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Abstract. In this paper we present compiler extensions for the Molen
programming paradigm, which is a sequential consistency paradigm for
programming custom computing machines (CCM). The compiler sup-
ports instruction set extensions and register file extensions. Based on
pragma annotations in the application code, it identifies the code frag-
ments implemented on the reconfigurable hardware and automatically
maps the application on the target reconfigurable architecture. We also
define and implement a mechanism that allows multiple operations to be
executed in parallel on the reconfigurable hardware. In a case study, the
Molen processor has been evaluated. We considered two popular mul-
timedia benchmarks: mpeg2enc and ijpeg and some well-known time-
consuming operations implemented in the reconfigurable hardware. The
total number of executed instructions has been reduced with 72% for
mpeg2enc and 35% for ijpeg encoder, compared to their pure software
implementations on a general purpose processor (GPP).

1 Introduction and Related Work

In the last decade, several approaches have been proposed for coupling an FPGA
to a GPP. For a classification of these approaches the interested reader is referred
to . There are four shortcomings of current approaches, namely:

1. Opcode space explosion: a common approach (e.g. [2], [3], [4]) is to in-
troduce a new instruction for each portion of application mapped into the
FPGA. The consequence is the limitation of the number of operations im-
plemented into the FPGA, due to the limitation of the opcode space. More
specifically stated, for a specific application domain intended to be imple-
mented in the FPGA, the designer and compiler are restricted by the unused
opcode space.

2. Limitation of the number of parameters: In a number of approaches,
the operations mapped on an FPGA can only have a small number of input
and output parameters ([5], [d]). For example, in the architecture presented
in @], due to the encoding limits, the fragments mapped into the FPGA
have at most 4 inputs and 2 outputs; also, in Chimaera [E}, the maximum
number of input registers is 9 and it has one output register.
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3. No support for parallel execution on the FPGA of sequential operations:
an important and powerful feature of FPGA’s can be the parallel execution
of sequential operations when they have no data dependency. Many architec-
tures E]] do not take into account this issue and their mechanism for FPGA
integration cannot be extended to support parallelism.

4. No modularity: each approach has a specific definition and implementation
bounded for a specific reconfigurable technology and design. Consequently,
the applications cannot be (easily) ported to a new reconfigurable platform.
Further there are no mechanisms allowing reconfigurable implementation to
be developed separately and ported transparently. That is a reconfigurable
implementation developed by a designer A can not be included without
substantial effort by the compiler developed for an FPGA implementation
provided by a designer B.

A general approach is required that eliminates these shortcomings. In this paper,
a programming paradigm for reconfigurable architectures B], called the Molen
Programming Paradigm and a compiler are described that offer alternatives and
a solution to the above presented limitations.

The paper is organized as follows: in the next section, we discuss related
research and present the Molen programming paradigm. We then describe a
particular implementation, called the Molen processor that uses microcoded em-
ulation for controlling the reconfigurable hardware. Consequently, we present the
two main elements of the paper, namely the Exchange Register mechanism and
the compiler extension for the Molen processor. We finally discuss an experi-
ment comparing the Molen reconfigurable processor with the equivalent non-
reconfigurable processor, using two well-known multimedia benchmarks: mpeg2
and ijpeg.

2 The Programming Paradigm

The Molen programming paradigmﬂ] is a sequential consistency paradigm for
programming CCMs possibly including a general purpose computational en-
gine(s). The paradigm allows for parallel and concurrent hardware execution
and it is intended (currently) for single program execution. It requires only a
one time architectural extension of few instructions to provide a large user re-
configurable operation space. The added instructions include:

— Two instructiond] for controlling the reconfigurable hardware, namely:
e SET < address >: at a particular location the hardware configuration
logic is defined
e EXECUTE < address >: for controlling the executions of the operations
on the reconfigurable hardware

L Actually, five if partial reconfiguration, pre-loading of reconfiguration and executing
microcode are also explicitly assumed |7].
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— Two move instructions for passing values of to and from the GPP register
file and the reconfigurable hardware.

