
tQUAD - Memory Bandwidth Usage Analysis
S. Arash Ostadzadeh, Marco Corina, Carlo Galuzzi, and Koen Bertels

Computer Engineering Group
Faculty of Electrical Engineering, Mathematics and Computer Science

Delft University of Technology, Delft, the Netherlands
Email: {S.A.Ostadzadeh,M.Corina,C.Galuzzi,K.L.M.Bertels}@tudelft.nl

Abstract—One of the main issues in heterogeneous reconfig-
urable computing is the well-known processor/memory bottleneck.
Due to the memory bandwidth limitations, the performance of
execution of an application can dramatically increase via the
efficient usage of the memory. In this paper, we present tQUAD,
a new tool for the memory bandwidth usage analysis. This tool
is capable of delivering detailed temporal memory bandwidth
usage information for the functions in an application throughout a
comprehensive analysis of the memory access patterns of individual
functions. This tool, first in its kind, provides an accurate analysis
of the task execution and memory bandwidth usage which in the
end leads to a sophisticated partitioning of the tasks into different
phases during the execution span of an application. Together with
an accurate description of the tool, the paper presents a real case
study from the multimedia domain to detail all features of the
proposed tool.

I. INTRODUCTION

Heterogeneous reconfigurable systems enable the utilization
of multiple types of processing elements within a single plat-
form, allowing each element to perform the task(s) to which it is
best suited. They may contain, for instance, Application-Specific
Integrated Circuits (ASICs), Field Programmable Gate Arrays
(FPGAs), Graphic Processing Units (GPUs), Digital Signal
Processors (DSPs), and the conventional commodity processors.
These systems are increasingly gaining popularity due to their
ability to speed up applications from many different domains.
The well-known processor/memory bottleneck drastically limits
the system performance. As a result, the tuning of the application
code has become imperative to extract the maximum perfor-
mance from the target architecture. Furthermore, the widespread
utilization of such systems through the industry seems to be
inconvenient due to the shortage of tools guiding developers
throughout the entire development process. In this paper, we
focus on the memory bandwidth issues and present a new
tool that delivers detailed temporal memory bandwidth usage
information for the functions in a given application.

The analysis of the behavior of tasks during the execution of
an application is an important aspect of the application develop-
ment and optimization. When porting an existing application to a
heterogeneous system, one of the main problems is the partition-
ing of the application. Depending on their characteristics, tasks
can be executed in software (on a general-purpose processor)
or hardware (on a reconfigurable device). Additionally, there
are tasks that can be implemented both in software and in
hardware, depending on the availability of hardware resources.
These decisions are part of the task scheduling and mapping
process. In many computing fields, like embedded and real-

time systems, software scheduling is of vital importance and
it is a well studied topic [1], [2]. Partial reconfiguration on
the reconfigurable hardware adds even more complexity to the
scheduling problem [3]. As a consequence, efficient scheduling
and task placement algorithms become a must. To cope with
these issues and efficiently utilize the hardware resources, a
detailed analysis of the tasks execution behavior must be carried
out. In [4], we have presented a tool that performs a thorough
analysis of the memory access behavior of an application with
the primary goal of providing detailed quantitative information
of actual data dependencies between a pair of communicating
functions.

In this paper, we continue our analysis of the tasks execution
behavior by presenting a new tool, called tQUAD, for the
memory bandwidth usage analysis. The tool aims to present
a detailed timing information of tasks execution via a thorough
analysis of the data usage of each individual task. As a result,
partitioning, scheduling and mapping of these tasks onto recon-
figurable architectures can be performed in a more efficient way.
The presented tool is general and not restricted to any particular
architecture. Even the extracted information can be used with
different objectives, such as general application revision for
performance improvement or coarse grain parallelism detection.
Nevertheless, here we present our application of the proposed
tool in the context of the Delft WorkBench project [5], which
targets the Molen reconfigurable architecture [6].

The main contributions of this paper are the following:

• the description of an efficient tool, tQUAD, to provide the
timing of the tasks execution and memory bandwidth usage
information that can be utilized in task scheduling and
mapping process on heterogeneous reconfigurable systems;

• the recognition of the main phases in the execution time of
an application that can be used to identify related kernels
for task clustering purposes;

• the presentation of the memory bandwidth traffic esti-
mations which can provide a clear platform-independent
insight of an application for code revising to solve memory
access related problems;

• the validation of the proposed tool on a real case study
with a detailed analysis.

The remainder of the paper is organized as follows. Section
2 gives an overview of the related research. In Section 3, we
present the context of our research. Section 4 introduces tQUAD
and describes some of the design and implementation issues.
In Section 5, a real case study is examined in detail. Finally,

2010 39th International Conference on Parallel Processing Workshops

1530-2016/10 $26.00 © 2010 IEEE

DOI 10.1109/ICPPW.2010.39

222

2010 39th International Conference on Parallel Processing Workshops

1530-2016/10 $26.00 © 2010 IEEE

DOI 10.1109/ICPPW.2010.39

217

Section 6 provides concluding remarks and an outline of the
future research.

II. RELATED WORK

The execution time analysis is a well-known topic. To have an
estimation of the execution time of an application is vital for the
acceptability of many systems, especially for systems delivering
real-time services. There are two main execution time analysis:
static analysis and dynamic analysis. Static techniques do not
rely on the execution of the application on real hardware. They
rather analyze the source code, or some form of object code, to
decide the set of possible execution paths and to obtain an upper
bound on the execution in a specified hardware model. Dynamic
techniques instead, take into consideration a specific hardware
and derive the execution time from the recorded results [7].

Hard real-time systems require a deterministic timing be-
havior of the application to guarantee the termination of the
task execution. This is guaranteed by estimating the Worst
Case Execution Time (WCET) of the application. Commercial
and research prototype tools for WCET analysis estimation are
available. These include aiT [8], Bound-T [9], Chronos [10],
Heptane [11], SWEET [12], and Symta/P [7].

Usually WCET tools work on binary executables, as these
contain all the information needed for the analysis. First, the
Control-Flow Graph (CFG) is constructed. This graph is used
to determine the possible program paths. Next, a simplified
model of a microarchitecture is required to produce timings for
the program paths using the information on caches, memory,
pipelines, branch prediction schemes, and other hardware com-
ponents. This model can be built-in inside the tool or, in case of a
new target processor, it can be constructed and feeded to the tool
by the user. Finally, by using the information acquired during
the first two phases, the final bound calculation is performed,
producing the WCET estimation in terms of cycles which could
be then, if supported by the tool, converted to seconds.

Most vendors do not disclose enough information on their
microarchitecture. As a result, the WCET estimation is likely
to become a tedious task to perform as a model of the target
architecture, although a simplified one, is required for the
analysis. In any case, the results of the tool must be validated
by measurements before considering the calculated WCET reli-
able. Additionally, nowadays, the hardware complexity is very
high and, in many cases, it is difficult to extract an accurate
model which makes the estimation unreliable. Therefore, a
measurement-based analysis beside a static analysis is a com-
mon practice when estimating the WCET. As a matter of fact,
when the real execution time of a certain application on a certain
hardware is desired, and not necessarily an upper bound on the
execution time, the user performs a measurement-based analysis
of the system. To cope with this necessity, hybrid approaches
combining measurement and static program analysis have been
developed. Examples are the Rapitime [13] and the MTime [14]
tools.

