J Sign Process Syst
DOI 10.1007/s11265-015-0974-8

A Dynamic Modulo Scheduling with Binary Translation:
Loop Optimization with Software Compatibility

Ricardo Ferreira - Waldir Denver - Monica Pereira -
Stephan Wong - Carlos A. Lisbhoa - Luigi Carro

Received: 20 October 2014 / Revised: 26 December 2014 / Accepted: 21 January 2015

© Springer Science+Business Media New York 2015

Abstract In the past years, many works have demonstrated
the applicability of Coarse-Grained Reconfigurable Array
(CGRA) accelerators to optimize loops by using software
pipelining approaches. They are proven to be effective in
reducing the total execution time of multimedia and signal
processing applications. However, the run-time reconfig-
urability of CGRAs is hampered overheads introduced by
the needed translation and mapping steps. In this work, we
present a novel run-time translation technique for the mod-
ulo scheduling approach that can convert binary code on-
the-fly to run on a CGRA. We propose a greedy approach,
since the modulo scheduling for CGRA is an NP-complete
problem. In addition to read-after-write dependencies, the
dynamic modulo scheduling faces new challenges, such as
register insertion to solve recurrence dependences and to
balance the pipelining paths. Our results demonstrate that
the greedy run-time algorithm can reach a near-optimal ILP
rate, better than an off-line compiler approach for a 16-issue
VLIW processor. The proposed mechanism ensures soft-
ware compatibility as it supports different source ISAs. As
proof of concept of scaling, a change in the memory band-
width has been evaluated. In this analysis it is demonstrated

R. Ferreira (0<) - W. Denver
Universidade Federal de Vigosa, Vicosa, Minas Gerais, Brazil
e-mail: ricardo@ufv.br

M. Pereira
Universidade Federal do Rio Grande do Norte,
Natal, Rio Grande do Norte, Brazil

S. Wong
TU Delft, Delft, Netherlands

C. A. Lisbda - L. Carro

Universidade Federal do Rio Grande do Sul,
Porto Alegre, Rio Grande do Sul, Brazil

Published online: 17 February 2015

that when changing from one memory access per cycle
to two memory accesses per cycle, the modulo scheduling
algorithm is able to exploit this increase in memory band-
width and enhance performance accordingly. Additionally,
to measure area and performance, the proposed CGRA was
prototyped on an FPGA. The area comparisons show that a
crossbar CGRA (with 16 processing elements and including
an 4-issue VLIW host processor) is only 1.11 x bigger than
a standalone 8-issue VLIW softcore processor.

Keywords Modulo scheduling - Binary translation -
Run-time - Coarse-grained reconfigurable accelerator

1 Introduction

In the past decade, a large effort was spent on enhancing the
performance of multimedia and signal processing applica-
tions. The improved capabilities of system-on-chip designs
triggered by the rapid increased popularity of embedded
systems led to increased complexity and size of these appli-
cations. Such (computationally intensive) applications are
usually characterized by intensive loops and common use
of arrays. Different architectural design solutions [6] were
proposed to increase performance and reduce power con-
sumption. These solutions include DSPs, GPUs, VLIWs,
and ASIPs combined with a myriad of techniques, e.g.,
loop transformations, software pipelining, and compiler
optimizations [2, 24, 26].

While off-the-shelf architectures, such as VLIWs, DSPs,
and GPUs are general solutions designed to meet many
constraints and still work for a wide range of applica-
tions, ASIPs are normally targeted for a small set of
applications. In this sense, ASIPs are capable of achieving
higher speedups than off-the-shelf solutions. However, in

@ Springer


mailto:ricardo@ufv.br

J Sign Process Syst

the embedded systems market, with many new applications
with different behavior emerging at a high pace, ASIPs are
not able to provide enough speedup.

Coarse-grained reconurable architectures are good can-
didates to cope with such a challenge, since they can
provide both power efficiency and hardware accelera-
tion [14], as well as flexibility to adapt to emerging applica-
tions. Additionally, they have a lower reconfiguration over-
head than fine-grained reconfigurable architectures, such as
FPGAs [17]. Many proposed solutions aiming to increase
performance during the execution of loops, using Modulo
Scheduling and Coarse-grained reconfigurable architectures
(CGRAS), can be found in the literature [8-11, 14, 16, 27,
29, 32]. In [33], the authors highlight the amount of nested
loops in multimedia applications that can be parallelized
by CGRAs through the use of software pipelining or other
techniques. In spite of that, all those solutions require spe-
cial compilers or modifications in the application, which, in
turn, precludes software compatibility and code reuse.

The use of compile-time techniques is mainly caused
by the complexity of the data dependence graph extraction
and the mapping algorithm. Mapping instructions onto the
CGRA includes placement, routing, and scheduling. During
these steps, the mapping algorithm has to take into account
resource limitations - when the amount of parallel instruc-
tion is higher than the amount of processing elements - and
data dependences among instructions. This last constraint
is normally solved through the use of the data dependence
graph or data-flow graph (DFG). Therefore, the compiler
generates the DFGs of the application and then, the mapping
uses it to perform the other steps.

More recently, some works proposed the use of binary
translation to provide software compatibilty for CGRAs [5,
30]. Binary translation converts code compiled from a
source ISA to run in a different ISA. This can be used to
enable application execution in different ISAs without the
need for code recompilation. This is useful for CGRAs since
the code compiled to a host processor should be translated
into a configuration of the CGRA.

In order to reduce mapping complexity and, at the same
time, meet the requirements of code reuse and software
compatibility, we propose a novel binary translation (BT)
mechanism for a run-time modulo scheduling (MS) algo-
rithm. The MS algorithm maps inner loops onto a CGRA
accelerator. To the best of our knowledge, this is the first
work to propose a BT run-time modulo scheduling algo-
rithm for CGRAs. The proposed BT MS algorithm reduces
mapping time by proposing alternatives to many of the
complex solutions presented in previous modulo scheduling
algorithms [8, 9, 11, 14, 27, 29, 32]:

1. Eliminating the need for intermediate DFG generation:
In this work, we propose a novel algorithm to detect,

@ Springer

generate, and schedule the loop directly from the binary
code.

2. Using a greedy placement step: Since the modulo
scheduling for CGRA is an NP-complete problem, as
proved in [14], the proposed modulo scheduling uses a
greedy algorithm to find the local optimal solution and
scheduling time [10, 11].

3. Using a crossbar as interconnection among process-
ing elements: Similar to the MS-JIT approach [10], A
CGRA with a crossbar network reduces complexity,
when compared to the widely used mesh topologies [14,
28, 32, 33]. A crossbar-based CGRA is used. Never-
theless, the MS-JIT assumes that the starting point to
perform the MS is a DFG, and therefore it requires spe-
cial JIT compilers or modifications in the applications
(such as pragmas) to detect the loop and to generate the
DFG.

4. Using local register files connected to processing ele-
ments: Reduces the overhead of accessing centralized
general-purpose register files. This solution is also used
in other approaches [8, 9, 16, 20, 31, 32].

5. Scaling process: For instance, if the memory bandwidth
is increased, the binary translator can easily incorporate
this information in order to accelerate applications.

The proposed BT MS is compared to off-line VLIW
compiler-based approaches and the REGIMap, an MS algo-
rithm proposed in [16]. A set of inner loops from mul-
timedia applications are used to measure the instruction
level paralelism (ILP). The experimental results show that,
although the BT MS is a greedy approach, it reaches an
ILP very close to the optimal value. Furthermore, even
though BT MS is executed in software as trap routine, the
overhead it imposes is very low. Moreover, the proposed
architecture has been prototyped in a FPGA, and the area
and clock latency evaluated and compared to the VLIW and
mesh-based CGRA approaches.

The remainder of this paper is organized as follows.
Section 2 explains the modulo scheduling technique,
presents some basic concepts and compares the proposed
technique with GPU and VLIW solutions. Section 3 details
the proposed CGRA architecture. In Section 4, we present
the binary translation modulo scheduling (BT MS) algo-
rithm. Experimental results are discussed in Section 5.
Section 6 examines some works related to the proposed
solution. Finally, Section 7 presents the conclusions and
future works.

2 Modulo Scheduling

This section details the modulo scheduling (MS) approach.
Section 2.1 introduces the MS approach by using a simple



J Sign Process Syst

Figure 1 (a) A loop code and
its DFG; (b) Three overlaped

. ) LOOP

iteractions. 1. add r1,r2,r5 E
2.or r3,r1,3
3. xorr4,rl,2 i

END

4. sub r6,r3,r4

Dataflow @

@)

Gub)

£H

iteration i+2

iy

(a)

example. Subsequently, Section 2.2 formally introduces MS
concepts and definitions. Finally, Section 2.3 compares the
MS approach to three traditional approaches: Tomasulo in
superscalar architecture, graphical processing units (GPUs),
and VLIW.

2.1 Simple Example

Modulo scheduling (MS) [34] is a software pipelining tech-
nique which overlaps different iterations of a loop to exploit
a higher degree of Instruction-Level Parallelism (ILP). For
ease of explanation, lets consider the simple 4-instruction
loop code depicted in Fig. la and its DFG. Since there
are read-after-write register dependencies (RAW) between
instructions, the ADD instruction precedes the following
instructions (OR and XOR), and then the last instruc-
tion (SUB) depends on the previous two instructions. In
this example, only the OR and XOR instructions could
be executed in parallel. Therefore, using conventional ILP
exploitation, each iteration needs at least three clock cycles
to be executed. In order to increase performance, mod-
ulo scheduling overlaps iterations, thereby reducing the
amount of clock cycles required to execute the loop. To
demonstrate that, suppose that a new loop iteration is
started at every clock cycle, as depicted in Fig. 1b. As
shown in the shaded area of the Fig. 1b, at time ¢ + 2,
three iterations i,i + 1, and i + 2 are overlapped, and
four instructions (maximum ILP) are being executed in

(b)

parallel: SUB;, OR;+1, XOR;t1,and AD D; . In this sce-
nario, four instructions are executed per cycle, and at every
clock cycle one loop iteration is completed.