Code fragments constituted of contiguous statements (as they are represented
in high-level programming languages) can be isolated as generally implementable
functions (that is code with multiple identifiable input/output values). The pa-
rameters stored in registers are passed to special reconfigurable hardware reg-
isters denoted as Exchange Registers(XRs). The Exchange Register mechanism
will be described later in the paper. In order to maintain the correct program
semantics, the code is annotated and CCM description files provide the compiler
with implementation specific information such as the addresses where the SET
and EXECUTE code are to be stored, the number of exchange registers, etc. It
should be noted that this programming paradigm allows modularity, meaning
that if the interfaces to the compiler are respected and if the instruction set
extension (as described above) is supported, then:

— custom computing hardware provided by multiple vendors can be incorpo-
rated by the compiler for the execution of the same application.
— the application can be ported to multiple platforms with mere recompilation.

Finally, it is noted that every user is provided with at least 2("=°P) directly
addressable functions, where n represents the instruction length and ’op’ the
opcode length. The number of functions can be easily augmented to an arbitrary
number by reserving opcode for indirect opcode accessing. From the previous
discussion, it is obvious that the programming paradigm and the architectural
extensions resolve the aforementioned problems as follows:

— There is only a one time architectural extension of few new instructions to
include an arbitrary number of configuration.

— The programming paradigm allows for an arbitrary (only hardware real es-
tate design restricted) number of I/O parameter values to be passed to/from
the reconfigurable hardware. It is only restricted by the implemented hard-
ware as any given technology can (and will) allow only a limited hardware.

— Parallelism is allowed as long as the sequential memory consistency model
can be guaranteed.

— Assuming that the interfaces are observed, modularity is guaranteed because
the paradigm allows freedom of operation implementation.

Parallelism and Concurrency: As depicted in Figure [l the split-join pro-
gramming paradigm suggests that the SET instruction does not block the GPP
because it can be executed independently from any other instruction. Moreover,
a block of consecutive resource conflict free SET instructions (e.g. set opl,set op2
in our example) can be executed in parallel. However, the SET-instruction (set
op3) following a GPP-instruction can only be executed after the GPP-instruction
is finished. As far as the EXECUTE-instruction is concerned, we distinguish be-
tween two distinct cases, one that adds a new instruction and one that does
not:
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SET address_set_opl .

SET address_set_op2 in parallel
GPP Instruction )

SET address_set_op3

GPP Instruction

Fig. 1. SET instructions performed concurrently with GPP instructions

EXECUTE opl

GPP instructilc))n EXECUTE opl .

EXECUTE op2 in parallel EXECUTE op2 in parallel

EXECUTE op3 EXECUTE op3 -

GPP Instructions GPP Instruction = synchronization
EXECUTE op4

Break synchronization GPP Instructions

a) synchronization when GPP and FPGA
work in parallel

b) synchronization when consecutive
EXECUTE instructions are performed

in parallel and GPP is stalled

Fig. 2. Models of synchronization

1. If it is found that there is a substantial performance to be gained by par-

allel execution between GPP and FPGA, then the GPP and EXECUTE-
instructions can be issued and executed in parallel. The sequence of instruc-
tions performed in parallel is initiated by an EXECUTE instruction. The
end of the parallel execution requires an additional instruction (BREAK in
the example) indicating where the parallel execution stops (see Figurd2 (a)).
A similar approach can be followed for the SET instructions.

. If such performance is not to be expected (which will most likely be the case
for reconfigured “complex” code and GPP code with numerous data depen-
dencies), then a block of EXECUTE-instructions can be executed in parallel
on the FPGA while the GPP is stalled. An example is presented in Figure
P2Ib) where the block of EXECUTE instructions which can be processed in
parallel contains the first three consecutive EXECUTE instructions and it
is delimited by a GPP instruction.