The hardware complexity and the fact that static WCET anal-
ysis can deliver an over-pessimistic timing estimation cause this
method to be inefficient when applied to heterogeneous reconfig-
urable devices. Scheduling and mapping algorithms must strive

to make the reconfigurable hardware area usage as efficient as
possible. Hence, the need for dynamic analysis methods which
aim at providing precise information on the relative timing
behavior of an application is critical for developers.

Profilers like gprof [15] are a kind of dynamic analysis tools.
gprof performs the analysis based on source code instrumenta-
tion, providing information about the execution time of functions
in an application. However, gprof does not distinguish among
CPU time and memory access time. The implementation of
a task in reconfigurable hardware based on this information,
may result in an inefficient usage of the hardware resources.
This eliminates the advantages of a hardware implementation
because the processing performance gain of a computationally
intensive task may, in reality, be bounded by its memory access
inefficiency.

Some dynamic analysis tools integrate hardware event mon-
itoring, such as counters, available on the chip. Examples are
the Intel’s vTune [16] and the AMD CodeAnalyst [17]. Both
tools provide the user with a suite for performing application
performance analysis which provides, among others, a time-
based analysis that helps locating the application hot-spots and
the bottlenecks as candidates for optimization. The vTune time-
based sampling approach gathers information on the percentage
of time spent by an application by interrupting the application’s
execution at regular time intervals and by recording instruction
pointer addresses. Then, the most frequently executed portions
of code are reported, in terms of clockticks. Besides, by finding
and reporting hot-spots, vTune produces also a detailed analysis
at architectural level by specifying how the application behaves
in memory, and by identifying problems such as cache misses.
Similar to vTune, the AMD CodeAnalyst suite performs system-
wide profiling and supports the analysis of both user applications
and kernel-mode software. It also collects instruction pointer
addresses at predefined time intervals and it reports bottlenecks,
execution penalties, and optimization opportunities. For a given
application, it reports the number of CPU cycles needed by
a code region, the Instruction-Per-Cycle (IPC) and its inverse
Cycles-Per-Instruction (CPI), and statistics on data accesses.
However, both tools are hardware dependent.

Another method to analyze the execution time is by using an
Instruction-Set Simulator. In [18], a simulator is described which
profiles applications according to a predefined target architec-
ture. Although this can help programmers to gain insight on
how an application behaves and possibly where this application
needs to be improved, by having this information based only
on simulators, misleading information can be delivered, as not
all simulator are clock-cycle accurate. As mentioned before,
nowadays, hardware has reached a complexity that is almost
unfeasible to emulate. Hence, to retrieve exact information on
application execution time, the application should be run on the
target hardware.

In this paper, we present the tQUAD profiler. It analyzes
the memory bandwidth usage of an application in terms of
relative execution timings. The timing is based on instruction
counting, and it delivers accurate information about the life
of certain application tasks. This general form of execution
time unit representation allows to have a platform-independent

223218

implementation of the tool. By knowing the number of CPI (or
its inverse, IPC), which are hardware dependent, it is possible
to retrieve the conventional execution time in terms of, for
instance, seconds. This timing information together with the
amount of data usage of a certain task deliver useful insights
on the behavior of the application.

III. THE PROFILING FRAMEWORK

The proposed tool is not restricted to any particular architec-
ture. Nevertheless, in this paper, we consider an application of
the tool in the context of the Delft WorkBench (DWB) [5]. The
DWB is a semi-automatic tool platform for integrated hardware/-
software co-design, targeting heterogeneous computing systems
containing reconfigurable components. It targets the Molen [6]
machine organization, which is one instance of a heterogeneous
reconfigurable platform. DWB addresses the entire design cycle
from profiling and partitioning to synthesis and compilation of
an application and focuses on four main steps within the entire
heterogeneous system design, namely:
• the code profiling and the cost modeling [19];
• the graph transformations and optimizations [20]–[22];
• the retargetable compiler [23];
• the VHDL generation [24].
For a given application, code profiling and cost modeling

identify which parts of the application are good candidates for
hardware implementation. This decision takes into consideration
the available hardware resources and the speed-up provided
by the hardware implementation of the application or parts
of it versus a software implementation. During the graph
transformation and optimizations, the candidate parts of the
application for hardware implementation are analyzed to find
out if the code segments can be clustered according to various
targets as, for example, sharing common characteristics. Next,
an optimization phase is performed to spot parallelization op-
portunities. Particular attention is needed during the partitioning
of a certain application, as the entire cycle time can be affected.
Cycle time can slow down as the code segment executed on
the reconfigurable device grows in size, resulting in an overall
slower execution.

After making the decision of which parts of the code segments
to implement in hardware, the code is annotated. After that,
the retargetable compiler generates the new object code which
contains the call to the reconfigurable hardware for the instruc-
tions found. The VHDL generation phase generates hardware
description of the kernels.

The main focus of the work proposed in this paper is
on the profiling process. Figure 1 gives an overview of the
DWB profiling framework and where the proposed tool can be
positioned.

IV. TQUAD DESIGN AND IMPLEMENTATION

tQUAD is designed as a complementary profiler in a dynamic
profiling framework along with QUAD [4] to deliver detailed
temporal memory bandwidth usage information for each kernel
in an application. In QUAD, the quantitative information about
data communication between kernels is revealed. With tQUAD,
we aim to extract the timing information of a single kernel

Resource
Usage

profiles

Representative Input Data
Annotated

C code

Architecture Description File
(XML)

Multipurpose Clustering
Algorithm

 Task
Partitioning/
Scheduling

P
arallelizatio

n

U
n

it

Annotated
Call Graph

Quantitative Data
Usage Graph

Dynamic Profiling

Static Profiling

t

Fig. 1. Profiling framework within the DWB platform.

execution as well as its memory bandwidth usage during an
application execution. The information extracted by tQUAD can
lead to the recognition of the main execution phases within an
application, which, in the end, can be used to identify the related
kernels in each phase and their communication behaviors. The
extracted information is vital for subsequent decisions in design
space exploration stages of task scheduling and mapping process
in heterogeneous reconfigurable architectures. It can also serve
as hints for application developers for optimization opportuni-
ties, such as parallelism detection in the application code.

tQUAD is implemented as a Dynamic Binary Analysis (DBA)
tool. This means that, in order to profile an application, we only
need the binary machine code of the application. DBA tools are
commonly developed utilizing a Dynamic Binary Instrumenta-
tion (DBI) framework. Instrumentation is a technique for inject-
ing extra code into an application to observe its behavior. This
process can be performed at various stages: in the source code, at
compile-time, at post-link time, and at run-time. tQUAD, a run-
time instrumentation profiler, is implemented using the Pin [25]
run-time binary instrumentation framework that utilizes dynamic
compilation to instrument executables while they are running.