When modulo scheduling is applied to a CGRA, the
algorithm must include the placement of instructions by
mapping each one to a functional unit. MS must take into
consideration the resource limitations and the maximum
ILP that can be achieved. In most solutions that combine
MS with CGRA, a compiler extracts the DFG and, then, the
MS maps the DFG into the architecture. Once again refer-
ring to the example depicted in Fig. 1, in order to exemplify
this next step in the MS algorithm, let us assume the use
of a 2x2 mesh-based architecture, with four functional units
(FU), as depicted in Fig. 2a. A valid scheduling at time ¢ +2
is depicted in Fig. 2b, where there are instructions from the
three iterations being executed in parallel. An MS algorithm
should map the instructions in time (scheduling) and space
(placement). In addition, the placement should perform a
valid routing in order to comply with data dependencies. As
an example, instruction AD D; 4> (placed in FU3) will send
the r; value to O R; 1> and X O R; 4>, which will be executed
at time ¢ + 3 as depicted in Fig. 2c.

An MS algorithm should also be able to map a DFG
larger than the target architecture. Let us assume a target
architecture that consists of only two functional units, as
depicted in Fig. 3a. An MS algorithm could generate a
valid mapping, such as the one depicted in Fig. 3b. Since
there are only two functional units and four operations must

Figure 2 (a) 2x2 Mesh
Architecture; (b) Scheduling at FU. |22 FU . @ . @
Time ¢ + 2; (¢) Scheduling at 0 ! L @ s @ L 2
Time 7 + 3. ** *f
FU, [ FU, Or) (<1693 [ or,., @dd ;3
time t+2 time t+3
(@) (b) (©

@ Springer



J Sign Process Syst

Figure 3 (a) 2 unit architecture;

(b) Scheduling at time 7 4 2 and
t + 3; (c) Iteration overlapping.

(b)

be performed, two temporal partitions are used and only two
iterations will overlap, as shown in Fig. 3c. As an example,
at time ¢ + 2, F'Uq executes the last instruction of iteration i
and FU; computes and sends the value of | from iteration
i+ 1. At time t + 3, FUyp executes the instruction O R;
using the r1 value generated during the previous clock cycle,
and forwards the new value of 3, while FU; computes and
sends the new value of r4. The computed values of r3 and
ra will be forwarded and used in the next clock cycle by
FUp, which will compute the last instruction (SU B;41) of
iteration i + 1 at time ¢ + 4.

Once the scheduling is computed, the architecture will
be configured to execute the loop. The 2-unit architec-
ture detailed in Fig. 4a consists of a set of processing
elements (PEs), an interconnection network, and a configu-
ration memory. Each PE comprises one functional unit (FU)
and local registers that store temporary values. Figure 4b
depicts the configuration memory contents and schedul-
ing for the example shown in Fig. 3b. The MS algorithm
generates a loop scheduling, which is repeated at regular
intervals. The loop is executed by incrementing the address
register. In this example, as shown in Fig. 3b, a new loop
iteration is started every two cycles. Therefore, the schedul-
ing interval or initialization interval (II) is 2, and the next
address is computed by address (address + 1) mod
11 = (address + 1) mod 2.

71
~
7|
time z
i+]
t+2 2
LN
time &
+3
;" (C) iteration i+2
2.2 Basic Concepts

More formally, the MS algorithm maps a dataflow graph
onto a Time Extended Architecture, or a TEC graph, as
defined in [14]. Figure 5b depicts a TEC graph for the 2x2
mesh architecture depicted in Fig. 5a. The number of tem-
poral partitions Py, Py, ..., Prj—1 (or temporal dimensions)
is equal to the initialization interval (II). TEC is a graph
generated by unrolling in time the target architecture. The
TEC representation of the architecture shows all intercon-
nections between two consecutive temporal partitions. The
MS algorithm performs a spatial and temporal mapping onto
the TEC. A connection between two P Es in the architecture
will lead to a TEC interconnection between all consecu-
tive temporal partitions. For instance, PEy — PE; will
generate the connections PE}" — PE 7 for all i where
j =i+ 1mod I, and mod is the modulo operator. The
last partition Pyy_; is connected to the first partition Py,
since this is a modulo scheduling algorithm. Moreover, if the
P E's have internal registers, all P E's have self—connections
between the partitions, that is PE ,f i  PE ,f 7 where
j =i+ 1MOD [, as shown by the horizontal arrows in
Fig. 5b.

Figure 6 depicts a DFG for a loop with eight instruc-
tions, where each instruction is represented by a number. II
is computed by dividing the number of instructions by the

Figure 4 (a) Detailed target Conﬁguration Memory Conﬁguration Memory
architecture; (b) A valid “";”[ — o |
scheduling. op0 routing opl ] 0 sub routing add <]

| ! |

.% FU, FU, U < FU,

§ D D A A i r

2 b tee, pe,f LT 1 PE,

(@) (b)

@ Springer



J Sign Process Syst

Figure 5 (a) Target P P P:
architecture; (b) Time extended |_
architecture (TEC) graph.
PE, PE, PE
PE, PE, PE
‘ PE, }:’ PE,
M H PE, PE, PE
‘ PE, ’Z PE,
’— PE, PE, PE
(a) (b)

number of processing elements (PEs). Since the architecture
has 4 P E's, the value of II should be at least 2, which means
that a new iteration can only be started at least two cycles
after starting the previous one. The MS algorithm will map
the DFG onto the T EC, graph as shown in Fig. 6. Let us
assume that there is a data dependence between two instruc-
tions: x — y. In this case, if x is placed in partition P;, y
should be placed in the next partition, P;41. For instance,
node 1 is connected to nodes 2 and 3, therefore if node 1
is assigned to PE(;J % nodes 2 and 3 should be placed in an
adjacent P E in partition P;. Figure 7a depicts one possible
partial scheduling, where nodes 2 and 3 are placed in PE(')D !
and PE f) !, respectively. Since nodes 2 and 3 have been
placed in partition Pp, their successors should be placed in
Py, as depicted in Fig. 7b. Although the TEC has a total of
eight P Es, there are four P E's in each partition. Therefore,
the MS fails, since node 7 is placed in P; and there is no
free PE in Py to map its descendent node 8 (see Fig. 7c).
The MS algorithm works similarly to that of the bin pack-
age problem, where the node scheduled at time ¢#; is placed
in the partition (bin) Py, where k = i mod /. For instance,
the nodes at time 7y, #2, and 74 will be mapped onto the bin
Py (see Fig. 6). As already mentioned, in this case, MS fails,
because there are only four P E's in the bin Py, for five nodes
(1, 4, 5, 6, and 8). When it is not possible to perform the
MS with the minimal number of partitions, the DFG should
be re-scheduled or local registers could be used. Recently,
the EPImap and REGIMap algorithms [14, 16] proposed the

Modulo
Scheduling TECu

Figure 6 Modulo Scheduling as a graph mapping: DFG — TECyj.

use of re-computation and local registers to find the mini-
mal sets. For instance, P E»> and P E3 could store the results
of nodes 6 and 7 in the local register file to forward these
values later to node 8, placed at PEZP ! If this is not feasi-
ble with the minimal set, then the MS algorithm increases
the partition (bin) number or the II until a solution is found.
However, as expected, when II increases, the throughput and
the ILP are reduced.

Besides avoiding partition overflow, the MS algorithm
must take into account other constraints. Assuming the DFG
example depicted in Fig. 6a, the DFG paths should be
balanced, since the execution is performed in a pipelined
fashion. With this purpose, a buffer node could be inserted
in edge 6 — 8 (see Fig. 8a). In addition, concerning mem-
ory operations, which impose the most severe constraints on
performance, it is assumed that nodes 4, 7, and 8 are mem-
ory operations and the architecture can perform only one
memory access per cycle. Therefore, at least three partitions
are needed, as shown in Fig. 8b. Two loop iterations will
be executed at the same time, in a pipelined fashion (see
Fig. 8c). Every three clock cycles, a new iteration is started.
The scheduling quality is measured by the minimal number
of partitions, which corresponds to the maximum through-
put. In this example, the solution is optimal and it is bounded
by memory constraints. In summary, the MS algorithm must
consider three main constraints: resources limitations, to
avoid partition overflow; balanced paths, to temporally store
values used in different temporal partitions; and memory
constraints, due to the limited amount of parallel memory
accesses.

2.3 Tomasulo, GPU, and VLIW

In this section, we compare the MS algorithm to three
classical approaches: a superscalar processor, a VLIW pro-
cessor, and a Graphics Processing Unit. First, let us consider
a two-way superscalar processor with dynamic scheduling
using Tomasulo algorithm. Let us suppose there are four
functional units: 1 load/store, 1 multiplier, and 2 ALUs.
Figure 9a depicts a loop code example. The superscalar

@ Springer



J Sign Process Syst

Figure 7 (a) Place 1,2, and 3;
(b) Place 4, 5 and 6; (c¢) Fail to

place 8 in Py. Py P

%

(a)

processor will fetch two instructions per cycle. Since there
are read-after-write dependencies, the code will be executed
as shown in Fig. 9b. The code is fetched, decoded and sched-
uled in every execution of the loop, which consumes energy.
On the other hand, the MS algorithm would schedule only
once, the configuration will be stored in a small local con-
figuration memory, and the execution will be performed by
overlapping two iterations, as depicted in Fig. 9c. The per-
formance of the superscalar processor could be improved by
applying compiler-based static scheduling approaches, such
as loop unrolling. However, the static scheduling would be
optimized for a specific superscalar processor, while the
dynamic MS algorithm proposed in this paper is able to
generate a new optimized scheduling on-the-fly. Thus, in
case the target architecture is modified, a new scheduling
is generated without the need for any offline modification.
Additionally, even in case there are forwarding connections
in the superscalar processor, the temporary register values
are read and written from/to the global register file. For this
example, the achieved /L P in the superscalar processor is
1.75, which is close to the maximum 7L Pryo—way = 2.
It is important to notice that, in spite of the achieved ILP
being close to the theoretical maximum, the superscalar
has 4 functional units. In contrast, the CGRA has also

Figure 8 (a) Buffer insertion to
balance the DFG; (b) TEC3
graph; (c) Resulting loop
overlapping.

