
Heterogeneous Hardware/Software Acceleration of
the BWA-MEM DNA Alignment Algorithm

Nauman Ahmed∗, Vlad-Mihai Sima†, Ernst Houtgast†, Koen Bertels∗ and Zaid Al-Ars∗

∗Computer Engineering Lab, Delft University of Technology, Mekelweg 4, 2628 CD Delft, The Netherlands
†Bluebee, Molengraaffsingel 12–14, 2629 JD Delft, The Netherlands

E-mail: ∗{n.ahmed, k.l.m.bertels, z.al-ars}@tudelft.nl, †{vlad.sima, ernst.houtgast}@bluebee.com

Abstract—The fast decrease in cost of DNA sequencing has
resulted in an enormous growth in available genome data,
and hence led to an increasing demand for fast DNA analysis
algorithms used for diagnostics of genetic disorders, such as
cancer. One of the most computationally intensive steps in the
analysis is represented by the DNA read alignment. In this
paper, we present an accelerated version of BWA-MEM, one of
the most popular read alignment algorithms, by implementing
a heterogeneous hardware/software optimized version on the
Convey HC2ex platform. A challenging factor of the BWA-
MEM algorithm is the fact that it consists of not one, but
three computationally intensive kernels: SMEM generation, suffix
array lookup and local Smith-Waterman. Obtaining substantial
speedup is hence contingent on accelerating all of these three
kernels at once. The paper shows an architecture containing
two hardware-accelerated kernels and one kernel optimized in
software. The two hardware kernels of suffix array lookup
and local Smith-Waterman are able to reach speedups of 2.8x
and 5.7x, respectively. The software optimization of the SMEM
generation kernel is able to achieve a speedup of 1.7x. This
enables a total application acceleration of 2.6x compared to the
original software version.

I. INTRODUCTION

With the emergence of low cost high throughput next-
generation DNA sequencing methods, it is now possible to
diagnose many genetic disorders, e.g. cancer, with very high
resolution. In DNA sequencing, DNA is broken down into
small fragments which are then sequenced using sequencing
machines that produce hundreds of millions of short DNA
reads. These short reads are then processed to identify the
differences between the DNA under test and a reference
genome. Processing all these millions of short reads is a
very time consuming process. Therefore, acceleration and
optimization of the analysis time is needed to make DNA
diagnostics feasible for a large population.

Read alignment is a core step in DNA analysis, which is the
process of comparing two DNA strings to identify the amount
of similarity between them. In read alignment, a short read
(with a typical length of 100 bases) is aligned against a huge
reference genome of for example nearly 3 billion bases for the
human genome. The Smith-Waterman algorithm [1], used as a
standard for sequence alignment, has O(n ·m) complexity to

Acknowledgement—This work is supported by the Faculty Development
Program of the University of Engineering and Technology Lahore, Pakistan

align two sequences of length n and m. However, using Smith-
Waterman for the alignment process is too time consuming
for any practical purposes [2]. For this reason, many new read
aligners have emerged in the past few years.

With the continued improvements in sequencing technolo-
gies, sequencing read lengths continue to increase gradually.
BWA-MEM has been designed to perform efficient and accu-
rate alignment of longer reads, making it one of the most pop-
ular alignment algorithms available [3]. However, BWA-MEM
is one of the most computationally intensive algorithms needed
for DNA analysis. In this work, we discuss the acceleration
of BWA-MEM using both hardware and software techniques.
This is the first acceleration of BWA-MEM reported in the
literature. In this work, we accelerate BWA-MEM on the
Convey HC2ex platform, consisting of an 8-core Intel Xeon
based host processor connected to a co-processor with four
Xilinx Virtex-6 FPGAs.

No work has been reported in the literature about the
acceleration of BWA-MEM. Numerous works are published
on the acceleration of other read alignment algorithms. In [4]
is shown to be accelerated on Convey HC2ex platform. BWA-
ALN also has an accelerated version on Convey HC1 [5].
Both algorithms are different from BWA-MEM and are not
suitable for longer reads. The seed generation stage of the
CUSHAW2 [6] is similar to BWA-MEM. It computes maximal
exact matches instead of super maximal exact matches and
uses a different kind of index for which it requires two
passes to find all the seeds as compared to only one pass
in BWA-MEM. CUSHAW2 has a GPU accelerated version
called CUSHAW2-GPU [7].