A. Pin

Pin provides a portable, transparent, and efficient instrumen-
tation system that works with unmodified Linux, Windows
and MacOS binaries on Intel ARM, IA32, 64-bit x86, and
Itanium architectures. Pin has a rich API that is designed to be
architecture independent whenever possible, making a DBA tool
source code compatible across different architectures. However,
a tool can still access architecture-specific details when nec-
essary. Instrumentation with Pin is mostly transparent, as the
application and the tool observe the application’s original, unin-
strumented behavior. Dynamic instrumentation is particularly
beneficial for profiling, performance evaluation, or bug detection
tools. It captures the execution of arbitrary shared libraries in
addition to the main program and it has no dependence on the
instrumented application’s compiler. Requiring only a binary
and being compiler-independent does not imply that the source
code is not needed for program revisions. Instead, it provides

224219

D
is

pa
tc

he
r

C
od

e
C

ac
he

t

Fig. 2. Architectural overview of tQUAD.

flexibility for the tool to be language-independent and it can
be used with any compiler toolchain that produces a common
binary format. Furthermore, it does not require the user to
modify the build environment to recompile the application with
special profiling flags.

It is worth to note that, in run-time instrumentation, we do
not necessarily have any kind of extra information about the
structure of the program in the binary code, such as control or
data flow graphs. As a result, any required information should
be extracted during the dynamic execution of instructions by the
tool itself. As an example, we needed to implement our own call
graph. For this purpose, an internal call stack data structure is
dynamically created and maintained in tQUAD.

B. tQUAD Architecture

Figure 2 shows the architectural overview of tQUAD and
its interactions with the Pin’s components. At the highest
level, there is a Virtual Machine (VM), a code cache, and
an instrumentation API. The VM consists of a Just-In-Time
(JIT) compiler, an emulator, and a dispatcher. After Pin gains
control of the application, the VM coordinates its components
to execute the application. The JIT compiles and instruments the
application code, which is then launched by the dispatcher. The
compiled code is stored in the code cache. Entering (leaving)
the VM from (to) the code cache involves saving and restoring
the application register state. The emulator interprets instructions
that cannot be executed directly. It is used for system calls which
require special handling from the VM. Since Pin does not reside
in the kernel of the operating system, it can only capture user-
level code. As Figure 2 shows, three binary programs are present
when an instrumented program is running: the application, Pin,
and tQUAD. Pin is the engine that instruments the application.
tQUAD contains the instrumentation and analysis routines and
it is linked with a library that allows tQUAD to communicate
with Pin.

C. tQUAD Implementation

The details associated with the modules in tQUAD are omitted
from this paper for brevity. However, we provide a detailed
overview of the routines in the tQUAD implementation. The
interfaces to most run-time binary instrumentation systems are
API calls that allow developers to hook in their instrumentation
routines. Figure 3 shows the pseudocode of the main tQUAD
interface in C++ style. At the beginning, there are several
initializations for memory bandwidth usage data list, internal
call stack and a mutual kernel-to-bandwidth data map list.
PIN InitSymbols must be called to access functions by name.

/ / Data S t r u c t u r e s
c l a s s C a l l S t a c k ; / / ADT f o r i n t e r n a l c a l l s t a c k
c l a s s MBWUDataList { / / Memory Bandwidth Usage da ta

l i s t <MACC∗> mbwulst ;
/ / o t h e r members
} MBW;

c l a s s K2BW; / / ADT f o r k e r n e l t o MBW usage da ta mapping
/ / Globa l V a r i a b l e s

s t r i n g mainImg ; / / t h e main image name
o f s t r e a m f p r o f i l e ; / / t emporary f l a t p r o f i l e f o r s n a p s h o t s da ta
UINT64 T S I n t e r v a l ; / / t h e t i m e s l i c e i n t e r v a l
BOOL Uncommon Func t ions F i l t e r =TRUE;
BOOL No Stack Flag = FALSE ;
UINT64 C u r r e n t I n s t r u c t i o n s =0; / / c u r r e n t number o f e x e c u t e d i n s t r u c t i o n s
UINT64 Sl iceNumber =1; / / c u r r e n t t i m e s l i c e number
C a l l S t a c k CS ;
K2BW Kernels2MBWListMap ;

/ / Command l i n e O p t i o n s
KNOB<UINT64> KnobSl ice (KNOB MODE WRITEONCE, ” p i n t o o l ” , ” s l i c e ” , ” 500000 ” , . . .) ;
KNOB<BOOL> KnobIgnoreUncommonFNames (KNOB MODE WRITEONCE, ” p i n t o o l ” , ”

f i l t e r u n c o m m o n f u n c t i o n s ” , ” 1 ” , . . .) ;
KNOB<BOOL> KnobIgnoreS tackAcces s (KNOB MODE WRITEONCE, ” p i n t o o l ” , ” i g n o r e s t a c k a c c e s s ” ,

” 0 ” , . . .) ;

i n t main (i n t argc , char ∗a rgv [])
{

MBW. I n i t () ; / / memory bandwid th usage da ta l i s t i n i t i a l i z a t i o n
CS . I n i t () ; / / i n t e r n a l C a l l S t a c k i n i t i l i z a t i o n
Kernels2MBWListMap . I n i t () ; / / K e r n e l s <−−> MBWU Map
GetMainImg () ; / / p a r s e t h e commandline f o r pr imary image name

PIN In i tSymbo l s () ;
i f (P I N I n i t (a rgc , a rgv)) re turn Usage () ;
CkeckTS (T S I n t e r v a l = KnobSl i ce . Value ()) ;
Uncommon Func t ions F i l t e r =KnobIgnoreUncommonFNames . Value () ;
No Stack Flag = KnobIgnoreS tackAcces s . Value () ;

RTN AddIns t rumentFunct ion (U p d a t e C a l l S t a c k , 0) ;
I N S A d d I n s t r u m e n t F u n c t i o n (I n s t r u c t i o n , 0) ;
P IN AddFin iFunc t ion (F i n i , 0) ;
P I N S t a r t P r o g r a m () ; / / Never r e t u r n s
re turn 0 ;

}

Fig. 3. tQUAD main interface pseudocode.

After initializing the Pin run-time system, the command line
arguments of tQUAD are parsed to set primary parameters for
the profiling process. Three options are supported, namely, the
inclusion/exclusion of the local stack area memory accesses,
the time slice interval setting, and the exclusion of memory
bandwidth usage data caused by OS and library routine calls.
When mapping a kernel on a reconfigurable device, there may
be the possibility to allocate the corresponding local buffer on
the hardware as well, provided that enough space is available
for the size of needed memory block. In this case, all the local
memory accesses should be distinguished from external memory
accesses. In tQUAD, we provide the option to estimate the
memory bandwidth usage including or excluding the local stack
area accesses. Time slice interval is a key parameter which adjust
the detailing degree of the extracted memory bandwidth usage
information. With large time slices, we lose some information
and a coarser view of the memory bandwidth usage of kernels,
is obtained. Library and OS routines usually are not of interest
to the user, therefore, tQUAD has the option to exclude them
from the internal call stack.

In Pin, the API call to INS AddInstrumentationFunction()
allows a user to instrument programs based on a single instruc-
tion while the RTN AddInstrumentFunction() provides instru-
mentation capability at routine granularity. We use these two
API routines to set up calls to the instrumentation routines
Instruction() and UpdateCallStack(), respectively.