@ Springer

o)

P P

@

(b) (c)

ol @)
o e

four processing elements and the MS algorithm achieved
an I L P of 3.75, which is also very close to the maximum
theoretical /L Py s = 4.

The second classical approach is a VLIW processor and
its corresponding compiler. The VLIW simplifies the archi-
tecture and transfers the burden of dependence checking and
scheduling to the compiler. For the purpose of this compar-
ison, we assume a 4-issue VLIW, as depicted in Fig. 10a,
and suppose the loop is unrolled twice. Figure 10b depicts
a scheduling where the even/odd iterations are represented
by using white and black foregrounds in the boxes repre-
senting the instructions. In this example, the VLIW achieves
an ILP of 2.8. Again, it is important to highlight that the
VLIW is a 4-issue unit. In order to improve ILP, the com-
piler should apply more aggressive unrolling. Moreover, the
multi-ported global register file (GRF) is one of the most
power hungry parts in any VLIW processor. The MS algo-
rithm proposed in this work does not require any global
register file, and, in addition, it is dynamic in comparison to
the static compiler-based VLIW approach.

The GPU is the third approach to be compared and it is
also compiler-based. The first drawback in solutions using
GPUs is the fact that the source code (C, C++, etc.) should
be modified when targeting GPU/CPU architecture. In this




J Sign Process Syst

Figure 9 Tomasulo versus MS
approach: (a) Loop code; (b)

Exec. Units
LD/SD MUL ALU ALU

Two-way superscalar execution 1LD [ ][ " ” ]
(¢) Modulo Scheduling (d) LOOP 2 MUL
Resulting MS 1 lapping. 1.Ld r1,0(r2)
esulting oop overlapping > Mul :l,rltr4 2';85 [lLD I[ZMUL][ ][ ]
3. Add r3,r4,5 —
5. Mat 8113 s on ) L—Jamuanofeod
6.0r r6,r3,2 o)
7.5d r8,006) 750 1 [__JlsmuLf 60r Jaxor]
=P 1D ]
1o e )
()

LD/SD MUL ALU ALU

[ 1LD](5MUL)(3ADD](butter ]

comparison, it will be considered a four-thread GPU, as
depicted in Fig. 11. Each of the four units of the GPU is
able to execute any operation (memory access, multipli-
cation and ALU operations). Each thread will execute the
same operation, in a SIMD fashion, and four loop iterations
are executed in parallel. In this example, the GPU achieves
the maximum ILP of 4. However, it requires more power-
ful units in comparison to the previous approaches, and it
also requires more registers, since four threads are executed
simultaneously.

In all three analyses, the classical solutions present sig-
nificant drawbacks, when compared to the modulo schedul-
ing CGRA. In the comparisons all architectures have been
considered with the same amount of processing elements.
In spite of that, the superscalar and VLIW were not able to
achieve the same /L P achieved by MS. The VLIW could
increase the /L P, at the cost of a more optimized com-
piler, and the GPU required much more powerful processing
units and more registers. On the other hand, the modulo

W o ) MUL][;ZLSJD]

Global Register File ’

8 read / 4 write ports
o ) Eueon) BN
E_D/SD][MUL][ALU ][ALU ] @BH

(a) (b)

Figure 10 VLIW: (a) Functional Units; (b) Unrolling twice.

7 5D)(2MULJ(4XOR]( 60R |
] L

(©

(d

scheduling CGRA is able to achieve or get closer to the
theoretical /L P, with the same amount of processing ele-
ments, and a run-time scheduling. This demonstrates how
the proposed solution is competitive in a scenario where
classical architectures are used to increase performance of
loop-based applications.

3 Architecture

The modulo scheduling approach was initially proposed
by [34] and the modulo scheduling targeting coarse-
grained reconfigurable architecture (CGRA) was introduced
by [27]. Figure 12a shows a general view of a CGRA,
which consists of three components: a set of processing
elements (PEs), an interconnection network, and a con-
figuration memory. During the last decade, several MS
algorithms have been proposed, and most of them use mesh
or mesh-plus topologies. The processing elements can be
homogeneous [9, 12, 14, 18, 23, 27, 29, 31] or hetero-
geneous [, 8, 21, 32, 36]. However, the MS algorithms

Thread 0 Thread 1 Thread 2 Thread 3
Id r2,thread.id | |Id r2,thread.id | |Id r2,thread.id | |Id r2,thread.id
Ld r1,0(r2) Ld r1,0(r2) Ld r1,0(r2) Ld r1,0(r2)
Mul r1,r1,r4 Mul r1,rl,rd Mul r1,rl,r4 Mul r1,r1,r4
Add r3,r4,5 | [Add r3,r4,5 Add r3,r4,5 Add r3,r4,5 |
[Xorr5,r3,2 Xor r5,r3,2 Xor r5,r3,2 Xor r5,r3,2
Mul r8,r1,3 Mul r8,r1,3 Mul r8,r1,3 Mul r8,r1,3
Or r6,r3,2 Or r6,r3,2 Or r6,r3,2 Or r6,r3,2
Sd r8,0(r6) Sd r8,0(r6) Sd r8,0(r6) |(Sdr8.,0(r6)

Figure 11 A four thread GPU approach.

@ Springer



J Sign Process Syst

Figure 12 CGRA
architectures: (a) Generic
architecture (b) Mesh-based

| Config. Memory

Mesh

Heterogeneous

| i G
Av Ay 4

archicteture; (c¢) Heterogeneous _L ¥ j_
mesh; (d) MF:sh—plus; (e) —>D FU
Mesh-plus disntance. - D 0] |
ve| [ pelzfelre o] (slzpiizfuliad
——
—HfFy, [PE[<]PE|
= [ (b) (©)
1. - ) Mesh Plus Mesh Plus Distance
— o1 ol | - | | =P
—HFu L SoPLLIEL 22
—>D n-1{ —» I N I _ 1 _ | I ﬂ» 1 !L
- [ - -t - -
PnE-l—a T f ol 1l ‘? .a :ll' | L)
Interconnection (SRS SRS S 2 1% 24%2
f 1 ] ' = 10 1"
Lpp b = 2 b1 2 L2

(a)

proposed in those previous works are highly time consum-
ing, due to the selected scheduling approach, as well as due
to their slow placement and routing steps (P&R).

The P&R complexity can be reduced by increasing the
connectivity among processing elements. One way to do
that is adding more wires, for instance, as in the mesh-plus
with one-hop connections depicted in (Fig. 12d). The one-
hop connections reduce the distance between the P E's, as
depicted in Fig. 12e, where the numbers indicate the dis-
tance of each PE from the black PE. In a 4x4 mesh,
7 PEs have distance 1 and 9 PEs have distance 2. As
already mentioned in Section 2.2, it is important to notice
that the MS algorithm uses a temporal/spatial mapping, and
each PE has a connection to itself, used forward its com-
puted value to the next temporal partition of the TEC graph.
Therefore, these numbers represent a temporal/spatial
distance.

Another way to simplify the P&R is to use a homoge-
neous set of P Es, since a heterogeneous one imposes more
constraints on the placement. Moreover increasing the con-
nectivity or the local P E capability reduces the P&R time,
and many previously proposed solutions used this strategy,
those previous MS algorithms are still too time-consuming
to be implemented in a run-time approach. Therefore, more
investments in connections and in the MS algorithm should
be done.

Recently, a Just-in-Time approach for the MS algo-
rithm has been proposed in [10]. The MS-JIT algorithm
applies two strategies to reduce the mapping time. Firstly,
the target architecture is a crossbar-based CGRA, in order
to reduce the complexity of the placement and routing
steps. According to [10], the complexity reduces from

@ Springer

NP-complete to O(1). However, the scheduling step itself
is still NP-complete [10]. Secondly, the MS algorithm is
implemented by using a greedy approach based on graph
traversal, where each node is visited only once. However,
the MS-JIT approach [10] does not include the DFG gen-
eration, as depicted in Fig. 13a, and an off-line compiler
is required to generate the DFG, similarly to other MS
approaches.