We note that parallelism is guaranteed by the compiler, that checks whether
there are data dependencies and whether the parallel execution is supported
by the reconfigurable unit. Moreover, if the compiler detects that a block of
SET/EXECUTE instructions cannot be performed in parallel, it separates
them by introducing appropriate instructions. In the remaining of the paper,
we assume that the separating instruction for SET/EXECUTE is a GPP
instruction.

The Molen Reconfigurable Processor: The Molen ppu-coded processor has
been designed having in mind the programming paradigm previously presented.
The Molen machine organization is depicted in Figure Bl
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Fig. 3. The Molen machine organization

The arbiter performs a partial decoding of the instructions fetched from the
main memory and issues them to the corresponding execution unit. The param-
eters for the FPGA reside in the Exchange Registers. In the Molen approach, an
extended microcode - named reconfigurable microcode - is used for the emula-
tion of both SET and EXECUTE instructions. The microcode is generated when
the hardware implementation for a specific operation is defined and it cannot be
further modified.

3 Compiler Extensions

In this section we present in detail the mechanism and compiler extensions re-
quired to implement the Molen programming paradigm.

The Exchange Registers: The Exchange Registers are used for passing op-
eration parameters to the reconfigurable hardware and returning the computed
values after the operation execution. In order to avoid dependencies between
the RU and GPP, the XRs receive their data directly from the GPP registers.
Therefore, move instructions have to be provided for this communication.
During the EXECUTION phase, the defined microcode is responsible for
taking the parameters of its associated operation from XRs and returning the
result(s). A single EXECUTE does not pose any specific challenge because the
whole set of exchange registers is available. However, when executing multiple
EXECUTE instructions in parallel, the following conventions are introduced:

— All parameters of an operation are allocated by the compiler in consecutive
XRs and they form a block of XRs.

— The (micro)code of each EXECUTE instruction has a fixed XR, which is
assigned when the microcode is developed. The compiler places in this XR
a link to the block of XRs where all parameters are stored. This link is the
number of the first XR in the block.
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EXECUTE address_opl XRO
EXECUTE address_op2 XR1
XR2 Param/Results opl

opl : fix XR —> XR0 XR3
op2 : fix XR —> XR1 XR4

XRn

Fig. 4. Exchange Registers allocation by the compiler

Based on these conventions, the parameters for all operations can be effi-
ciently allocated by the compiler and the (micro)code for each EXECUTE in-
struction is able to determine the associated block of parameters. An example is
presented in Figure @ where two operations, namely opl and op2, are executed
in parallel. Their fix XRs (XR0 and XR1) are communicated to the compiler in
a FPGA description file. As indicated by the number stored in XR0, the com-
piler allocates for operation op! two consecutive XRs for passing parameters
and returning results, namely XR2 and XR3. The operation op2 requires only
one XR for parameters and results, which in the example is XR4, as indicated
by the content of XR1.

Compiler Extensions: The compiler system relies on the Stanford SUIFQB]
(Stanford University Intermediate Format) Compiler Infrastructure for the front-
end, while the back-end is built over the framework offered by the Harvard Ma-
chine SUIF[@]. The last component has been designed with retargetability in
mind. It provides a set of back-ends for GPPs, powerful optimizations, transfor-
mations and analysis passes. These are essential features for a compiler targeting
a CCM. We have currently implemented the following extensions for the x86 pro-
cessor:

— Code identification: for the identification of the code mapped on the recon-
figurable hardware, we added a special pass in the SUIF front-end. This
identification is based on code annotation with special pragma directives
(similar to ﬂﬂ]) In this pass, all the calls of the recognized functions are
marked for further modification.

— Instruction Set extension: the Instruction Set has been extended with SET/
EXECUTE instructions at both MIR (Medium Intermediate Representa-
tion) level and LIR (Low Intermediate Representation) level.

— Register file extension: the Register File Set has been extended with the
XRs. The register allocation algorithm allocates the XRs in a distinct pass
applied before the GPR allocation; it is introduced in Machine SUIF, at LIR
level. The conventions introduced for the XRs are implemented in this pass.