The paper proposes to split BWA-MEM in different ex-
ecution stages, that are then optimally mapped to CPU or
FPGA. The algorithm has a lot of DRAM accesses causing
large memory waits. We circumvent this problem in software
by improving the algorithm to reduce the number of DRAM
accesses. We also address this problem in hardware by coa-
lescing the memory accesses. The compute intensive parts of
the application are accelerated on the FPGA by exploiting the
available parallelism. BWA-MEM is segmented in such a way
that enables the parallel execution of host and coprocessor to
maximize throughput. With the help of these hardware and
software optimizations we are able to achieve a 2.6x speedup
for the whole application. A large part of the application is

Reference

Read

Seeding

Reference

Read

Extension

Fig. 1. A seed is first found (rectangular box) and then extended (shaded box).

TABLE I
PERCENTAGE EXECUTION TIME OF BWA-MEM STAGES

Execution stage % Execution time Bound
SMEM generation 31.78 - 38.88% Memory
Suffix array lookup 6.65 - 14.15% Memory

Seed extension 34.57 - 42.87% Computation
Output 7.42 - 11.16% Memory

Miscellaneous 1.33 - 6.04% –

written in Xilinx Vivado HLS to reduce the design time.
The rest of the paper is organized as follows. Section II

summarizes the BWA-MEM algorithm and the profiling re-
sults. Section III describes the implementation details of the
software optimizations of the SMEM generation. Section IV
and V present the hardware acceleration of the suffix array
lookup and the local Smith-Waterman stages, respectively.
Results are presented in Section VI. Conclusions and future
work is discussed in Section VII.

II. BWA-MEM ALGORITHM

Most of the current read aligners (including BWA-MEM)
are based on the observation that two DNA sequences of
the same species are likely to contain short highly matched
substrings. Such kind of aligners follow a seed-and-extend
strategy, which consists of two steps (1) seeding and (2)
extension. The seeding step is to first locate the regions within
the reference genome where a substring of the short read is
highly matched. This substring is known as a seed. A seed
could be an exact match or an inexact match with certain
allowed number of differences. After seeding the remaining
read is aligned to the reference genome around the seed in the
extension step using Smith-Waterman or a Smith-Waterman
like algorithm. BWA-MEM only finds exact matches while
seeding.

A. Execution stages

In BWA-MEM, before starting the read alignment, an index
of the reference genome is created. This is a one time step and
hence not on the critical execution path. In our discussion
we assume that an index is already present. The different
execution stages of BWA-MEM read alignment algorithm are
described below. The first two stages belong to seeding.

SMEM generation: BWA-MEM first computes the so-called
super-maximal exact matches (SMEMs). An SMEM is a
substring of the read that is exactly matching in the reference
DNA and cannot be further extended in either directions.
Moreover, it must not be contained in another match.

Suffix array lookup: The suffix array lookup stage is
responsible for locating the actual starting position of the
SMEM in the reference genome. An SMEM with its known
starting position(s) in the reference genome forms seed(s) in
the reference.

Seed extension: Seeds are substrings of the read that are
exactly matching in the reference genome. As shown in
Figure 1, to align the whole read against the reference genome,
these seeds are extended in both directions. This extension is
performed using a dynamic programming algorithm based on
Smith-Waterman.

Output: The read alignment information is written to a file
in the SAM (sequence alignment/map) format [8].

B. Profiling results

We have profiled the BWA-MEM software version 0.7.8 to
find the percentage execution times of different stages using
gprof. Table I shows the division of total execution time
among the different execution stages, taking a number of input
data sets representing different read lengths into consideration.
These datasets are acquired from GCAT (Genome Comparison
and Analytic Testing) and aligned against the UCSC hg19
human reference genome [9]. The results show that there is
no dominant execution stage which means that it is essential to
accelerate all the stages to achieve a good overall speedup. The
table also shows that the most of the stages of the application
are memory bound.

In the following sections, we show the software optimization
of the SMEM generation step and the hardware acceleration
of the suffix array lookup and seed extension. Compared with
the software all these stages can execute in parallel, which
allows us to hide some of the computation time by pipelining
the queries.