The approach proposed in this work significantly
improves the previous one [10] by eliminating the DFG gen-
eration. It starts from the binary code and requires neither
changes in legacy source code nor any compiler support.
Its main advantage is to provide a compiler independent
solution, which eliminates the need for special compilers
and the re-compilation time required to map instructions,
as opposed to previously described solutions. The proposed
architecture is also simplified by using a heterogeneous
CGRA instead of the homogeneous one proposed in [10]. In
order to reduce the time required to exchange data between
the host processor and the CGRA, a tightly coupled accel-
erator approach is proposed, as shown in Fig. 13b. The
host processor can have a RISC or a VLIW instruction set
architecture (ISA). The CGRA copies the values from the
processor register file to the CGRA inputs, then the loop
body is executed, and, finally, the output values are written
back to the processor register file. A simple monitor mod-
ule detects a jump instruction: while the first loop iteration
is executed by the processor, the monitor concurrently veri-
fies whether all loop instructions are suitable to translation.
In case the loop is a candidate to be executed in the CGRA,
the program execution is interrupted, and the processor exe-
cutes the binary translation routine to generate the CGRA



J Sign Process Syst

Figure 13 (a) Previous work, a
JIT approach [10]; (b) Proposed Instruction
Architecture.
Ntl)gmory Configuration
. inary
Compiler F translator Data Memory
9—] Memor
Binary MS |
VLIW Processor
Coce DFGs Register = > )
— File Mul =HE
_.| Config Mull= 8 || 2
Mem mu]I Load/Store - : 8 E
| | alufjalu :u
Processor CGRA mul alul|alu Al
(a) (b)

configuration on-the-fly. From then on, the CGRA accele-
rator will execute all the remaining loop iterations.

A loop is a candidate to be mapped if all instructions
inside the loop are supported by the CGRA. In this work, all
logic/arithmetic and load/store instructions are supported.
Simple conditional assignments are also supported, as well
as branch instructions to outside the loop body (exit points).
No floating-point instructions are supported. The approach
can be extended to detect/execute more complex loop struc-
tures.

The target CGRA is a heterogeneous architecture inter-
connected by a crossbar network. As already mentioned, a
heterogeneous P E set reduces the area cost and the amount
of configuration bits. In this work, we assume the use of
three PE types: ALUs, multipliers, and load/store units.
Moreover, the architecture has 16 PEs in total, since the
throughput does not increase very much beyond the size of
16, as demonstrated in [33]. In addition, a crossbar with 16
units is more feasible, when compared to 4x4 mesh-based
architectures.

Figure 14 depicts the internal structure of a processing
element PE. Each P E has two input registers, R, and R,
where the computation from the previous clock cycle is
stored. These registers are also used as buffer registers (BR),
as explained in [10], and, in this case, the PE is bypassed

Figure 14 Detailed CGRA
architecture.

InB|

and it cannot be assigned to any instruction in a given
temporal partition. While REGIMap uses the local regis-
ter file (LRF) in parallel to the local ALU, in the approach
introduced here the LRF only stores immediate operands
and loop input values. The goal is to simplify the MS algo-
rithm to make it suitable for execution at run-time. More-
over, the use of input registers and/or a local register file
present in each P E avoids the overhead imposed by the cen-
tralized multi-ported register files present in VLIW proces-
sors, which in turn, reduces the dynamic power consump-
tion [13, 19]. Furthermore, our proposed CGRA provides
a larger amount of parallel operations with a simpler input
register. The CGRA allows 32 concurrent register reads and
16 register writes, distributed in its 16 P E's, as illustrated
in Fig. 14. All live values are stored in these tempo-
rary input registers, avoiding the execution of reads/writes
operations from/to the centralized register file during the
whole loop execution.

The modulo scheduling algorithm was implemented
based on the architecture described above. The main fea-
tures that must be taken into account by the algorithm are
the crossbar interconnection model, the local register files,
and the heterogeneous processing elements. The main chal-
lenge is to generate a scheduling scheme that benefits from
all these features in an attempt to maximize / L P and, at the

|In4 InBI |InA InBI |In4 InB| |InA

=
<9}
‘ Mult,

[*9
Mult,

|ALU,

Out,

'Out, TOut, TOut, Out, 'Out, Out, Out,

Crossbar B 16x16

Crossbar A 16x16

"

m [T

B [

@ Springer



J Sign Process Syst

same time, it is fast enough to run at execution time. The
algorithm is described in the next section. It is important to
highlight that, since the MS algorithm is a run-time solution,
modifications in the architecture, such as amount and type
of processing elements, can be managed as input parameters
to the algorithm, without the need for modifications, since
an array is used to keep track of the number of units being
used during each time interval and another one is used to
keep track of unit types.

4 Binary Translation Modulo Scheduling

This section details the BT MS algorithm. First, Section 4.1
introduces an example of an increment vector loop to illus-
trate a comparison of two approaches: an off-line VLIW
compiler and the proposed run-time BT MS algorithm.
Section 4.2 shows the BT MS pseudo-code and its features:
RAW hazards, buffer insertion, heterogeneous units, and
recurrence values. Finally, the ISA support is commented.

4.1 Increment Vector Example

As already discussed in Section 2, the MS approach differs
from the classical Tomasulo, VLIW and GPU approaches.
Concerning binary translation (BT), a mechanism to map
binary MIPS code onto a CGRA, where a BT unit imple-
ments a dynamic Tomasulo-based algorithm customized for
a heterogeneous CGRA, was proposed in [3]. All code
blocks can be mapped to a large CGRA, and a configuration
cache is used to store the most common blocks. However,
the BT [3] does not use software pipelining. For instance,
considering an inner loop with 32 instructions mapped by
the BT proposed in [3]. Let us suppose that the latency for
this loop is 8 cycles, and therefore the achieved ILP will be
32/8 = 4. In order to achieve a high degree of parallelism,

the CGRA [3] must have at least 32 units, and, in this solu-
tion, these units are not used in a pipelined fashion. On the
other hand, our MS algorithm overlaps loop iterations. Let
us consider an MS CGRA with 16 units and assume that
there is a feasible scheduling with two temporal partitions.
In this case, every two cycles a new iteration is processed,
and the achieved ILP is 32/2 = 16. Therefore, the CGRA
size is reduced by a factor of 2 (16 units instead of 32 units),
and the performance is improved 4x by the MS approach,
when compared to BT [3] for inner loop acceleration.

In order to allow inner loop acceleration, besides detect-
ing the read-after-write hazards, the BT MS also has to
detect the recurrence values. The recurrence constraints are
caused by loop-carried dependencies between the iterations.
In addition, the BT MS should take into account the tempo-
ral partitions, in order to balance the pipeline paths. Aiming
to provide the correct balance, the BT MS inserts buffer
registers when it detects an unbalanced path. Nevertheless,
in case the schedule fails, the BT MS increases the num-
ber of partitions, thereby affecting the overall performance.
As one can see, the BT MS proposed in this work differs
significantly from the previous superscalar Tomasulo and
CGRA BT approaches proposed in [3] to dynamically solve
new challenges. Furthermore, all previous MS approaches
are compiler-based and time consuming, while the approach
introduced in this paper is the first binary translation based
one for the MS algorithm.

Before describing the BT MS approach in detail, a simple
loop example is presented here. While in Section 2 the code
examples were selected for illustrative purposes, in order to
highlight some features of the MS algorithm, the following
code example was generated by a compiler. Initially, this
example was compiled considering only one memory access
operation per clock cycle. Subsequently, our BT dynamic
approach is compared to a VLIW compiler-based approach.
Finally, the capability to perform more memory operations

Figure 15 Simple Vector C code
Increment: (a) Source code and - - :
MIPs code; (b) Dataflow. For (i=0; 1 < Nj; i++)
a[i] = a[i]+1;
MIPS Code
Loop:

2:lwrl, 0 (12);

3:addrl,rl,1;

4:sw rl, 0(r2);

5: add r2,r2,4;
End Loop

1: beq 12,14, exit;

iteration i

iteration i+ 1 e

iteration i+2

outy

Where 12 <— 1

()

@ Springer

rl<—a
r4<—n (b)



J Sign Process Syst

per clock is used to show the adaptability of our approach,
when compared to static compiler-based approaches. In the
example, a simple loop is used to increment the values of
the elements of one vector. The C code and the correspond-
ing pseudo MIPS code are depicted in Fig. 15a. Figure 15b
shows the data flow graph for an ideal case of a software
pipelining execution. For ease of explanation, the instruc-
tions are numbered according to their order in the source
code. The recurrence dependence on the index variable i,
implemented by using register r, creates a DFG feedback
edge. By using a CGRA with 5 units or more, the execution
of one loop iteration can be completed every clock cycle, as
can be observed from time ¢ + 2 on, with five instructions
being executed in parallel.

It is well-known that loop unrolling is a common
approach that allows VLIW processors to reach a high
ILP for inner loops. Figure 16a depicts the assembly code
generated by a VLIW compiler [22] for a 4-issue VLIW
processor. The compiler uses an unroll factor of 4. The code

VLIW Four Issue VLIW Instruction

AETTTTETITICCIIICL oo ooTee—mmmm—m=TToTTTTTTTTTTETTTIscossooow

oo R

(b) (c)

Figure 16 Increment Vector: (a) 4-issue VLIW code; (b) One
Load/Store per cycle DFG; (c¢) Unrolling 8, 4 Load/Store 4-issue
VLIW.

has 8 VLIW instructions. Each instruction can have up to
4 operations (grouped inside each dashed block). Each vec-
tor element should be read (load) and written (store). Thus,
with an unroll factor of 4, at least 8 instructions are needed,
since only one memory access operation per clock cycle
is allowed (black box) and four instructions are needed to
perform the load operations and another four are needed to
perform the store operation. In this example, the compiler
reaches the optimal ILP, and one element of the vector is
added every two clock cycles. Figure 16b depicts the DFG.
There are 4 load-add-store dependence chains. For instance,
one chain is 2544 — Saad — 10510re, Which uses the regis-
ter r3 to hold the temporary value. One can observe that the
add instruction is scheduled for two clock cycles later than
the /oad. Suppose also that a memory operation is executed
in two clock cycles. In addition, there are two recurrence
constraints: registers r, which is the memory index, and ry,
which is the loop counter.