Figure 4 shows the body of the Instruction() instrumentation
routine. The Instruction() instrumentation routine sets up the call
to the analysis routine IncreaseRead() every time an instruction
that references memory read is executed. There is a similar
process in the case of memory write reference. Instruction() also

225220

VOID I n s t r u c t i o n (INS i n s , VOID ∗v)
{

I N S I n s e r t C a l l (i n s , IPOINT BEFORE , (AFUNPTR) I n c T o t a l I n s t C o u n t , IARG END) ;
i f (INS IsRe t (i n s)) / / r e t u r n from r o u t i n e s i s m o n i t o r e d

I N S I n s e r t P r e d i c a t e d C a l l (i n s , IPOINT BEFORE , (AFUNPTR) Return , IARG INST PTR ,
IARG END) ;

i f (! No Stack Flag) / / s t a c k a c c e s s e s ok
{

i f (INS IsMemoryRead (i n s) || INS IsS tackRead (i n s))
I N S I n s e r t P r e d i c a t e d C a l l (i n s , IPOINT BEFORE , (AFUNPTR) I n c r e a s e R e a d ,

IARG MEMORYREAD SIZE, IARG UINT32 , I N S I s P r e f e t c h (i n s) ,IARG END) ;
i f (INS HasMemoryRead2 (i n s))

I N S I n s e r t P r e d i c a t e d C a l l (i n s , IPOINT BEFORE , (AFUNPTR) I n c r e a s e R e a d ,
IARG MEMORYREAD SIZE, IARG UINT32 , I N S I s P r e f e t c h (i n s) ,IARG END) ;

i f (INS IsMemoryWrite (i n s) || I N S I s S t a c k W r i t e (i n s))
I N S I n s e r t P r e d i c a t e d C a l l (i n s , IPOINT BEFORE , (AFUNPTR) I n c r e a s e W r i t e ,

IARG MEMORYWRITE SIZE, IARG UINT32 , I N S I s P r e f e t c h (i n s) ,IARG END) ;
} / / end o f S t a c k i s ok !
e l s e / / i g n o r e s t a c k a c c e s s e s
{

i f (INS IsMemoryRead (i n s))
I N S I n s e r t P r e d i c a t e d C a l l (i n s , IPOINT BEFORE , (AFUNPTR) Inc reaseReadSP ,

IARG REG VALUE, REG STACK PTR ,IARG MEMORYREAD EA, IARG MEMORYREAD SIZE,
IARG UINT32 , I N S I s P r e f e t c h (i n s) ,IARG END) ;

/ / s i m i l a r c a l l s f o r NS HasMemoryRead2 & INS IsMemoryWri te (i n s)
} / / end o f i g n o r e s t a c k
/ / check f o r t h e s n a p s h o t p o i n t
I N S I n s e r t C a l l (i n s , IPOINT BEFORE , (AFUNPTR) S l i c e c h e c k p o i n t , IARG END) ;

}

Fig. 4. tQUAD instruction instrumentation pseudocode.

monitors instructions for the return from a function to maintain
the integrity of the internal call stack. When Pin starts the
execution of an application, the JIT calls Instruction() to insert
new instructions into the code cache. If the instruction references
memory or signals the return from a function, tQUAD inserts a
call to the corresponding analysis routine before the instruction,
passing the required arguments which can be the Instruction
Pointer (IP), the number of bytes read or written, and a flag
showing whether or not the instruction is a prefetch. The cor-
responding analysis routines return immediately upon detection
of a prefetch state for an instruction. INS InsertPredicatedCall()
injects the analysis routine and ensures that the analysis routine
is invoked only if the instruction is predicated true. When local
stack area memory accesses have to be excluded, the Stack
Pointer (REG STACK PTR) is also passed as an extra argument
to the analysis routine for subsequent processing. Furthermore,
Instruction() is responsible to initiate the time simulation and
memory bandwidth snapshot managements.

The code for the UpdateCallStack() instrumentation routine
is presented in Figure 5. The UpdateCallStack() instrumentation
routine sets up the call to the analysis routine EnterFC() every
time a function is called during program execution. This is
necessary to update the internal call stack. Since tQUAD ignores
the functions which are not in the main image file of the
program, flag is used as a signal to indicate the location of the
newly-called function. The name of the function, as reported by
Pin, is also passed for the internal call stack update process.

V. CASE STUDY

tQUAD was tested on a set of real applications. Nevertheless,
due to space limitations, the rest of this section presents the
detailed results of only one of them, the hArtes wfs audio
processing application. The main goal is to present a preliminary
approximation of the application behavior during its execution
in function of the memory bandwidth used by the kernels
through time. The extracted information can be further used for
critical decisions, such as HW/SW task partitioning, mapping
and scheduling, in design space exploration on heterogeneous

VOID U p d a t e C a l l S t a c k (RTN r t n , VOID ∗v)
{

boo l f l a g ;
char ∗rNtemp ;
s t r i n g rName ;
f l a g = (! ((IMG Name (SEC Img (RTN Sec (r t n))) . f i n d (mainImg)) == s t r i n g : : npos)) ;
rName=RTN Name(r t n) ;
rNtemp=new char [s t r l e n (rName . c s t r ()) + 1] ;
s t r c p y (rNtemp , rName . c s t r ()) ;
RTN Open (r t n) ;
/ / I n s e r t a c a l l a t t h e e n t r y p o i n t o f a r o u t i n e t o u pda t e C a l l S t a c k
R T N I n s e r t C a l l (r t n , IPOINT BEFORE , (AFUNPTR) EnterFC , IARG PTR , rNtemp , IARG BOOL ,

f l a g , IARG END) ;
RTN Close (r t n) ;

}

Fig. 5. tQUAD routine instrumentation.

reconfigurable architectures. The information can also be useful
to spot bottlenecks related to the memory usage on these systems
as well as to assist the application developers to revise the
application code to increase the performance gain on a particular
architecture.

The Wave Field Synthesis (WFS) [26] is a spatial audio ren-
dering technique characterized by the creation of virtual acoustic
environments. It produces artificial wavefronts synthesized by
a large number of individually driven speakers. Each of these
speakers is activated at the exact time when the desired virtual
wavefront passes through it to reproduce the original wavefront
of the audio source. The hArtes wfs application provided by
Fraunhofer IDMT [27] implements a self-contained wave field
synthesis system.

A. Experimental Setup

The experiments were executed on an Intel 64-bit Core 2
Quad CPU Q9550 @ 2.83GHz with a main memory of 8GB,
running Linux kernel v2.6.18-164.6.1.el5. The hArtes wfs source
code was compiled with gcc v3.4.6. To use the gprof [15]
general profiler, the program was compiled and linked with
the -pg profiling option enabled along with the -g option for
the debugging information to be available. The 64-bit version
of tQUAD profiler was used with the command line options
to include/exclude stack area memory access and to adjust the
time slice interval ranging from 5000 to 108 instructions per
time slice. The hArtes wfs runs in off-line mode. This means
that the input audio source is read from files instead of audio
devices. In all the experiments, we used one primary wavefront
source and thirty two secondary audio sources (speakers).

Instrumentation-based tools can considerably slow down the
execution of an application. Since memory read and write
instructions are executed frequently in multimedia applications,
the overhead of intercepting and checking these instructions is
very high. tQUAD instruments every load, store, call and return
instruction, which will result in a slowdown of the execution of
the hArtes wfs ranging from 37.2 X to 68.95 X compared to
native execution. The amount of introduced overhead is strongly
dependent on the time slice and the option to include/exclude
stack area accesses. Despite of the significant slowdown, the
execution time is comparable with the expected slowdown [28],
hence, acceptable for a realistic working set data.