— Code generation: code generation for the reconfigurable hardware (as previ-
ously presented) is performed when translating SUIF to Machine SUIF IR,
and affects the function calls marked in the front-end.
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#pragma call_fpga opl main: mrk 2, 14
int f(int a, int b){ mrk 2,13 mov  $vr2.s32 <— main.z
int c,i; Ide $vr0.s32 <=5 movtx $vrl.s32(XR) <— $vr2.s32
c=0; mov main.z <— $vr0.s32 Ide $vrd.s32 <-7
for(i=0; i<b; i++) — movtx $vr3.s32(XR) <— $vrd.s32
c=c+a<<i+i; mrk 2, .

= c>5b: Ide ‘$vr2.s32 <7 ‘ set address_opl1_SET
return c; cal $vr l'.s32 <— f(main.z, $vr2.s32) Ide $vr6.5s32(XR) <— 0
) mov main.x <~ $vrl s32 movix $vr7.s32(XR) < vr6.s32
void main(){ mrk 2. 15 §
int x,z; lde  $vr3.s32 < 0 exec address_opl_EXEC
z=5; ret  $vr3.s32 movfx $vr8.s32 <— $vr5.s32(XR)
x=f(z, 7) ; text_end main mov  main.x <— $vr8.s32

C code Original MIR code MIR code extended with

instructions for FPGA

Fig. 5. Code Generation at MIR level

An example of the code generated by the extended compiler for the Molen
programming paradigm is presented in Figure Bl In the first part, the C program
is given. The function implemented in reconfigurable hardware is annotated with
a pragma directive named call_fpga. It has incorporated the operation name,
opl as specified in the description file. In the central part of the picture,the
code generated by the original compiler for the C program is depicted. The
pragma annotation is ignored and a normal function call is included. The last
part of the picture presents the code generated by the compiler extended for
the Molen programming paradigm; the function call is replaced with the ap-
propriate instructions for sending parameters to the reconfigurable hardware in
XRs, hardware reconfiguration, preparing the fix XR for the microcode of the
EXECUTE instruction, execution of the operation and the transfer of the result
back to the GPP. The presented code is at MIR level and the register allocation
pass has not been applied.

The compiler extracts from a description file the information about the target
architecture such as microcode address of SET and EXECUTE instructions for
each operation implemented in the reconfigurable hardware, the number of XRs,
the fix XR associated with each operation, etc.

4 A Case Study

In order to evaluate the performance improvements provided by the Molen pro-
cessor, we used two well-known multimedia benchmarks, namely mpeg2enc and
yjpeg for which we perform a pure software analysis. We made the following
assumptions:

— the parts of the applications which can be implemented in the reconfigurable
hardware are isolated in functions. This constitutes the base model for the
comparison between the GPP and the Molen processor;

— the input data are:
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e for mpeg2enc: the frames included in the benchmark
e for ijpeg: specmun, 1024 * 688

The parts of the applications that are candidates for the reconfigurable hardware
implementation are the well-known time-consuming multimedia operationsﬂ]:
SAD (sum of absolute-difference), DCT (2 dimensional discrete cosine trans-
form), IDCT (inverse DCT) and VLC (variable length coding). In order to study
the performance improvements, we use the Halt library[lﬁ] available in Machine
SUIF and which we modified to suit our purpose. This library is an instrumen-
tation package that allows the compiler to change the code of the program being
compiled in order to collect information about the program own behavior (at
run-time).

For the above considered applications, the following is measured for their
pure software implementation on the GPP (x86):

— The exact types and numbers of instructions - generated by the compiler-
which are executed in the whole application and in each chosen function for
hardware implementation plus their exact number of calls

— The number of cycles for the whole application and for each function chosen
for hardware implementation

Based on these data, the following information can be computed for the Molen
reconfigurable processor:

1. The code reduction as a result of implementation of parts of the application
in reconfigurable hardware

2. An approximation of the maximum performance improvement of processor
cycles for the whole application and for a particular implementation of one
operation

However, because we lack a real implementation of the Molen processor, we
cannot yet provide the second set of data for a particular implementation. We
therefore restrict ourselves to indicating what functions are most likely to yield
the highest performance improvement.