III. OPTIMIZATION OF SMEM GENERATION

A. Theoretical background

This is the first execution stage of BWA-MEM. As described
above, the task is to find SMEMs. BWA-MEM uses the FMD-
index of the reference genome to find the SMEMs. Let T and
Y be two sequences of symbols. In DNA analysis, T is the
reference DNA while Y is a substring of the read, and the
symbols are drawn from an alphabet set Σ consisting of only
four symbols i.e. Σ = {a, t, c, g}. The FMD-index is a set
of data structures based on the Burrows-Wheeler transform of
T ⊕ T where ⊕ is the concatenation operator. T is Watson-
Crick reverse complement of T . It is formed by first reversing
the string T and then replacing symbol a with t and vice

versa, and replacing g with c and vice versa. The FMD-
index can locate all occurrences of Y in the reference genome
T in time proportional to the length of Y . Let SA be the
lexicographically sorted suffix array of T ⊕ T , where SA(i)
represents the ith suffix. Then the suffix array interval of Y
is defined as [Il(Y), Iu(Y)], where

Il(Y) = min{i : Y is the prefix of SA(i)}
Iu(Y) = max{i : Y is the prefix of SA(i)}

Il(Y) and Iu(Y) are known as the lower and upper limit
of the interval, respectively. In other words, the suffix array
interval is the set of all those indices of the sorted suffix array
in which Y is the prefix. As the suffix array is lexicographi-
cally sorted, all these indices will occur together and we only
need to know the first and the last index, i.e. Il(Y) and Iu(Y),
respectively. If Y is not present in the reference genome then
[Il(Y), Iu(Y)] is an empty set and if Y is an empty string
then [Il(Y), Iu(Y)] = [1, 2|T |]. The size of the interval can be
defined as

Is(Y) = Iu(Y)− Il(Y) + 1 (1)

If Y is not present in the reference genome Is(Y) is less than
or equal to zero. In [10], it is shown that FMD-index can be
used to find the bi-interval of a given DNA string Y . The bi-
interval is defined as [Il(Y), Il(Y), Is(Y)]. Y is Watson-Crick
reverse complement of Y . Once the bi-interval of Y is known,
the suffix array interval can be found using equation 1. These
suffix array intervals are used in the next execution stage (the
suffix array lookup stage) to find the exact starting position of
Y in the reference genome.

B. SMEM computation in BWA-MEM

An SMEM satisfies three conditions 1) it is an exact match,
2) the match cannot be extended in either directions, and 3)
it is not contained in any other match. Algorithm 1 shows the
method used in BWA-MEM to find all the SMEMs that include
the base at position i0 of the read P . The complete SMEM
computation algorithm can be found in the literature [10].

The algorithm starts from the base at i0 and first calculates
the bi-interval of the string P [i0] and stores it in Temp array.
This calculation is performed by calling the FMDINDEX
function. The first while loop it moves in the forward
direction and adds the next base to the previous string P [i0],
and calculates the bi-interval of the string P [i0]P [i0 + 1]. The
forward parameter passed to the FMDINDEX indicates the
direction of adding the base to the previous string. If this
string exists in the reference genome T and the bi-interval
is not the same as for P [i0], its bi-interval is saved in Temp.
In this way the algorithm keeps on adding the bases to the
previous string and storing the resulting bi-interval in Temp
until the string does not exist in the reference genome, i.e.
s ≤ 0. Thus the Temp array contains the bi-intervals of a
set of overlapping strings, all starting from i0. In the second
while loop the algorithm picks these strings one by one and
enlarges them in the reverse direction by adding bases that are
behind i0. For each string its keeps on adding the bases in the

backward direction until the resulting string no more exists in
the reference genome. The bi-interval of the last hit string is
then added to SMEMs array if the length of the string is at least
a minimum required. Hence, SMEMs keeps the bi-intervals of
the SMEMs found.

One limitation of this algorithm is the accesses to the FMD-
index. Every time a base is added in either the forward or
backward direction, the FMD-index is accessed. FMD-index
is a large data structure having a default total size of 1.5
GB. These accesses to the FMD-index are not local and
the difference between the memory addresses of consecutive
accesses is huge as studied in [11]. This causes a large amount
of data cache and data TLB misses. Most of the accesses to
FMD-index end up in the DRAM. Algorithm 1 has a large
execution time because it is mostly waiting for the memory
request to complete. In our work we speed up the algorithm
by reducing the number of FMD-index accesses.