B. Experimental Analysis

In this case study, we specifically aim to achieve the following
goals:

226221

• the extraction of information about the intensity of the
memory bandwidth usage for each kernel during its ex-
ecution. This information is critical in finding the potential
memory access related bottlenecks when the application
is executed on a particular heterogeneous reconfigurable
architecture;

• the discovery of the exact timing and activity span (starting
and ending points of a kernel execution). The extracted
information is required for task scheduling and mapping
on reconfigurable systems [29];

• the identification of the main phases in the application
based on the activity spans of the kernels. The kernels that
are active at the same time interval are possibly relevant
(communicating). This information can be utilized later in
the task clustering framework to efficiently partition the
application [22].

In order to achieve these goals, several experiments were
carried out. First, we used gprof to identify the top kernels in the
application. Then, QUAD is used in order to have an overview
of the amount of data communication between the kernels in
the application. Based on the extracted data, a discussion on the
potential memory access problems is subsequently presented.
We also profiled the QUAD-instrumented version of the hArtes
wfs application to understand the effect of data communication
in the overall contribution of each kernel in the application.
Finally, tQUAD profiler is used in a series of experiments to
extract the timing information for each kernel and to identify
the main phases in the application.

gprof profiling data. The hArtes wfs application consists of
64 functions. We used gprof to identify the top computation-
intensive kernels for further inspection. The run-time figures
that gprof provides are based on a sampling process. As a
consequence, they are subject to statistical inaccuracy, partic-
ularly if a function runs only for a small amount of time. The
sampling period, which is one hundredth of a second, is a good
indication of the accuracy of a function figure regarding its total
running time. If the total run-time of a program is large, a small
run-time value for a function indicates that the function used
an insignificant fraction of the whole execution time. We run
the program fifty times to gain more accuracy. The results are
summarized and presented in Table I.

wav store and fft1d are the top two kernels. These two
kernels take approximately sixty percent of the whole execution
time of the program. wav store saves the output audio signals
from buffers allocated in memory to an output file in the
wav format. fft1d implements a fast algorithm to compute the
one-dimensional Discrete Fourier Transform (DFT) using the
in-place (no additional memory allocation) butterfly Danielson-
Lanczos method.

QUAD profiling data. Table II provides an overview of the
amount of data communication between kernels in the form of
producer/consumer bindings. The results take into consideration
the inclusion and the exclusion of the stack area memory
accesses. By comparing the data extracted from the individual
cases, a lot of information can be derived. From Table II, it

TABLE I
FLAT PROFILE FOR THE hArtes wfs APPLICATION.

Kernel %time self calls self total
seconds ms/call ms/call

wav store 31.91 0.28 1 277.25 277.25
fft1d 28.23 0.25 984 0.25 0.25
DelayLine processChunk 14.23 0.12 493 0.25 0.38
bitrev 8.19 0.07 2015232 0.00 0.00
zeroRealVec 7.44 0.06 15782 0.00 0.00
AudioIo setFrames 4.01 0.03 493 0.07 0.07
perm 2.07 0.02 984 0.02 0.09
cadd 0.79 0.01 1009664 0.00 0.00
cmult 0.73 0.01 1009664 0.00 0.00
Filter process 0.71 0.01 493 0.01 0.73
wav load 0.44 0.00 1 3.80 3.80
Filter process pre 0.35 0.00 493 0.01 0.35
zeroCplxVec 0.28 0.00 495 0.00 0.00
r2c 0.16 0.00 490 0.00 0.00
c2r 0.14 0.00 493 0.00 0.00
AudioIo getFrames 0.14 0.00 489 0.00 0.00
ffw 0.08 0.00 2 0.35 0.35
vsmult2d 0.02 0.00 7026 0.00 0.00
calculateGainPQ 0.02 0.00 6994 0.00 0.00
PrimarySource deriveTP 0.02 0.00 236 0.00 0.00
ldint 0.01 0.00 1 0.10 0.10
% time is the percentage of the total execution time of the program used by the
function; self seconds is the number of seconds accounted for by the function alone;
calls is the number of times a function is invoked; self ms/call is the average number
of milliseconds spent in the function per call; total ms/call is the average number
of milliseconds spent in the function and its descendants per call.

can be seen that in most cases the ratio between the amount of
data produced/consumed for the stack inclusion to exclusion
is limited. However, it is not the case with zeroCplxVec
and zeroRealVec as the ratios are greater than 750 and 300,
respectively. This means that the mentioned kernels are nearly
reading all the time from the local memory. In other words,
they can be excellent candidates for hardware mapping provided
that the corresponding input buffer is also placed on the chip.
However, their intense communication with the memory for
writing data into the output buffers should not be ignored. The
output buffers should also be instantly accessible to fully exploit
the performance gain.

Approximately half of the giga bytes read by wav store is
from the stack memory area. This indicates that the data has
been produced inside the function for further internal processing.
However, the used memory addresses are almost the same.
This means that a small area is locally allocated inside the
function for temporary storage, compared to the global (non-
stack) memory (60 MB vs. KB). The need to fetch data out
of sixty five millions distinct locations into wav store can
pose a serious bottleneck. By examining the QDU (Quantitative
Data Usage) graph1 of the hArtes wfs, which is produced by
QUAD, other useful information can be derived. For example,
it turns out that nearly all the data produced by wav store are
used internally and the kernel discloses very limited amount
of data for the other kernels. This remark can also be verified
by the small number of Unique Memory Addresses (UnMAs)
used as output buffers compared to the huge amount of data
produced (hundreds of addresses per GBs). The fft1d case is
somehow different as the ratio of stack inclusion to exclusion is

1It is not possible to include the large graph in this paper due to space
limitations.

227222

TABLE II
SUMMARY OF THE DATA PRODUCED/CONSUMED BY THE KERNELS IN THE hArtes wfs APPLICATION.

Stack area accesses excluded Stack area accesses included
kernel IN IN UnMA OUT OUT UnMA IN IN UnMA OUT OUT UnMA
AudioIo getFrames 2082977 2003143 2030924 4178 2193001 2003319 2132616 4290
AudioIo setFrames 65642447 131797 64790862 64618668 66910617 131955 65875370 64618788
DelayLine processChunk 136426363 187911 130079532 162800 1207848481 188349 1199055238 163146
Filter process 76962891 65853 8367732 16562 166795095 66075 113578568 16744
Filter process pre 8159527 16623 8288564 16480 8310811 16807 8428110 16614
PrimarySource deriveTP 28658 271 9504 248 102558 785 81336 750
bitrev 147305084 145 64488030 86 1092514838 397 991569196 214
c2r 2062775 4231 2019224 4180 22360399 4433 22271396 4310
cadd 73825250 129 32309436 82 203213962 377 153474676 194
calculateGainPQ 654672 305 223904 270 2977380 1151 6046220 1384
cmult 73767500 137 32309306 74 235522840 393 185786118 194
fft1d 541111698 115143 348733474 86182 3377052372 115439 3178842792 86370
ffw 571706 4863 177374320 16640 832298 5496 177633766 17151
ldint 81 73 72 64 399 231 336 168
perm 15747216 55745 31271422 47762 190358486 55985 221582640 47914
r2c 2048600 4331 8028298 8458 26181770 4571 32117142 8600
vsmult2d 513564 159 224864 152 1414418 705 1807246 690
wav load 73166075 5606 118994504 2000393 148386954 6668 194027099 2001719
wav store 3407275698 64941803 1754503491 392 5946326334 64942676 4282480373 1115
zeroCplxVec 48499 171 8151616 41130 36631679 417 44664318 41282
zeroRealVec 1257818 219 65398908 140194 391633848 537 454905252 140406

IN represents the total number of bytes read by the function; IN UnMA indicates the total number of unique memory addresses used in reading; OUT
represents the total number of bytes read by any function in the application from memory locations that the specified function has previously written to;
OUT UnMA indicates the total number of unique memory addresses used in writing.

approximately ten. This indicates that most of the computations
are performed inside the kernel. It is also worth noting that, the
size of the locally allocated memory used for temporary results
is rather nominal due to the fact that the UnMAs reported in
the two cases remain identical. The immediate outcome of this
observation is that fft1d is a better candidate than wav store
for hardware mapping onto a reconfigurable device. This is
particularly true if there is an intention to map the corresponding
local buffers as well.