We introduced an additional pass in order to instrument the basic blocks
of a program with the number and type of the included instructions. We also
developed two sets of run-time analysis routines. The first set of routines is used
to collect the type and number of instructions executed in the whole application
and each specific function; it uses the instrumentation pass previously mentioned
in this section. The second set of run-time analysis routines provides the number
of cycles spent in the whole program or in a specific function. The measurements
for the processor clock cycles have been performed on a Pentium IT at 300MHz
and we used the Pentium benchmarking instruction RDTSC - Read Time Stamp
Counter - which returns the number of processor clock cycles since the CPU was
reset. In this manner, the finest granularity is achieved (the code instrumentation
does not affect the results).
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Fig. 6. mpeg2enc and ijpeg encoder instruction results

For example, we compute the total number of instructions executed in the
Molen approach, when the above described functions have been implemented in
hardware as follows:

N N

Nall(MOLEN) = Nall(GPP) — ani(gpp) + Z ni(Neatt,(MoLEN) — Neatt;(app))
=1 1=1

where n,;; is the number of all instructions executed by the application, N is the
number of functions implemented on the reconfigurable hardware, ny, represents
the total number of instructions executed in the function f; for all its calls, n; is
the number of calls of function f; and Ny is the fixed number of instructions
used for passing parameters, function call .

The measured data for the GPP alone and the computed data for the Molen
processor are compared for mpeg2enc and ijpeg in Figure @@ The most impor-
tant categories of instructions have been considered, namely data transfer (dt)
instructions, arithmetic and logical (alu) instructions and control transfer(ct)
instructions. From these pictures, a substantial reduction of the number of in-
structions is achieved by the Molen reconfigurable processor compared to the
GPP: 72.1% for mpeg2enc and 34.4 % for ijpeg encoder. Also it is obvious that
in both cases the alu instructions are the most reduced category of instructions,
while the ct instructions are the least reduced instructions. This conclusion is
confirmed by the inspection of the function code since it contains a large number
of arithmetical computation and only a small number of branches. In table 1,
the cycle measurements are reported. From these results, we can identify those
functions that potentially give the highest performance improvement, given an
efficient hardware implementation. The numbers suggest that the SAD function
is the most promising candidate for hardware implementation, while the rest of
the functions can provide at best a moderate performance improvement.
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Table 1. mpeg2enc (left) and ijpeg encoder (right) cycle result

l Fct ‘ Cycles\% Total‘
SAD [149.947.461] 552 %| | Fct [ Cycles[%Totall
DCT 42.529.647| 15.7 % DCT 40.206.773|12.5 %
VLC 3.946.954| 1.4 % VLC 36.571.622| 10.5 %
IDCT 3.693.986| 1.36 % ijpeg enc [341.316.466| 100 %
mpeg2enc [271.616.655| 100 % Application
Application

5 Conclusions

In this paper, we presented the Molen Set-Execute paradigm that addresses a
number of previously unresolved issues such as parameter passing and parallel
execution of operations into the reconfigurable hardware. The paradigm involves
the instruction set extension and requires on behalf of the FPGA developers
only the address where the configuration(SET) and execution(EXECUTE) code
is stored. A particular architectural implementation was presented, where the
microcoded emulation of the SET and EXECUTE instructions are included.

The compiler extensions allow to generate code where the functions mapped
on the reconfigurable hardware are automatically (rather then manually) sub-
stituted by the appropriate SET-EXECUTE instructions. It has been shown
through experimentation that the compiler can be used as an important tool
to support the design process focusing on the identification of good candidates
for the reconfigurable hardware implementation. The presented results show a
substantial reduction of the executed number of instructions and potential re-
duction of processor cycles for two multimedia benchmarks for their execution
on the Molen reconfigurable processor compared to their pure software imple-
mentation on the GPP.
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