Now, let us assume that, thanks to some technology
improvement, the architecture is able to perform 4 mem-
ory access operations (ops) per clock cycle. To include this
information into the VLIW system, one is forced to recom-
pile the VLIW code. Figure 16¢ depicts the generated code
for 4-issue and 4 memory ops per clock cycle. The code has
also 8 VLIW instructions, however the compiler has applied
an unroll factor of 8. There are 8 load/add/store chains
(L - A — S). Therefore, eight elements are added per
iteration or one element per clock cycle, which doubles the
ILP. We can observe that the compiler fills almost all VLIW
instruction slots. However, since the architecture is able to
perform 4 memory ops per clock cycle, taking advantage of
this fact only it is still possible to improve it to produce one
loop result per % cycle. In spite of that, the VLIW is lim-
ited to one result per cycle. Therefore, the VLIW compiled
solution reaches 50 % of the performance of the optimal
solution.

The BT MS mechanism proposed here scans the binary
code, instruction by instruction, and performs scheduling
dynamically. Let us consider the previous example for an
architecture which supports 4 memory accesses per clock
cycle. Also, let us assume that the input binary code is the
4-issue VLIW code depicted in Fig. 16a, which was origi-
nally compiled for one memory operation per cycle. Since
there are 8 memory instructions, at least 2 partitions will
be needed. Let us assume, also, that the load/store (L/S)
operations are executed in a two-stage pipeline unit, with
the first stage computing the address and the second stage
sending/receiving data to/from the memory.

The BT MS scheduling after processing the 2 first VLIW
instructions is shown in Fig. 17b. For ease of explana-
tion, let us adopt the term operation to refer to a VLIW
instruction slot. In Fig. 17b, operations are numbered from
1 to 7. Load/store operations are highlighted by black

@ Springer



J Sign Process Syst

Figure 17 (a) Binary Translator
Flow; (b) The T EC, graph after
the two first vliw-instructions;
(¢) T EC; Final scheduling; (d)

op0jop1fop2]op3]
BT MS algorithm

@@@@ TEC graph of

Binary 4 VLIW

O[] e

interconnection

Loop Overlapping.

the target

deldlelddod

Architecture

interconnection

el lel =) *
E Po

%]%ﬂi@
BOR08

29

5

@ Overlapping

iteration i

circles. Because memory access is performed in two-stage
pipelines, as described before, these operations are inside
a two-part box. The top part indicates that the operation is
in the first stage (address computation) and the bottom part
indicates that the operation is sending/receiving data. Oper-
ations 1, 2, 3 and 4 are scheduled for time f¢ in partition Py,
since there is no dependence. It is important to notice that,
since operations 2 and 4 are load instructions, their results
will be ready at time £, in partition Py = (P; + 1) mod 2.
Add operation 5 is scheduled for time #; in Py, since there
is a RAW hazard due to r3 produced by the load operation
2. Operation 6 is scheduled for time 7y, since there are free
load slots and no dependence values, while operation 7 has
a RAW due to the branch register by produced at time 7o by
the cmp operation 1. Finally, operation 3 has a recurrence
value and a buffer is added to forward r4 across the temporal
partitions.

Figure 17c depicts the final scheduling when using 12
PEs. We can observe the 4 load-add-store chains. For
instance, the r3 chain is 2jp0d — Sadd —> 10st0re. In
spite of a latency of 5 cycles to compute a load-add-store
chain, the throughput obtained when using our approach is 2
clock cycles, due to the iteration overlapping, as depicted in
Fig. 17d. Moreover, since 4 elements are processed in paral-
lel, the loop throughput is 4 elements/2 cycles, or 1 element
per 1/2 cycle, which is the optimal solution.

@ Springer

6855
o) é‘éﬁ‘o?_é
o

iteration i+1

(d)

4.2 BT MS Algorithm

Figure 18 depicts a pseudo-code of our binary translation
algorithm. The instructions are scanned in order. There are
two basic instruction types: one operand (plus an immediate
operand) and two operands. In this algorithm, we assume
the notation Rs1 and Rs2 for the source register operands.

Assuming one operand instruction. For instance, opera-
tion 2./dw r3=0[r2] in Fig. 16a has one operand (algorithm
lines 4-7). Since, it is the first time r, appears, it will be an
input, and it will be inserted in the loop input register (LIR)
list, which is detailed later. Furthermore, a load unit will be
allocated at time 7o in Py, and the Write vector, which keeps
track of all destination registers, stores register 73. The time
data adds the load delay, which is 2 for a memory opera-
tion. The second case is when there is a RAW dependence.
For instance, the operation 5.add r3,r3,1 has a RAW in r3,
and in the algorithm, lines 9 and 10 are required to get the
P E that computes r3, as well as the time #, and the parti-
tion P; ;0d 77» Where 11 is the initialization interval. Thus,
a free unit is requested in this partition Py, and the operation
is placed and routed (line 11).

Moreover, the get_Free P E should handle another prob-
lem when there is no free PE in the target partition. For
example, supposing the 12.Mult instruction as shown in
Fig. 19a which has a RAW dependence in r4. Suppose r4



J Sign Process Syst

1 Inst = Fetch Instruction()

2  While (Inst != END)

3 type = get InstructionType(inst), Partition = initial

4 if (Immediate Operand)

5 if (Rs1 == input)

6 PE = get_FreePE(type,Partition), Place PE[partition] = Inst
7 LIR.insert(Rs1,partition,PE) // added LIR list

8 else

9 PEraw = get PE[Rs1]
10 p = partititon(PEraw),
11 Place PE[p] = Inst,

12 else Two Value Operands:
13 |if (Rs1 == input && Rs2 == input)

14 PE = get_FreePE(type,Partition), Place PE[partition] = Inst
15 LIR.insert(Rs1,partition,PE) // added LIR list

16 LIR.insert(Rs2,partition,PE) // added LIR list

17 else // Read-after-Write

18 PEraw = Later PE(rs1,rs2), p = partititon(PEraw)

19 PE = get_FreePE(type,p), Place PE[p] = Inst

20 if (Rs1 == input ) LIR.insert(Rs1,p,PE)

21 if (Rs2 == input ) LIR.insert(Rs2,p,PE)

22 Route PERaw -> PE, Verify RCR(Target Register)
23 Inst = Fetch Instruction()

24 end While

25 Place and Route LIR lists

/] Read-after-Write
PE = get_FreePE(type,p)
Route PERaw -> PE

Figure 18 Binary translation algorithm - Pseudo-code.

is generated by the add instruction allocated at P E; in Py,
and the /1 = 3. If there is no multiplier unit in P, to place
12.Mult as shown in Fig. 19b, buffer registers (BR) will be
inserted until finding a free multiplier unit. For this example,
one BR is inserted and 12.Mult is allocated in Py.

Assuming two operand instructions (algorithm lines 13-
22). There are three cases: (1) two inputs; (2) one input
and one RAW; and (3) two RAWSs. For instance, operation
10.stw O[r2]=r3 in Fig. 16a has one input r, and one RAW
in r3. Operation 10 is allocated in partition P; after oper-
ation 5 due to the RAW, and buffer registers are allocated
to balance the pipelining path from input r;, as depicted in
Fig. 16(c-d). Therefore, the BT MS applies buffer insertion
and partition management, which is more complex than sim-
ple unit reference used to handle RAW dependence by the
Tomasulo algorithm.

Pi P Po

7. add r4, 15, r6 N
....... ’ > br | —{| r4 value
2mult 3, r4,37 | TTLEEZ >
—| 9.sub
Reg01234567 —b|PE3
PETTTI]]] N[TO-Mult] [ ~]2 Mult
PE 4

PLITTIATT
(a) (b)

Figure 19 Buffer register insertion: (a) RAW code; (b) TEC,
scheduling.

The BT MS should also be able to detect the loop input
registers (LIR). A LIR is a register that is read at least
once and it is not overwritten, and it represents invariant
loop input values. For instance, the r; in code example
from Fig. 16a. Finally, there is the recurrence cycle register
(RCR), which is similar to a LIR, however it is overwritten,
for instance, r; and r4 in Fig. 16a. The RCR can be a loop
counter, vector index, or inter-iteration values.

Figure 20 presents an illustrative example to explain
LIR and RCR management a simple loop. The code has a
load-add-store chain through r; and an index vector . Reg-
ister r5 is a LIR, and it behaves as a constant during the
loop execution. Register r, is an RCR. However, since the
instructions are processed in order, ; behaves as a LIR until
the BT MS processes the last instruction. By default, all
registers that appear as source registers are considered as a
LIR, until they are overwritten and become an RCR. More-
over, there is register 1 in Fig. 20, which is a false output
register, since it only carries temporary values due to RAW
dependences. For each LIR, a list of dependence functional
units is created during the loop scanner. An RCR also has a
dependence list.

Let us assume, for ease of explanation, that the schedul-
ing is performed by using 5 partitions (0 to 4), as depicted
in Fig. 20b. The two-stage load is executed at PEy in Py
and P;. The result is sent to the adder at PE; in P, and
finally it is sent to the two-stage store at P Eg in Pz and Py.
The adder at P E is used in Py to execute instruction 4 (add
rp) and in P, to execute instruction 2 (add ry), as the units
are time-multiplexed, and Fig. 20b depicts the TEC graph
as introduced in Section 2.2. The LIR list will also generate
the buffer register chains for the RCR.

Register r, will generate a chain of three buffer registers
(BRs), as the 7, value is used in Py, in P Eq (load), and also
in PEq (store) in P3. Moreover, an additional 4 BR chain
is generated to send back the value to the adder. Although
the TEC graph in Fig. 20b depicts 7 BRs in total, the target
architecture uses only 2 BRs, since the TEC graph is a time
unrolling architecture, and the maximum number of BRs is
the maximum number per partition. For this example, P;
and P> use at most two BRs.