Our improvement is based upon two observations. 1) The
algorithm first computes an SMEM and then checks whether
its length is greater than the minimum required. In this way,
it backward enlarges even those strings which cannot have the
total final length greater than the minimum required. 2) All
the computed SMEMs have to include the base at position
i0 which means that they overlap with each other and share a
common substring. If the bi-interval of this common substring
is already known then it can be enlarged to find the SMEMs
with less number of FMD-index accesses.

Algorithm 1: SMEM computation
Input: String P , start position i0, length of reference genome |T |, and minimum

required SMEM length min smem len
Output: Set of bi-intervals [k, l, s] of the SMEMs covering the base at i0

1 Function COMPSMEM(P, i0, |T |,min smem len) begin
2 Initialize [k, l, s] as [1, 1, 2|T |]
3 Initialize Temp, Fwd len and SMEMs as empty arrays
4 [k, l, s]← FMDINDEX([k, l, s], P [i0], forward)
5 Append [k, l, s] to Temp
6 i← i0 + 1
7 x← 1
8 Fwd len[x]← 1
9 x← x + 1

10 while i ≤ |P | and s > 0 do
11 [k, l, s] ← FMDINDEX([k, l, s], P [i], forward)
12 if s > 0 and [k, l, s] 6= Temp[x− 1] then
13 Append [k, l, s] to Temp
14 Fwd len[x]← i− i0 + 1
15 x← x + 1

16 i← i + 1

17 x← 1
18 while x ≤ |Temp| do
19 [k, l, s]← Temp[x]
20 for i← i0 − 1 to 1 do
21 [k, l, s]← FMDINDEX([k, l, s], P [i], backward)
22 if s ≤ 0 then
23 back len← (i0 − i− 1)
24 smem len← Fwd len[x] + back len
25 if smem len ≥ min smem len then
26 Append [k, l, s] to SMEMs

27 break

28 x← x + 1

29 return SMEMs

Algorithm 2: Optimized SMEM computation
Input: String P , start position i0, length of reference genome |T |, minimum

required SMEM length min smem len, a parameter to turn on-off the
optimization max fwd distance

Output: Set of bi-intervals [k, l, s] of the SMEMs covering the base at i0
1 Function

COMPSMEMOPT(P, i0, |T |,min smem len,max fwd distance)
begin

2 Initialize [k, l, s] as [1, 1, 2|T |]
3 Initialize Temp, Fwd len,Back intv and SMEMs as empty arrays
4 [k, l, s]← FMDINDEX([k, l, s], P [i0], forward)
5 Append [k, l, s] to Temp
6 i← i0 + 1
7 x← 1
8 Fwd len[x]← 1
9 x← x + 1

10 while i ≤ |P | and s > 0 do
11 [k, l, s] ← FMDINDEX([k, l, s], P [i], forward)
12 if s > 0 and [k, l, s] 6= Temp[x− 1] then
13 Append [k, l, s] to Temp
14 Fwd len[i]← i− i0 + 1
15 x← x + 1

16 i← i + 1

17 x← 1
18 start← i0
19 stop← i0
20 while x ≤ |Temp| do
21 [k, l, s]← Temp[x]
22 if Back intv is empty or stop− start ≥ max fwd dist

then
23 ([k, l, s], back len,Back intv)←

BACKENLARGE([k, l, s], P, i0)
24 start← i0 + Fwd len[x]
25 stop← i0 + Fwd len[x + 1]

26 else
27 stop← Fwd len[x]
28 ([k, l, s], back len)←

FWDENLARGE([k, l, s], P, start, stop,Back intv)

29 smem len← Fwd len[x] + back len
30 if smem len ≥ min smem len then
31 Append [k, l, s] to SMEMs

32 x← x + 1
33 max len← Fwd len[x] + back len
34 while max len < min smem len do
35 x← x + 1
36 max len← Fwd len[x] + back len

37 return SMEMs

Algorithm 3: Backward enlargement
Input: The bi-interval [k, l, s], string P , start postion i0, array to store

intermediate intervals Back intv
Output: Bi-interval [k, l, s], length of backward string back len

1 Function BACKENLARGE([k, l, s], P, i0) begin
2 Initialize Back intv as empty array
3 back len← 0
4 for i← i0 − 1 to 1 do
5 [k, l, s]← FMDINDEX([k, l, s], P [i], backward)
6 if s > 0 then
7 Append [k, l, s] to Back intv
8 back len← back len + 1