As a general remark from Table II, although all the kernels
are intensely communicating with memory, which is common
for A/V processing applications, the size of the memory
addresses used for data transfer is limited (100MB-1GB of
data vs. KBs of UnMAs). However, a thorough analysis of
the data in Table II discloses a critical potential bottleneck
arising from the memory access pattern of AudioIo getFrames
and AudioIo setFrames. In these kernels, the data transfer
is carried out via separate memory addresses. This is the
reason why the number of bytes and UnMAs are almost
identical in the corresponding columns. The case is quite
critical for the data written into the memory addresses in
AudioIo setFrames (more than 60 MB of data are saved
in distinct memory addresses). This behavior, undoubtedly,
will surpass any performance gain that can be achieved by
running the kernel in hardware mode, for example, on an
FPGA. As a matter of fact, AudioIo setFrames is responsible
for copying interleaved audio signal parts into relevant audio
frames in the memory. This is the reason why it is saving data
in completely separate locations. The detailed information in
the QDU graph can even allow us to trace back the source of
the data which is originating from DelayLine processChunk.
Later, AudioIo setFrames passes the data to wav store
to be processed. By examining Table I, we can see that
AudioIo setFrames is only contributing to four percent of the

TABLE III
FLAT PROFILE FOR QUAD-INSTRUMENTED VERSION OF hArtes wfs

APPLICATION.

kernel % time self seconds rank trend
wav store 33.69 346.93 1 ↔
fft1d 30.35 312.46 2 ↔
DelayLine processChunk 10.85 111.75 4 ↓
bitrev 0.42 4.33 11 �
zeroRealVec 3.14 32.30 5 ↓
AudioIo setFrames 11.19 115.18 3 �
perm 1.52 15.69 7 ↔
cadd 0.39 0.01 13 ↓
cmult 2.12 21.80 6 ↑
Filter process 0.67 7.04 8 ↔
% time is the percentage of the total execution time of the program used
by the function; self seconds is the number of seconds accounted for by
the function alone; rank is the position of the function among all the
kernels; trend shows the intensity to increase or decrease the function’s
contribution compared to the initial flat profile.

whole execution time. Nevertheless, with the huge impact of
the memory communication problem, it seems underestimated.
Unfortunately, general profilers like gprof are not able to
provide an accurate estimation of the memory access overhead
impact on the overall kernel performance when a program
is profiled. In fact, the timing information estimated by gprof
can not precisely describe the behavior of an application in
practice, particularly when there is an extreme interaction with
the memory system whose response time is influenced by some
critical parameters.

QUAD-instrumented profiling data. We profiled the QUAD-
instrumented version of the hArtes wfs to have a more practical
overview of the application’s behavior. Certainly, this version
tends to reveal the data communication overhead introduced by
accessing individual memory addresses. Furthermore, it stresses
costly global memory accesses in contrast to the less expensive
local memory references during the execution of the program.

228223

Table III summarizes the results for the previously identified top
ten kernels. The considerable increase in the timing contribution
of each kernel is accounted to the overhead introduced by the
instrumentation and analysis routines. Meanwhile, the ranking of
kernels in this version is somehow more representative of a real
execution, particularly on systems that have a very expensive
access cost for external memory compared to mapped on-chip
local buffers. The reason is that the instrumentation routine
simply discards the local stack area accesses and only upon
detection of a non-local memory access, an analysis routine is
called to handle a tracing process. It is worth noting that, due to
the long running time of the instrumented program (a couple of
hours) the statistics extracted from the flat profile show a high
level of accuracy. Only very slight deviations can be detected
in different runs. As expected, there is a substantial increase
in the contribution of AudioIo setFrames from four to eleven
percent. By profiling the QUAD-instrumented version of the
program, we can distinguish between local and global memory
accesses. We can also take into account the size of the memory
blocks used in the data transfers. For instance, bitrev and
DelayLine processChunk have more or less the same ratio of
including to excluding stack area accesses. bitrev shows a severe
drop on the execution time contribution (from 8.19 to 0.42).
However, this is not the case with DelayLine processChunk.
This observation is justified by looking at the reported UnMA
usage for the two kernels in Table II. bitrev only uses around
one tenth of a KB as buffer, whereas DelayLine processChunk
accesses about 180 KB of memory locations.

The kernels in the hArtes wfs show a huge diversity in the
number of times they are called, ranging from one to millions
of calls. The huge number of calls does not necessarily mean
that the corresponding kernel has a large contribution to the
total execution time. Instead, the highly-called kernels have
often quite a simple body. Anyhow, the case of the top kernel
in hArtes wfs is quite interesting: wav store is called only once
and it has the contribution of about one third for the whole
execution time. It clearly indicates that the kernel must be
active in a large time span during the execution of the program.

tQUAD profiling data. We utilized tQUAD to have a clear view
of the running times of the kernels in the program. The extracted
information is depicted in the form of running time graphs in
Figure 6. The x-axis is the execution time. Each unit represents
the time slice which is set to 108 instructions span. The y-
axis represents the intensity of the memory accesses for each
kernel at a specified time slice. The graphs for different kernels
are shown along the z-axis. This makes it easy to compare the
memory access behaviors of the kernels in each time slice. As
expected, wav store is called approximately in the middle of
the execution time. It is silent in the first half and it is the only
kernel active in the second half.

Figure 6 also shows the memory bandwidth usage of the
top ten kernels in the hArtes wfs related to the memory read
accesses including the stack area. Memory write accesses have
almost similar figures but the intensity of the data transfers is
less by at least a factor of two in most kernels. The time slice
interval is set to 108, i.e., a snapshot of the memory bandwidth

0
10

20
30

40
50

60
70

0

2

4

6

8

10

12

14

16

18

x 107

Time Slice

B
yt

e

Filter_process
cmult
cadd
perm
AudioIo_setFrames
zeroRealVec
bitrev
DelayLine_processChunk
fft1d
wav_store

Fig. 6. Memory bandwidth usage of the kernels in the hArtes wfs considering
only the read accesses including the stack area.

usage is recorded every hundred millions instructions. In total,
64 time slices are counted representing the execution of more
than six billion instructions for the completion of the program.
Setting the time slice interval to a large number causes the loss
of detailed information. This is evident in the density of the
produced graphs. Small time slice intervals are preferable for
more accurate estimations. Figure 7 depicts the relevant graphs
for the last ten kernels. Here, the time slice interval is set to
25 ∗ 106, which provides a more detailed view of the kernels’
running time. The second half of the total 255 time slices is
cut off, as no kernel but wav store is active during this period.
The graphs depict the memory bandwidth usage of the kernels
regarding the memory write accesses excluding the stack area.
The memory access patterns of all kernels are strictly regular
in hArtes wfs. This is common in nearly all the applications
from multimedia domain as the processing algorithms are well
formulated to work on predefined data blocks.