For this example, a better scheduling is possible. Assum-
ing only one memory access operation per clock cycle, the
minimal number of partitions is 2. Figure 20c depicts the
mapping by using two partitions. Similar to the example
depicted in Fig. 17c, the load is mapped in Py and Pj, then
the adder in Py, and finally the store in partitions P; and
Py, respectively. Every two clock cycles, the loop produces
a new value. At resource level, the usage is maximum in
Py, where the PEqy (load/store), PE| and PE, (ALUs),
and two BRs are needed. It is important to notice that the
ro LIR chain has also three BRs as the previous mapping
with 5 partitions depicted in Fig. 20b. However, there is

@ Springer



J Sign Process Syst

Figure 20 LIR and RCR Loop:
registers: (a) Code (b) TECs o )
scheduling; (¢) TEC, 1: Ld r1,4(r2); PEo P]‘I:‘,l P]|32
scheduling. 2: Addrl,r1,r5; // LIR 15 —|—o
P
3: Sd r14(12) Po @) [evr
4: add r2,r2,8; // RCR r2
End Loop Y>>
P1
(a)
[ — - —
E BUF | [ BUF 3
PO @ @ | P3 BUF
\
Pl BUF BUF P4
a2y BUF
V| v [ 3] _
v

() (b)

an overlapped iteration, and the BRs in Py store values of
different iterations.

The proposed BT MS algorithm is suitable for different
ISAs, such as RISC binary code as well as VLIW code.
Regarding a VLIW code, the RAW vector is only updated
after all operations inside a VLIW instruction are processed.

5 Experimental Results

As proof of concept, the proposed run-time BT MS algo-
rithm is compared to 7 off-line compiler-based options

C code
—_— DataFlow
—— |_) Extraction
y Y
HP VLIW .
) ) CGRA Run-time
Compiler RegiMAP X .
P J _) Binary Translation

VLIW4

VLIW8 -03 VLIW4

BT MS
Algorithm

VLIW8 -05

: CGRA
Compiler 16 PEs

Based Heterogeneous

Figure 21 Target Platforms: 7 compiled-based options and our pro-
posed BT approach.

@ Springer

as depicted in Fig. 21. Three target VLIW architectures
are evaluated. For each one, two optimization options are
applied. The VLIW-n is an n-issue processor, and the C code
is compiled by using the option -03 (basic loop unrolling
and trace scheduling compilation) and the option -05 (very
heavy loop unrolling) [22]. The performance is evaluated
by using a cycle-accurate simulator available in [22], where
we considered a 1-issue VLIW as baseline MIPS-like pro-
cessor capable to execute one instruction per clock cycle.
We select the binary code of VLIW-4 as a starting point for
the proposed BT MS mechanism, since it is the less opti-
mized version. As mentioned before, it can also be applied
to another ISA as MIPS-like code.

Moreover, a comparison to MS compiler-based approach
targeting the ADRES CGRA [7] is performed by using
REGIMap [16]. We chose the REGIMap approach because
it is the state-of-the-art for compiler-based approach to find
optimal scheduling solutions. Additionally, REGIMap can
use up to 8 local registers and a set of homogeneous units
(the current REGImap version supports only homogeneous
units). Regarding the ADRES architecture, although it has a
mesh topology, which has less routing resources compared
to our proposed heterogeneous crossbar CGRA, the evalu-
ated ADRES architecture is homogeneous, and hence, there
is no placement constraint due to the unit type. Moreover,
there is no constraint in the maximum number of operations
per clock cycle (memory, multipliers or ALU).

The BT MS CGRA has 16 heterogeneous units: M mem-
ory units, 2 multipliers and 14-M ALUs, where M is the
number of memory units (1 or 2). The units are intercon-
nected by a crossbar network. The VLIW processors and the
proposed CGRA are evaluated under two distributions of



J Sign Process Syst

heterogeneous units. Both distributions use up to 2 multipli-
ers, and n ALUs per clock. The difference between them lies
in the number of memory units: 1 or 2, as memory latency
and bandwidth is a critical resource nowadays.

Table 1 presents the instruction composition of the
detected inner-most loops from the binary of four multime-
dia benchmarks: Cjpeg, Itver2, MatMul, x264. The incre-
ment vector example from Section 4.1 is also evaluated.
The first column in Table 1 lists the benchmark name and
a loop ID number, when there is more than one inner loop.
Some loops are omitted as they have the same instruction
composition. The number of MIPS-equivalent instructions
is presented in column Inst, followed by the number of load,
store, multiplications, and ALU instructions, respectively.
Columns ILP1 and ILP2 present the maximum theoretical
ILP bound by memory throughput of 1 or 2 access per cycle,
respectively.

The ADRES results with 8 local registers and 16 units
were mapped by using REGIMap. Even though the dataflow
graphs have a medium size from 50 to 120 operations,
REGIMap could not find a scheduling solution for most of
them in less than 1 hour. REGIMap can only map the single
increment vector example in 2 seconds. However, the graph
has been modified by using one local index counter adder
for each load-add-store chain to eliminate the fanout of the
index counter. The same strategy was applied to the cjpeg
loop, which has 16 load/store instructions controlled by the
r address register. Instead of one address register, the cjpeg
was modified to use four registers. REGIMap has found a
scheduling after 4 hours. The drawback of REGIMap for
these evaluated loops is due to the multiple-fanout of index
counter registers as r» shown in Fig. 16b.

The experiments described next were performed to ver-
ify the quality of the scheduling to reach the maximum ILP
available and the required compiler and/or execution time.

Table 1 Innermost loops: Instruction distribution.

MIPS Type Maximum

Inst
Loop Ld St M A ILP1 ILP2
cjpegtl 78 8 8 13 32 4.87 9.75
cjpegt2 79 8 8 13 33 493 9.87
matrixtl 56 16 0 17 21 3.50 7.00
x264t1 52 12 0 7 13 4.33 8.67
itvertl 108 7 4 25 30 8.64 8.64
itvert2 63 8 8 5 22 3.94 7.88
itvert3 100 4 25 26 4.00 4.00
itvert4 66 10 10 5 30 33 6.6
itvert5 55 4 2 13 14 8.46 8.46
itvert6 60 5 2 13 16 8.57 9.23
itvert7 63 8 8 5 22 3.94 7.88

| VLIW4 0.6 sec

| VLIWS | 0.6 sec

70 micro sec.

| VLIW16 | 0.6 sec )
timeout

| regimap

Figure 22 Average Compile Time versus run-time BT MS.

The VLIW code has been compiled for 4, 8 and 16-issue
(see Fig. 21) with —03 and —oS5 options [22], and 1 or
2 memory access per clock cycle. For all approaches, the
ILP was measured by considering only the inner loop code
and normalized by the maximum theoretical ILP depicted
in Table 1. Regarding amount of time required for compi-
lation, referred here as compile-time, the BT MS proposed
approach, in addition to be executed in run-time, it is 3
orders of magnitude faster than the VLIW static compiler
solution as shown in Fig. 22.

Concerning the quality of the scheduling measured by
the ILP, the results depicted in Fig. 23a shows that the BT
MS reaches the optimal solution in 4 of 5 benchmarks for
1 memory access per cycle. Moreover, the achieved ILP is
better than the ILP found by the VLIW processors, even
with 16-issue. Figure 23b depicts the ILP when 2 mem-
ory accesses per clock cycles are allowed, the ILP of BT
MS approach is quasi-optimal, even when compared to the
VLIW16 —OS5 compiler option. The BT MS average ILP is
92.5 % of the maximum theoretical ILP.

The next experiment analyzes a loop from the cjpeg
application. This loop implements a DCT (discrete cosine

ILP
100% —
90% T _\_n BTMS
70% + VLIW8.05, VLIW16.05
VLIW8.03, VLIW16.03
50% T
VLIW4.05
VLIW4.03
I I I I I
incVector Cjpeg matriz X264 itver
(a)

100% —

BTMS

Liw16.03/LW16.05

VLIW8.03, VLIW8.05

90% T
70% t+
50% 4-

VLIW4.03, VLIW4.05

1 1 1 1 1
T T T T T
incVector Cjpeg matriz X264 itver

(b)

Figure 23 Normalized ILP: (a) One memory access per cycle; (b)
Two memory accesses per cycle.

@ Springer



J Sign Process Syst

Figure 24 Cjpeg data flow graph has 78 instructions: 13 multipliers, 32 add/sub instructions, and 16 memory instructions.

transform) [25] onto the CGRA by using 8x8 DCT tiles in
two steps: rows and columns. In the example detailed next,
we considered the loop to process the rows. The dataflow
graph (DFG) has been extracted from the VLIW binary
code, and it is depicted in Fig. 24. The source code has
been compiled to a 4-issue VLIW (1 memory, 2 multiplier,
and/or 4 ALU). It is important to highlight that our approach
does not require the DFG extraction as the previous JIT MS
approach presented in [10]. The DFG is depicted only to

Iteration i

Units per Partitions ., o

identify the potential ILP. The DFG has 16 memory instruc-
tions (8 loads and 8§ stores). Assuming one memory access
per clock cycle, the 11 will be equal to 16 due to memory
constraints.

Starting from the minimum II, the BT MS will map
the binary code by using modulo scheduling to overlap the
loop iterations. This example produces a two overlapping
iteration execution. The TEC graph generated by the BT
MS algorithm is depicted in Fig. 25, where the maximum

Iteration i+1

=T

PO =10 ——
P1=5 | «ED» «EB» «ZI» «ED> «ETD «IX
P2=6 o
P3=7 ¢
P4=9
P5=9
P6 =12
P7=13 ¥
P8 =12 :
PO=11 &
P10=13
P11 =13%
P12=12
P13 =11 *|
P14 =10 =
P15=8 I

Bl Memory Unit [__] Mult or ALU unit

Buffer Register TEC graph

Figure 25 Cjpeg scheduling: The generated TEC graph for two overlap iterations.