9 else
10 return ([k, l, s], back len,Back intv)

Algorithm 4: Forward enlargement
Input: The bi-interval [k, l, s], string P , start and stop index for enlargement

start stop respectively, array of intermediate intervals Back intv
Output: Bi-interval [k, l, s], length of backward string back len

1 Function FWDENLARGE([k, l, s], P, start, stop,Back intv) begin
2 back len← |Back intv|
3 for x← |Back intv| to 1 do
4 for i← start to stop do
5 [k, l, s]← FMDINDEX([k, l, s], P [i], forward)
6 if s < 0 then
7 break

8 else
9 if i = stop then

10 return ([k, l, s], x)

C. Our optimization

Algorithm 2 to 4 present our optimized implementation of
the SMEM generation. We have improved the algorithm of
the second while loop shown in a box in Algorithm 2.
Calculation of the Temp array is same as in the original
algorithm. Based on the observations discussed in the previous
section we have made two improvements in the original
algorithm.

1) If we are certain that after the backward enlargement
of a bi-interval, the total length of the resulting exact match
cannot be larger than the minimum required, we skip the
backward enlargement of the bi-interval. This will avoid
wasteful accesses to the FMD-index. This is implemented in
lines 33 to 36 in Algorithm 2.

2) The SMEMs have to include the base at position i0. All
the strings covering the base at position i0 can be visualized as
a concatenation of two strings. One that contains the symbols
at read positions greater or equal to i0 and the other containing
the symbols at read positions less than i0. We may call
them as forward string and backward string respectively. The
forward string of an SMEM is found in the first while
loop of Algorithm 1 or 2 (both are the same). Therefore,
before starting the second loop we know the forward strings
of all possible SMEMs. If the SMEMs corresponding to
the bi-intervals in SMEMs array are numbered as SMEMi,
SMEMi+1 . . . SMEMi+r . . ., where SMEMi+1 is computed
after SMEMi, then

SMEMi = P [i0 −mi] . . . P [i0 − 1]P [i0]P [i0 + 1] . . . P [i0 + ni]

SMEMi+r = P [i0 −mi+r] . . . P [i0 − 1]P [i0]P [i0 + 1] . . . P [i0 + ni+r]

Now we will show that how our optimized method calculates
SMEMi+r using SMEMi. The first while loop mandates that
ni+r > ni. Due to this and the reason that both SMEMs
must not contain each other (condition 3 for an SMEM),
mi+r < mi. In our technique, we compute SMEMi using
the original method but while doing that we store the bi-
intervals of all the intermediate strings formed during the
backward enlargement in the Back intv array. All these in-
termediate strings have the same forward string, but their

Fig. 2. Percentage reduction in FMD-index accesses (left Y-axis) and the
corresponding speedup in SMEM generation (right Y-axis).

backward strings are extended by only one symbol. Hence,
while computing SMEMi we keep track of the bi-intervals of
all the strings: from P [i0 − 1]P [i0]P [i0 + 1] . . . P [i0 + ni]
to P [i0 − mi] . . . P [i0 − 1]P [i0]P [i0 + 1] . . . P [i0 + ni].
As mi+r < mi, one of these strings is always P [i0 −
mi+r] . . . P [i0 − 1]P [i0]P [i0 + 1] . . . P [i0 + ni] which is a
substring of SMEMi+r and contains the full backward string
of SMEMi+r but partial forward string (ni+r > ni). In our
optimized version, this substring is enlarged in the forward
direction by (ni+r−ni) bases to find SMEMi+r. To compute
SMEMi+r using this method, total number of accesses to the
FMD-index are ni+r+[(mi−mi+r)·(ni+r−ni)] as compared
to ni+r+mi+r in the original algorithm. The first term for both
these methods is the same and it is observed that on the aver-
age, for small r, the second term of our technique is smaller
than the second term of the original method, i.e. for small r,
(mi−mi+r) · (ni+r−ni) < mi+r. In our implementation we
apply our optimization if ni+r−ni ≤ max fwd dist (default
value 3), otherwise the computation is completed using the
original method.

