finally, we implement the applications on both systems
using our proposed approach. The next section will compare
our systems to baseline systems and SW in terms of system
performance, HW resources usage and energy consumption
parameters.

B. Experimental results
In this section, we analyze system performance, HW re-

sources usage and energy consumption for both systems with
the two applications.

1) System performance analysis: Table II shows the speed-
up of our proposed systems compared to both SW and the
baseline systems in the embedded and the high-performance
computing platforms. As shown in the table, when the pro-
posed approach and the hybrid interconnect are exploited, it
achieves speed-ups of the overall application by up to 3.72×
in the embedded platform and by up to 1.55× in the high-
performance computing platforms compared to SW. Compared
to the baseline system, overall application speed-ups of up
to 1.83× for the embedded system and 1.53× for the high-
performance computing platform are obtained.

TABLE II
SPEED-UP OF THE PROPOSED SYSTEM WITH RESPECT TO SW AND THE

BASELINE SYSTEM

Plat. App. #Kernels w.r.t Software w.r.t Baseline
(#Func.) App. Kernels App. Kernels

Molen Canny 5 (4) 3.15× 3.88× 1.83× 2.12×
KLT 3 (3) 3.72× 6.58× 1.26× 1.55×

Convey Canny 64 (4) 1.55× 2.20× 1.53× 2.17×
KLT 56 (3) 1.02× 1.13× 1.20× 2.50×

Legend: Plat.: Platform; App.: Application; Func.: the number of functions
that are accelerated by HW accelerator kernels

2) Hardware resources usage: Table III presents the HW
resources utilization of the baseline, our proposed systems
and the NoC-only systems, in terms of the number of FPGA
look-up tables (LUTs) and the number of FPGA registers.
NoC-only system is a system in which only NoC is used for
the interconnect of kernels. All kernels and local memories
are connected to the NoC instead of using communication
pattern-based mapping as proposed in Section IV-A2. As
shown in the table, our systems saves up to 33.1% LUTs and
30.2% Registers compared to the NoC-only system. This result
validates our goal which is to optimize the communication
time while keeping the minimized resources usage of the
interconnect. Without our strategy, the system is either the
baseline systems or NoC-only system. The baseline systems
are low performance while the NoC-only systems use more
HW resources than ours. Meanwhile, our systems achieve the
same performance and uses less resources than the NoC-only
systems. Figure 8 presents the comparison of HW resources

used for interconnect and for the kernels in our system
normalized to the resources used for computing (kernels).
The interconnect uses only 49.2% resources compared to the
resources used for computing at most.

TABLE III
HW RESOURCES UTILIZATION (#LUTS/#REGISTERS)

Plat. App. Baseline Pro. NoC. Red. Solution

Molen
Canny 9926 15227 17894 14.9% NoC,

12707 18657 21059 11.4% SM, P

KLT 4721 4921 7358 33.1% SM5430 5631 8070 30.2%

Convey
Canny 74965 90789 93693 3.1% NoC,

48994 54849 58421 6.1% SM, P

KLT 106162 107919 118083 8.6% SM, P95804 96664 109116 11.4%
Legend: Plat.: Platform; App.: Application; Pro.: Proposed; NoC.: NoC-
only system; Red.:Reduction to NoC-only system; SM: Shared memory; P:
Parallelism
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Fig. 8. Interconnect resources usage normalized to kernels resources usage

3) Energy consumption: To compute energy consumption,
we use Xilinx Power Analyzer to estimate the power consump-
tion of these systems. Figure 9(a) compares energy consump-
tion of overall applications on the Molen platform between
the baseline system and our proposed system normalized to
baseline energy consumption. According to the figure, our
proposed system saves up to 50.3% energy consumption
compared to baseline system.
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Fig. 9. (a) Overall application energy consumption reduction of our proposed
system compared to baseline system in the Molen platforms; (b) Kernels
energy consumption comparison in the Convey platforms normalized to the
host processor energy consumption.

With the high-performance computing platform, we com-
pare energy consumption of accelerator kernels instead of the
whole system. Since the Convey machine has four FPGAs,
energy consumption for kernels in each application is approx-
imated by four times the product of power consumption and
execution time. We compare our proposed system to both
baseline system and host processor. Figure 9(b) shows the
reduction in energy of our system normalized to the host
processor energy consumption. As shown in the figure, the



KLT application implemented in the baseline system uses
more energy than the host processor. Our proposed system
consumes less energy than both the host processor and the
baseline system. Up to 54.2% energy consumption is saved
when compared to baseline system.

VI. CONCLUSION

In this paper, we presented an automated design approach
to implement a specific application in an existing hardware
accelerator system with an efficient hybrid interconnect for
kernels using quantitative data communication profiling of the
application. The hybrid interconnect includes a NoC, shared
local memory solution, or both. To further optimize system
performance, parallelizing kernel processing was taken into
consideration. We developed our experiments on both the
Molen embedded platform and the Convey high-performance
computing platform. We compared our proposed systems with
the original systems as well as the software running on the
PowerPC at 400MHz in the Molen platform and on the 12
cores Intel Xeon processor in the Convey platform. The results
showed that in both platforms, we achieved overall application
speed-ups compared to the baseline systems. Moreover, due
to the reduction in execution time, our systems also used less
energy compared to the baseline systems.
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