@ Springer



J Sign Process Syst

VGA image = 640x480 pixels
VLIW4 execution time
+ execution time CGRA

2,457,600 cycles
1,502,077 cycles 1,6x

2% One memory access
+ execution time CGRA 764,797 cycles 3,2x

Two memory accesses

Figure 26 Execution Time for a VGA Image: 4-issue VLIW, BT MS
+ CGRA (One memory access per cycle and two memory accesses
per cycle).

number of required units per partition is displayed. The
black vertices represent the memory operations. There is
only one memory operation per clock cycle, which shows
that the memory constraints are not violated. The buffer reg-
isters are displayed by using grey vertices and the latency
is 31 clock cycles. As can be observed, the worst cases of
unit usage are configurations 7, 10, and 11, where 13 units
are required. It is also important to take into account the
maximum number of live variables (or registers). In a MIPS
processor or in a VLIW processor, the maximum number
of registers is bounded by the register file size, which, in
general, it is 32 or 64. For the proposed approach, each func-
tional unit has two input registers to store the live variables.
Therefore, for our 16-unit CGRA, the MS BT uses, in the
worst case, 32 registers.

Assuming a VGA image with 640x480 pixels, the com-
plete DCT application runs in 2,457,600 clock cycles. On
the other hand, when including the accelerator and the
binary translation overhead, the execution time reduces to
1,502,077 cycles as depicted in Fig. 26. Furthermore, a
theoretical analysis also demonstrates a great potential to
increase speedup. If we assume an aggressive scaling that
enables an ILP of 8.88 by allowing 2 memory accesses per
clock cycle, the execution time reduces to 764,797 cycles,
which produces a speedup factor of 3.2x. The BT MS algo-
rithm is implemented in C language, and it will be called
during the execution as a trap function. For this example,
the BT MS code executes in 27,517 cycles, which results in
an overhead of 2% for the one memory access configuration
and a VGA image. Additionally, for a 5 Mega-pixel image,
which is a common size nowadays, the binary translation
overhead is insignificant (0.06%).

Table 2 Compilation Time: Average Number of Clock Cycles
required per DFG Node.

Table 2 presents average number of clock cycles required
to process one DFG node, in orders of magnitude, for
nine modulo scheduling approaches found in literature:
DRESC [27]; EMS [32]; RF [9]; RAM [29]; MSPR [11];
G -Minor [8]; EPImap [14]; REGIMap [16]; MS JIT [10].
Moreover, Table 2 presents our BT MS approach and a
trace-based binary translation (TBT) proposed in [4]. The
number of cycles were obtained from the respective refer-
ences, with exception of DRESC, which time results were
based on information reported in [8, 29]. The results show
that with MS JIT [10] and our BT MS, a reduction ranging
from two to six orders of magnitude was achieved. However,
the MS JIT [10] time does not include the DFG extraction
and binary translation. Moreover, the TBT [4] requires three
orders of magnitude more efforts than our BT MS, which
also includes a binary translation in software.

Finally, all architectures have been implemented on a
commercial FPGA (Xilinx XC6VLX240T-1FFG1156) syn-
thesized with ISE version 13.3 to evaluate the relative
performance and area. The ADRES implementation is based
on the architecture described in [28] with a homogeneous
set of functional units. Additionally, to provide a consistent
comparison, all architectures use the same functional units:
ADRES, CGRA, and the VLIW processor [35]. The func-
tional units support the execution of all VLIW instructions.

Table 3 presents the results in amount of resources
and maximum operation frequency after the placement and
routing steps. The number of BRAM and LUT slices are
depicted. It is important to notice that the VLIW processor
uses BRAM to implement the register file. This is one of
the most expensive resources in a VLIW architecture, since
connections to all the functional units must be provided,
which makes the size of register file (RF) grows exponen-
tially. For instance, in VLIW-16, the RF should allow 32
reads and 16 writes at same time. In addition, the VLIW-16
has a fully interconnected network to implement the forward
logic. For this reason, VLIW-16 occupies the entire FPGA
and it is not depicted in Table 3. On the other hand, the
area cost of the proposed CGRA16 is lower than the VLIWS
and the ADRES16 architectures. Additionally, the CGRA16
clock frequency is faster than ADRES16 and the VLIW’s
frequencies. However, since our architecture tightly couples
a VLIW processor and a CGRA, the total area is the sum

Table 3 Architecture Area and Frequency Evaluation.

RF, EMS

REGIMap

EPIMap MS BT
DRESC  Gminor RAM MSPR JIT TBT MS
10° 108 107 10* 313 100 347

Architecture BRAMs LUTs Clock
VLIW 4 16 6575 91 Mhz
Crossbar CGRA 23 12977 103 Mhz
ADRES 4 15173 92 Mhz
VLIW 8 64 17490 62 Mhz

@ Springer



J Sign Process Syst

of the both. Considering the 4-issue VLIW, the total area of
our architecture is equivalent to a standalone 8-issue VLIW.

6 Related Work

The use of techniques to enhance performance through
loop acceleration in CGRAs is not new. [28] was one of
the first works to propose modulo scheduling for inner
loop acceleration in CGRAs. To support loop exploitation,
the authors also implemented a compiler that combines
modulo scheduling, simulated annealing for placement and
pathfinder for routing [27]. The solution performs map-
ping of instructions, represented as data dependency graphs
(DDG), onto the architecture, represented in a modulo
routing resource graph (MRRG). During compilation, the
code passes through different transformations in order to
generate the DDG for loops that can run in pipeline.
In order to provide a high quality mapping, considering
resources usage and routing, a cost function is computed
and the simulated annealing is used to decide if the place-
ment is acceptable or if this step should be performed
again. According to the authors, the scheduling algorithm
is time-consuming when compared to typical scheduling
algorithms. The results demonstrate that minutes are neces-
sary for scheduling instructions in a 64-FU reconfigurable
architecture.

Other solutions [4, 8, 9, 14, 16, 29, 32] emerged in an
attempt to reduce compile-time by improving the mapping
algorithm. In [32], Park et al., proposed a modulo schedul-
ing for CGRA, called EMS (Edge-centric Modulo Schedul-
ing), that focuses on routing efficiency as the primary goal,
since routing is a very time-consuming step in CGRAs.
According to the authors, by investing in an efficient rout-
ing algorithm, it is possible to map dataflow graphs to the
CGRA faster than the solutions that performs routing after
scheduling. In order to find an efficient routing, the algo-
rithm visits each individual edge and determines a routing
cost using a routing cost function. The costs will indicate
which is the best routing and consequently, the placement.
The experimental results present a shorter compile-time in
comparison to ADRES/DRESC solution around 1,185 sec-
onds for EMS against 22,341 seconds for ADRES/DRESC.
However, the mapping algorithm has a lower scheduling
quality when compared to ADRES/DRESC, which results
in performance reduction during execution time. [9, 29] also
proposed solutions to reduce compile-time and sustaining
quality of the scheduling algorithm. [9] proposes the use of
placement and routing (P&R) code generation techniques
as an alternative to register allocation algorithms and [29]
makes use of recurrence cycle-aware scheduling technique,
by grouping operations that belong to a recurrence cycle

@ Springer

into a clustered node and computing a scheduling for those
nodes. According to the authors, this solution presents bet-
ter quality than simulated annealing solutions and reduction
in compile-time.

EPIMap [14] is another approach targeted to improve
mapping quality and reduce compile-time. According to
the authors, the main contribution in their solution is the
use of routing and re-computation to schedule data depen-
dent instructions. One of the main problems when mapping
instructions to CGRA occurs when the resource limita-
tion causes data dependent instructions are scheduled in
non-adjacent times. For instance, the first instruction is
scheduledEPI in time t]1 and the fourth instruction, which
depends on the first one, is scheduled in time t3. In this case,
the first instruction’s result calculated in t1 must be stored
until time t3, when it will be used. To solve this problem,
[14] proposes the re-computation of some instructions, in
this case, the same instruction is computed twice in differ-
ent processing elements and the result of each unit is sent to
a different instruction. This re-computation combined with
a routing algorithm provides a higher quality scheduling
than just using routing algorithm. Additionally, the EPIMap
heuristic transforms an input data flow graph to an epimor-
phic equivalent graph that meets all the CGRA constraints.
The algorithm performs a systematic search of the solution
space, which ensures a higher quality mapping. The results
presented in [14] demonstrate that, from 14 benchmarks,
EPIMap achieved the best theoretical performance in 9 of
them. Moreover, the performance improvement in compar-
ison to EMS solution [32] is around 2.8x and compilation
time is on average 30 seconds. The authors also present
a formal model and NP-completeness proof for the mod-
ulo scheduling CGRA, demonstrating the complexity of the
modulo scheduling algorithm for this type of architecture.

The mapping algorithm proposed in Chen and Mitra [8],
called G-Minor, also performs graph transformations in the
DFG’s application in order to generate a high quality map-
ping in a reduced compile-time. According to the authors,
the main advantage of the proposed approach in compar-
ison to EPIMap [14] is the use of a customized graph
minor testing procedure, which works only in subgraph
mapping, consequently providing a faster mapping. The
experimental results presented in [8] demonstrate the same
scheduling quality when compared to EPIMap [14], with a
faster compile-time of around 126 times faster. The average
compile time for G-Minor approach is around 0.27 seconds.