The results of our optimization are shown in Figure 2. The
read lengths are given in number of base pairs (bps), which is
the same as number of bases. The plot shows that for different
read lengths the reduction in FMD-index accesses is 44-
45% and the corresponding speedup varies from 1.66-1.73x.
Our optimization only relies on algorithmic improvement and
has limited overhead as we only need one extra array i.e.
Back intv. The maximum possible length of this array is equal
to the read length.

IV. SUFFIX ARRAY LOOKUP ACCELERATION

The suffix array lookup is taking around 15% of the
computation time of the whole application. The objective is to
retrieve the index in the reference string of one suffix string.
In order to reduce the memory required for this, partial suffix
and occurrence arrays are stored, and the inverse compressed
suffix array (inverse CSA) is used [12]. The inverse CSA is
given by:

ψ−1(i) = C(B[i]) +O(B[i], i)

Indexes to be processed

Indexes under process

BWT_SA core

D
D

R
 m

e
m

o
ry

 c
o
n

tr
o
lle

rs

Top
Initial
Indexes

Occurence
array

BWT
array

Writer

Stream of kStream of kStream of k

Suffix
array

Result
indexes

Indexes under process

BWT_SA core

Indexes under process

Core

S(k)

Fig. 3. Suffix array lookup architecture

where B is the BWT string, C is the count array and O is
the occurrence array. The above equation is applied until the
result is a factor of 32 and then the suffix can be computed
using:

S(k) = S((ψ−1)(j)(k)) + j

This implies that a series of memory reads are done to the
B and O arrays. Due to their interdependency, these reads can
not be prefetched by a general purpose cache. The result is
that when running this function on the CPU, most of the time
will be spent waiting for memory.

The hardware implementation can avoid waiting for the
memory by using two main ideas: batching the input data
and pipelining the memory reads. The batching will increase
the number of memory reads that can be performed, while the
pipelining will hide the memory latency. We implemented an
architecture where indexes are sent to a number of hardware
cores, and each hardware core processes a number of reads in
a pipeline fashion. For the Convey platform, we implement
a pipeline of 32 indexes, with 5 cores per FPGA, which
gives a total of 640 indexes processed at the same time. This
architecture can be see in Figure 3. All the represented blocks
(Top, Core, Writer) will execute in parallel. Streams are used
to avoid the need of synchronization. The number of core
blocks can be adjusted depending on the FPGA area available.

V. SEED EXTENSION ACCELERATION

The purpose of the seed extension kernel is to extend the
length of an exact match while allowing for small differ-
ences, such as mismatches between the read and reference,
or skipping symbols on either the read or reference. To
obtain the extension, a method is used that is similar to
the well-known Smith-Waterman algorithm [1], which is a
dynamic programming method guaranteed to find the optimum

alignment between two sequences for a given scoring system.
A similarity matrix is filled that computes the best score out
of all combinations of matches, mismatches and gaps.

A natural way to map dynamic programming algorithms
onto reconfigurable hardware is as a linear systolic array. Many
implementations that map the Smith-Waterman algorithm onto
a systolic array have been proposed, amongst others [13], [14]
and [15]. A systolic array consists of processing elements
(PEs) that operate in parallel. In our case, we use such an array
to take advantage of the available parallelism that exists while
filling the similarity matrix, by processing the cells on the
anti-diagonal in parallel. We map one read symbol to one PE.
Hence, the length of the PE-array determines the maximum
length of a read that can be processed. Each cycle, a PE
processes one cell of the matrix and passes the resulting values
to the next element.

A. Key differences

The seed extension kernel used in BWA-MEM is similar to
the Smith-Waterman algorithm. However, since the purpose is
to extend a seed, and not to find an optimal alignment between
two sequences, three key differences arise:

1. Non-zero initial values: For an extension, the match
between sequences will always start from their respective first
symbols. Hence, unlike normal Smith-Waterman alignment,
the initial values of the dynamic programming matrix are non-
zero, but depend on the alignment score of the seed found by
the SMEM generation function.

2. Additional output generation: Typically, a Smith-
Waterman implementation generates a local and global align-
ment scores, which are the highest score in the matrix and
the highest score that spans the entire read, respectively.
The seed extension also returns the exact location inside
the similarity matrix where these scores have been found.
Furthermore, a maximum offset is calculated that indicates the
distance from the diagonal at which a maximum score has been
found. Therefore, the systolic array implementation passes
additional values between the PEs compared to a regular
Smith-Waterman systolic array implementation

3. Partial similarity matrix calculation: To optimize for
execution speed, the software BWA-MEM uses a heuristic to
only calculate those cells that are expected to contribute to the
final score. Profiling reveals that in practice, only about 42%
of all cells are calculated. This heuristic is not needed for our
implementation, as it is able to perform all calculations on
the anti-diagonal in parallel, which may also result in higher
quality alignments.