Phase identification. tQUAD recognizes five different phases
in the whole execution span of the hArtes wfs by the thorough
examination of different graphs. Several experiments were car-
ried out to extract the required measurements for each phase.
A summary of the results is presented in Table IV. This can
depict a clear image of the related active kernels in each phase
including their self contributions and memory access patterns
during the execution time of the program. The phases identified
are mainly based on the role of the active kernels in that
particular time span. Nevertheless, some kernels, such as bitrev,
are utilized in a more general way, which causes the phases
to overlap if we only consider the activity time span of the
kernels. We set the time slice interval to 5000 in order to have
accurate estimations of the memory bandwidth usage. However,
the data presented in Table IV are still prone to slight statistical
inaccuracy. Nevertheless, this inaccuracy should, in no sense,

229224

TABLE IV
PHASES IN THE EXECUTION PATH OF THE hArtes wfs APPLICATION.

average memory bandwidth usage maximum memory
phase % phase activity read access write access bandwidth usage (R+W) aggregate

phase span span kernel span stack incl.stack excl.stack incl.stack excl. stack incl. stack excl. MBW

initialization 53-144 0.007 ffw 92 1.8071 1.2422 0.4807 0.1811 2.4704 1.6376 2.6018ldint 1 0.0798 0.0162 0.0516 0.0176 0.1314 0.0338
wave load 552-14660 1.1103 wav load 14109 2.0993 1.0358 1.0355 0.9929 3.1566 2.0664 3.1566

wave propagation 540-274868 21.5891
vsmult2d 1570 0.1799 0.0655 0.1182 0.0503 0.3996 0.1548

1.4530calculateGainPQ 1600 0.3708 0.0815 0.2633 0.0847 0.7714 <0.2116
PrimarySource deriveTP 235 0.0870 0.0240 0.0547 0.0208 0.2820 0.0980

WFS main
processing

14663-
592803 45.4983

fft1d 278781 2.4179 0.3876 0.3501 0.1331 2.8738 <0.6428

<84.1862

DelayLine processChunk 115546 2.0859 0.2356 0.2339 0.1180 <3.3316 1.7050
bitrev 116755 1.8677 0.2521 0.7457 0.1934 <2.8778 0.4966

zeroRealVec 36304 2.1529 0.0145 0.7233 0.3610 <2.9386 <0.4028
AudioIo setFrames 616 21.5553 21.8035 21.0646 21.5860 <53.2686 <52.7330

perm 116776 0.3252 0.0280 0.0956 0.0545 <0.6556 <0.1466
cadd 41076 0.9882 0.3590 0.6686 0.2753 1.6946 0.6514
cmult 41073 1.1456 0.3590 0.7080 0.2753 1.8946 0.6594

Filter process 42583 0.7789 0.3609 0.1332 0.1141 <0.9768 0.5064
Filter process pre 1487 1.1113 1.6384 1.6267 1.6290 <3.3862 <3.3302

zeroCplxVec 4132 1.7693 0.0141 0.5913 0.3926 2.6874 <0.4710
r2c 2716 1.9250 0.1510 0.4474 0.2983 <2.9386 <0.5642
c2r 2318 1.9251 0.1774 0.3549 0.1769 2.9138 0.4658

AudioIo getFrames 502 0.8701 0.8296 0.8268 0.8137 1.7482 1.6866
wave save 592804-

1270674
53.3469 wav store 677871 1.7492 1.0033 0.8064 0.7765 2.7244 1.9044 2.7244

phase span indicates the starting and ending time slices for the phase; % phase span is the percentage of the phase time interval to the program whole execution time span;
activity span represents the number of time slices in which the kernel is active (accesses memory); memory bandwidth usage is measured in bytes per instruction; aggregate
MBW represents the summation of all kernels’ maximum memory bandwidth usages in the phase including the stack area accesses.

0
20

40
60

80
100

120
140

0

1

2

3

4

5

6

7

8

9

x 104

Time Slice

B
yt

e

ldint
PrimarySource_deriveTP
calculateGainPQ
vsmult2d
ffw
AudioIo_getFrames
c2r
r2c
zeroCplxVec
Filter_process_pre_

Fig. 7. Memory bandwidth usage of kernels in hArtes wfs considering only
the write accesses excluding the stack area.

distort the overall behaviors of the kernels. 1270684 time slices
were measured in total.

The phase span column in Table IV indicates the earliest
starting point and the latest ending point in which a kernel in
the phase is communicating with the memory. It should be noted
that, we only consider the kernels previously selected and not
all the functions in the hArtes wfs. Moreover, there are cases in
which kernels are activated in a short period of time outside the
identified span. We merely ignore these cases with respect to
the overall memory access pattern of the kernels in a phase.

As an example, r2c gets active in the 145th time slice for
a very short time and then becomes silent until the 14663th
time slice. Furthermore, the phase span does not necessarily
mean that all the kernels within that phase are active through
the whole time slices. They can be quite active, such as fft1d
or less active, such as AudioIo getFrames. This behavior has
nothing to do with the intensity of the memory communications
of a kernel. As an example, perm is moderately active in
the fourth phase. However, the memory communication is not
intense at all. On the other hand, AudioIo setFrames is only
active in rather small time intervals but acts truly intensive
in memory referencing. tQUAD is capable of providing the
detailed information about the exact time intervals in which
a kernel is communicating with the memory. It also analyzes
the data to identify the boundaries of potential phases. Since it
was not possible to present in this paper the detailed profiled
information due to space limitations, only a summary of the
results is presented.

The average memory bandwidth usage is calculated over
several passes with different time slices. The data are normalized
as number of bytes-per-instruction. In this way, it is possi-
ble to have a general estimation of the kernel’s architecture-
independant intensity. If a more specific unit of measurement is
needed, additional parameters for the target architecture should
be provided for tQUAD, such as the number of PE cycles
required to execute each instruction. It is also possible to derive
different measurement units, such as bytes-per-cycle or bytes-
per-second. The maximum memory bandwidth usage represents
the maximum bytes-per-instruction measured in the peak of
the communication with memory counting both read and write
accesses. For some of the kernels in Table IV, the upper bounds
are specified. This is due to the fact that slight inconsistencies
in the measurements of the overall time slices were detected in

230225

the experiments. Moreover, the detailed information about the
timings of the maximum bandwidth usage is not presented here.