B. Implementation details

Before deciding upon the final hardware design of the
seed extension kernel, a number of ideas and designs alterna-
tives have been considered, varying in acceleration potential,
FPGA-resource consumption, suitability for certain data sets,
and complexity.

A read has to travel through the entire systolic array,
regardless of its actual length. To minimize latency, ideally

a read would be processed by a PE-array matching its exact
length. However, in practice this is not achievable, since it
requires having a PE-array exactly matching each possible read
length, which is impractical given the available resources on
the FPGA. Therefore, we implemented an array with multiple
exit points. This ensures that shorter reads do not have to
travel through the entire array, reducing latency and increasing
utilization and performance.

The FPGA-accelerated seed extension kernel is 1.5 times
faster when comparing one module against one Xeon core.
Our design contains three identical modules per FPGA, which
is fast enough to completely hide the execution of this kernel
by overlapping it with SMEM generation. The Seed Extension
kernel implementation and design alternatives are described in
more detail in [16].

VI. RESULTS

The machine on which the implementation was tested is
a Convey HC2ex. It consists of a host computer with 2
Intel Xeon CPU E5-2643 processors running at 3.30GHz (in
total 8 cores) and 64 GB RAM memory. The co-processor is
represented by 4 Xilinx Virtex-6 LX760 FPGA with a 64 GB
memory attached.

The data set used to test the performance of the alignment
algorithm is obtained from the GCAT framework [17]. The
read length is 150 base pairs using pair ended reads.

The tests were run with the complete input and output in
a RAM disk. A RAM disk is a virtual disk built in the DDR
memory. This way, we eliminate any possible I/O limitations
from the test. We note that there are options fast enough to feed
and process the data output by the algorithm, either network
or high performance disks, but we decided to choose the RAM
disk solution to simplify as much as possible the methodology.
Each test was run multiple times and the best result was
selected. We measured the execution time of the original
software, the hardware version without SMEM generation
improvements and the version with all improvements. The
results are presented in Table II.

We can notice, that due to Amdahl’s law, accelerating
Smith-Waterman and suffix array lookup, resulted only in
a moderate speedup of 1.9x. Improving further the SMEM
generation had a big impact, driving the total speedup to 2.6x

We also performed a more complete test of the behavior
of the optimizations for different numbers of processors. The
results are shown in Figure 4.

To show the possibilities of our design we analyzed the
relation between FPGA number, core number and speedup
obtained, considering the currently implemented hardware
kernels. We assumed a 20% overhead for each FGPA for
the memory controllers. The FPGAs and CPU cores are the
same used for the implementation detailed above. The results
are presented in Figure 5. We can see that to obtain a 2.5x
speedup, for the current system we need to use only 2 FPGAs.
For 3 FPGAs, we can get 2.5x speedup for up to 16 cores.
For 4 FPGAs we can get the maximum speedup up until
20 CPU cores. It is worth mentioning that we focused our

TABLE II
EXECUTION TIMES (IN SECONDS) AND SPEEDUPS OF ACCELERATED BWA-MEM

Data set SW exec HW exec Speedup vs SW HW exec + SMEM opt Speedup vs SW
gcat set 041 534.00 280.00 1.91 208.00 2.57
gcat set 042 530.50 279.00 1.90 208.00 2.55

 0

 0.5

 1

 1.5

 2

 2.5

 3

4 5 6 7 8

S
p
e
e
d
u
p

Numbers of cores utilized

Speedup with various number of cores

Software
Suffix array lookup

+SMEM generation
+Smith-Waterman

Fig. 4. Speedup for different numbers of CPU cores on the Convey HC2ex
machine

Speedup versus software

2.52.5

22

1.51.5

11

0.50.5

1 4 8 12 16 20 24 28 32

Number of CPU Cores

1

2

3

4

N
u

m
b

e
r

o
f

V
ir
te

x
6

 F
P

G
A

-s

Fig. 5. Speedup in function of number of FPGAs and CPU cores.

implementation on the 8 core processor system, and we do
not exclude further optimizations that would allow the area to
be utilized better.