The initialization phase runs only for a very short time
interval, which makes it rather uninfluential in the overall
analysis. The second phase contains only one kernel which is
active throughout the whole time span. The kernels appearing
in the third phase are related to the implementation of a MIMO
delay line and wave propagation computations for an array
of speakers. Although the activity span of the kernels in the
this phase cover more than one fifth of the whole execution
time, they have a nominal share of the memory bandwidth
traffic. The main WFS processing is carried out in the fourth
phase, during which, fourteen kernels are active. As expected,
this phase has the biggest share of the whole memory band-
width traffic. Filter process pre has almost identical amount
of memory bandwidth usage in the cases of including and
excluding the stack area accesses. AudioIo setFrames and
AudioIo getFrames have similar trait. This also conforms to
the information presented in Table II for the mentioned kernels.
As mentioned before, AudioIo setFrames shows a completely
unique attribute among all the kernels in the hArtes wfs ap-
plication. The intensity of the maximum memory bandwidth
usage for this particular kernel reaches over 50 bytes per
instruction, while for all the others, it is at most 3 bytes per
instruction. Some kernels, such as DelayLine processChunk,
show a severe drop in the memory bandwidth usage by a factor
of 10 when excluding stack area accesses. In the cases of
zeroRealVec and zeroCplxVec, the factor is more than 125.
Further investigation of the information in the flat profile (not
presented here) also reveals that, by excluding the stack area
accesses, the activity spans of these kernels are reduced by a
factor of 2 and 8, respectively. wav store is the only kernel in
the last phase. It is the only kernel that is active for more than
half of the whole execution time span and, yet, it can not be
exclusively as influential as the main WFS processing phase.

The information about the phases and the active kernels
in each phase, along with the quantitative data of memory
access behavior of each kernel, provide valuable clues for
the clustering framework in the DWB to partition the whole
application with respect to certain criteria. Most importantly,
some relevant kernels are clustered together in a sense that the
intra-cluster communication is maximized whereas the inter-
cluster communication is minimized.

VI. CONCLUSION

One of the major challenges in computing is the well-
known processor/memory bottleneck. As a result, tools for the
analysis of the task execution and tools for the analysis of
the memory usage become vital. In this paper, we presented
tQUAD, a memory bandwidth usage analysis tool which is
capable of providing both information. Via a detailed analysis
and classification of tasks into specific phases, the tool provides
a detailed analysis of both the execution and the memory
bandwidth usage for all the tasks. The proposed tool, first in
its kind, is presented together with a thorough analysis of a
case study form the multimedia domain. In future work, we are

planning to utilize the information provided by the tool for task
clustering in heterogeneous reconfigurable systems.

ACKNOWLEDGMENT

This research is partially supported by Artemisia iFEST
project (grant 100203), Artemisia SMECY (grant 100230), and
FP7 Reflect (grant 248976).

REFERENCES

[1] F. Balarin, L. Lavagno, P. Murthy, and A. Sangiovanni-vincentelli,
“Scheduling for embedded real-time systems,” IEEE Design and Test of
Computers, vol. 15, pp. 71–82, 1998.

[2] K. Ramamritham and J. A. Stankovic, “Scheduling algorithms and oper-
ating systems support for real-time systems,” Proc. of the IEEE, vol. 82,
no. 1, pp. 55–67, 1994.

[3] A. Ahmadinia, C. Bobda, D. Koch, M. Majer, and J. Teich, “Task schedul-
ing for heterogeneous reconfigurable computers,” in Proc. of SBCCI ’04,
2004, pp. 22–27.

[4] S. A. Ostadzadeh, R. Meeuws, C. Galuzzi, and K. Bertels, “QUAD - a
memory access pattern analyser,” in Proc. of ARC 2010, 2010, pp. 269–
281.

[5] K. Bertels, et al., “Developing applications for polymorphic processors:
the delft workbench,” Tech. Rep., January 2006.

[6] S. Vassiliadis, et al., “The molen polymorphic processor,” IEEE Transac-
tions on Computers, vol. 53, no. 11, pp. 1363–1375, 2004.

[7] R. Wilhelm, et al., “The worst-case execution-time problem—overview of
methods and survey of tools,” ACM Trans. Embed. Comput. Syst., vol. 7,
no. 3, pp. 1–53, 2008.

[8] aiT, http://www.absint.com/ait/.
[9] Bound-T, http://www.tidorum.fi/bound-t.

[10] X. Li, Y. Liang, T. Mitra, and A. Roychoudhury, “Chronos: A timing
analyzer for embedded software,” vol. 69, no. 1-3, 2007, pp. 56–67.

[11] Heptane WCET analysis tool, http://www.irisa.fr/aces/work/heptane-demo.
[12] SWEdish Execution Time tool, http://www.mrtc.mdh.se/projects/wcet/

sweet.html.
[13] RapiTime, http://www.rapitasystems.com.
[14] Vienna real-time systems group, http://www.vmars.tuwien.ac.at.
[15] S. L. Graham, P. B. Kessler, and M. K. Mckusick, “Gprof: A call graph

execution profiler,” SIGPLAN Not., vol. 17, no. 6, pp. 120–126, 1982.
[16] Intel’s vTune, http://software.intel.com/en-us/intel-vtune.
[17] AMD CodeAnalyst, http://developer.amd.com/cpu/codeanalyst.
[18] B. Cmelik and D. Keppel, “Shade: A fast instruction-set simulator for

execution profiling,” 1993, pp. 128–137.
[19] R. J. Meeuws, K. Sigdel, Y. D. Yankova, and K. Bertels, “High level

quantitative interconnect estimation for early design space exploration,” in
Proc. of ICFPT ’08, December 2008, pp. 317–320.

[20] S. A. Ostadzadeh, R. J. Meeuws, K. Sigdel, and K. Bertels, “A cluster-
ing framework for task partitioning based on function-level data usage
analysis,” in Proc. of FPGA ’09, 2009, pp. 279–279.

[21] C. Galuzzi, “Automatically fused instructions - algorithms for the cus-
tomization of the instruction-set of a reconfigurable architecture,” Ph.D.
dissertation, TU Delft, May 2009.

[22] S. A. Ostadzadeh, R. J. Meeuws, K. Sigdel, and K. Bertels, “A multipur-
pose clustering algorithm for task partitioning in multicore reconfigurable
systems,” in Proc. of CISIS, 2009, pp. 663–668.

[23] E. M. Panainte, K. Bertels, and S. Vassiliadis, “The molen compiler for
reconfigurable processors,” ACM Trans. Embed. Comput. Syst., vol. 6,
no. 1, 2007.

[24] Y. D. Yankova, et al., “Dwarv: Delftworkbench automated reconfigurable
VHDL generator,” in Proc. of FPL ’07, 2007, pp. 697–701.

[25] C.-K. Luk, et al., “Pin: building customized program analysis tools with
dynamic instrumentation,” in Proc. of PLDI ’05, 2005, pp. 190–200.

[26] A. J. Berkhout, D. de Vries, and P. Vogel, “Acoustic control by wave field
synthesis,” The Journal of the Acoustical Society of America, vol. 93, no. 5,
pp. 2764–2778, 1993.

[27] Fraunhofer Institute for Digital Media Technology, http://www.idmt.
fraunhofer.de/eng/research topics/wave field synthesis.htm.

[28] G. Uh, R. Cohn, B. Yadavalli, R. Peri, and R. Ayyagari, “Analyzing
dynamic binary instrumentation overhead,” in WBIA Workshop at ASPLOS,
2006.

[29] Y. Lu, T. Marconi, K. Bertels, and G. Gaydadjiev, “A communication aware
online task scheduling algorithm for FPGA-based partially reconfigurable
systems,” in Proceedings of IEEE Symposium on FCCM, May 2010, pp.
65–68.

231226