VII. CONCLUSION AND FUTURE WORK

This paper presented a software optimized and hardware
accelerated implementation of the well-known BWA-MEM
DNA read mapping algorithm. The implementation focused on
the three highest computationally expensive execution stages
of the algorithm: SMEM generation, suffix array lookup and
local Smith-Waterman. A system architecture was proposed to
achieve a high acceleration for these components, containing

two hardware-accelerated kernels and one kernel optimized in
software. The two hardware kernels of suffix array lookup
and local Smith-Waterman are able to reach speedups of
2.8x and 5.7x, respectively. The software optimization of the
SMEM generation kernel is able to achieve a speedup of
1.7x. This enables a total application acceleration of 2.6x
compared to the original software version. Analysis shows that
the implementation is bottlenecked by the software part, which
indicates that further acceleration of BWA-MEM functions in
hardware could achieve higher performance. This will be the
focus of our future work.

REFERENCES

[1] T. F. Smith and M. S. Waterman, “Identification of common molecular
subsequences,” Journal of molecular biology, vol. 147, no. 1, pp. 195–
197, 1981.

[2] T. W. Lam et al., “Compressed indexing and local alignment of dna,”
Bioinformatics, vol. 24, no. 6, pp. 791–797, Mar. 2008.

[3] H. Li, “Aligning sequence reads, clone sequences and assembly contigs
with BWA-MEM,” arXiv [q-bio.GN], May 2013. [Online]. Available:
http://arxiv.org/abs/1303.3997

[4] E. Fernandez et al., “FHAST: FPGA-based acceleration of Bowtie
in hardware,” Computational Biology and Bioinformatics, IEEE/ACM
Transactions on, 2015.

[5] “Hybrid Core Computing and Bioinformatics Applications,” http://www.
hpcsociety.org/Resources/Documents/121212Kirby-CONVEY-SHPCP
121212.pdf.

[6] Y. Liu and B. Schmidt, “Long read alignment based on maximal exact
match seeds,” Bioinformatics, vol. 28, no. 18, pp. i318–i324, 2012.

[7] ——, “Cushaw2-gpu: Empowering faster gapped short-read alignment
using gpu computing,” Design Test, IEEE, vol. 31, no. 1, pp. 31–39,
Feb 2014.

[8] H. Li et al., “The sequence alignment/map format and samtools,”
Bioinformatics, vol. 25, no. 16, pp. 2078–2079, 2009.

[9] “Genome Comparison and Analytic Testing,” http://www.bioplanet.com/
gcat.

[10] H. Li, “Exploring single-sample SNP and indel calling with whole-
genome de novo assembly,” Bioinformatics, vol. 28, no. 14, pp. 1838–
1844, Jul 2012.

[11] J. Zhang et al., “Optimizing burrows-wheeler transform-based sequence
alignment on multicore architectures,” in CCGrid, Delft, Netherlands,
May 2013.

[12] H. Li and R. Durbin, “Fast and accurate short read alignment with
Burrows-Wheeler transform,” Bioinformatics, vol. 25, no. 14, pp. 1754–
1760, 2009.

[13] T. Oliver, B. Schmidt, and D. Maskell, “Hyper customized processors
for bio-sequence database scanning on FPGAs,” in Proceedings of the
ACM/SIGDA. ACM, 2005, pp. 229–237.

[14] C. W. Yu et al., “A Smith-Waterman systolic cell,” in New Algo-
rithms, Architectures and Applications for Reconfigurable Computing.
Springer, 2005, pp. 291–300.

[15] P. Zhang, G. Tan, and G. R. Gao, “Implementation of the Smith-
Waterman algorithm on a reconfigurable supercomputing platform,” in
Proceedings of the HPRCTA’07. ACM, 2007, pp. 39–48.

[16] E. Houtgast, V. Sima, K. Bertels, and Z. Al-Ars, “An FPGA-Based
Systolic Array to Accelerate the BWA-MEM Genomic Mapping Algo-
rithm,” in SAMOS XV. IEEE, 2015.

[17] G. Highnam et al., “An analytical framework for optimizing variant
discovery from personal genomes,” Nature communications, vol. 6,
2015.