In REGIMap approach [16], EPIMap’s authors proposed
a solution for a better usage of local register files by
the mapping algorithm. The register files in each process-
ing element are used to temporarily store data used in
next cycles. This is a solution applied to solve the prob-
lem of data dependency among instructions scheduled in



J Sign Process Syst

different cycles. Through the use of theses registers, it is
not necessary to hold the current value in the processing
element. Experimental results comparing REGIMap and
ADRES/DRESC [28] show performance increase of 1.89x
and a reduction in compilation time of 56x. In spite of that,
for a 4x4 mesh CGRA and varying number of local regis-
ters, the compilation time is still in order of thousands of
seconds.

[4] proposes an approach that combines offline parti-
tioning and mapping with online reconfiguration to accel-
erate loops in a reconfigurable coprocessor. The mapping
algorithm searches for loop-based instruction traces, called
megablocks. The detected megablocks are first transformed
in a DFG representation and, then a translation mechanism
transforms the detected instruction traces into a configura-
tion. The application is originally described in MicroBlaze
instruction traces and the reconfigurable processing unit is
implemented in an FPGA. The experimental results include
the analysis of 15 application kernels. The performance
results indicate speedups of 1.26x up to 3.69x. The authors
also evaluated the translation time for a fir filter megablock.
The total time to translate a megablock implemented in
assembly code to a configuration is on average 79 ms in 1
Ghz processor. According to the analysis, the most costly
step (around 58%) is the conversion from assembly code to
DFG representation. This result reassures how DFG extrac-
tion impacts on mapping time. The authors also mention the
possibility to move partitioning and mapping to run-time,
and presents preliminary results of a megablocks detector
hardware. However, the consolidate run-time system is part
of future works.

[37] proposes to partition the CGRA into clusters and
schedule instructions from the same iteration into a sin-
gle cluster. The authors state that, by using a cluster-based
approach with a modulo scheduling algorithm, it is possi-
ble to reduce mapping time and increase the performance,
since communication between distant processing elements
is reduced. As in the previous solutions, the MS algorithm
also works with a DFG. The results from three benchmarks
demonstrate increase in performance when compared to G-
Minor solution [8], around 9.8 %, as well as compilation
time, around 6.5 %. However, compilation time is still in
order of hundred of seconds.

All solutions mentioned above have in common the need
for offline or compilation time solutions to analyze the
application in order to find the kernels to run onto the
CGRA. Additionally, the solutions also require the DFG
extraction step. While a comparison among all solutions is
not viable due to the lack of details in many works and
the different benchmarks, it is possible to see that all of
them require compilation time to perform instruction map-
ping, including scheduling and routing steps. From all the

mentioned solutions, only the one proposed in [10] presents
low compilation time and can be moved from compile-time
to run-time. In spite of that, this solution still requires a
compiler to perform the DFG extraction.

This work proposes a modulo scheduling that eliminates
the DFG extraction and, through a greedy algorithm, per-
forms a CGRA mapping faster than any of the solutions
mentioned above. To the best of our knowledge, this work
is the first one to introduce the run-time modulo schedul-
ing algorithm from different ISA sources into a CGRA,
ensuring software compatibility.

7 Conclusions

Coarse-grained reconfigurable architectures (CGRAs) have
been widely adopted as a solution to accelerate application
execution through instruction level parallelism exploitation.
One of the approaches that has enabled significant per-
formance enhancement is the combination of CGRA with
modulo scheduling, which is a software pipeline technique
that exploits parallelism among loop iterations. Application
domains, such as signal processing and multimedia, directly
benefit from these solutions, since they are composed of
many software pipelining loops. In spite of the widespread
use of modulo scheduling combined with CGRA found
in literature, all proposed solutions work at compile-time.
Even the most efficient solutions [10] require compile-time
to perform part of the modulo scheduling algorithm. The
main difficulties that preclude run-time MS solutions are
caused by 1) mapping complexity, which includes place-
ment, routing and scheduling, and it is a NP-complete
problem. 2) Data dependence graphs (DDG) or dataflow
graphs (DFG) extraction, which increases mapping time.
3) Use of mesh topology as interconnection, which also
increases placement and routing complexity. In order to
cope with the difficulties faced by the previous solutions,
this paper proposed a novel binary translation mechanism as
the first run-time modulo scheduling algorithm to map inner
loops onto a coarse-grained reconfigurable architecture. The
binary translation mechanism eliminates the DFG extraction
by working directly with the assembly code. Another major
advantage of working at the assembly level is software
compatibility. To further reduce mapping time, the pro-
posed modulo scheduling algorithm is a greedy approach,
that finds the local optimal solution. Moreover, the pro-
posed CGRA also uses a crossbar network [10], which
reduces routing complexity. In this work, we also compared
our approach to classical ILP architectures: superscalar
Tomasulo, n-issue VLIW and a GPU. The comparison
showed that, considering loop codes and the same amount
of processing elements, the proposed approach reaches a

@ Springer



J Sign Process Syst

quasi-optimal ILP. The classical approaches with aggressive
compiler techniques could achieve the performance of our
BT MS approach, however our proposed algorithm executes
on-the-fly with software compatibility.

In order to evaluate area, mapping quality and execution
time of the MS algorithm, we presented a set of experiments
comparing the proposed solution (a CGRA with a VLIW
as host processor) with two other systems, the standalone
VLIW processor (4-, 8- and 16-issue) and the REGIMap,
which is currently the most efficient MS compiler-based
approach. In spite of that, REGImap was not able to manage
loop graphs with index counters with a large fanout. Regard-
ing area occupancy, the proposed CGRA with 16 functional
units (CGRA16) plus a 4-issue VLIW as host processor is
equivalent to an 8-issue VLIW. Quality results were also
evaluated and showed that the proposed run-time mecha-
nism with CGRA16 achieved the quasi-optimal ILP. Finally,
in performance evaluation, we presented an example of the
proposed binary translation mechanism mapping a discrete
cosine transformation loop to the CGRA with a speedup fac-
tor of 1.8 when compared to the same loop running onto a
VLIW. In addition, to demonstrate the scalability of the pro-
posed BT MS algorithm, we increased the amount of mem-
ory elements, from one memory access per clock cycle, to
two memory accesses per clock cycle. In this case, the mod-
ulo scheduling was able to exploit this improvement and
continue achieving quasi-optimal ILP. Future works include
evaluating the acceleration considering larger application
blocks and conditional branches [15], as well as on-the-fly
generation of the CGRA using customized functional units.

References

1. Ahn, M., Yoon, J.W., Paek, Y., Kim, Y., Kiemb, M., Choi,
K. (2006). A spatial mapping algorithm for heterogeneous
coarse-grained reconfigurable architectures. In Proceedings DATE
(pp. 363-368).

2. Amold, O., Matus, E., Noethen, B., Winter, M., Limberg, T.,
Fettweis, G. (2014). Tomahawk: Parallelism and heterogeneity in
communications signal processing mpsocs. ACM Transactions on
Embedded Computing Systems, 13(3s), 107:1-107:241.

3. Beck, A.C.S., Rutzig, M.B., Gaydadjiev, G., Carro, L. (2008).
Transparent reconfigurable acceleration for heterogeneous embed-
ded applications. In Proceedings of the conference on design,
automation and test in Europe (pp. 1208-1213).

4. Bispo, J., Paulino, N., Cardoso, J.M., Ferreira, J.C. (2013). Trans-
parent runtime migration of loop-based traces of processor instruc-
tions to reconfigurable processing units. International Journal of
Reconfigurable Computing.

5. Bispo, J., Paulino, N., Ferreira, J., Cardoso, J. (2012). Transparent
trace-based binary acceleration for reconfigurable hw/sw systems.
1EEE Transactions on Industrial Informatics.

6. Boppu, S., Hannig, F.,, Teich, J. (2014). Compact code generation
for tightly-coupled processor arrays. Journal of Signal Processing
Systems, 77(1-2), 5-29.

@ Springer

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

. Bouwens, F., Berekovic, M., Kanstein, A., Gaydadjiev, G. (2007).

Architectural exploration of the adres coarse-grained reconfig-
urable array. In Proceedings ARC (pp. 1-13).

. Chen, L., & Mitra, T. (2012). Graph minor approach for applica-

tion mapping on cgras. In Proceedings FPT.

. De Sutter, B., Coene, P., Vander Aa, T., Mei, B. (2008). Placement-

and-routing-based register allocation for coarse-grained reconfig-
urable arrays. In Proceedings LCTES (pp. 151-160).

Ferreira, R., Duarte, V., Meireles, W., Pereira, M., Carro, L.,
Wong, S. (2013). A just-in-time modulo scheduling for virtual
coarse-grained reconfigurable architectures. In SAMOS XIII.
Ferreira, R., Vendramini, J.G., Mucida, L., Pereira, M.M., Carro,
L. (2011). An fpga-based heterogeneous coarse-grained dynami-
cally reconfigurable architecture. In Proceedings CASES.
Friedman, S., Carroll, A., Van Essen, B., Ylvisaker, B., Ebeling,
C., Hauck, S. (2009). Spr: an architecture-adaptive cgra mapping
tool. In Proceeding of the ACM/SIGDA international symposium
on field programmable gate arrays, FPGA 09 (pp. 191-200).
New York: ACM.

Goel, N., Kumar, A., Panda, P.R. (2014). Shared-port register file
architecture for low-energy vliw processors. ACM Transactions
Architectural Code Optimization, 11(1).

Hamzeh, M., Shrivastava, A., Vrudhula, S. (2012). Epimap: Using
epimorphism to map applications on CGRAs. In Proceeding of
DAC conference (pp. 1280-1287).

Hamzeh, M., Shrivastava, A., Vrudhula, S. (2014). Branch-aware
loop mapping on CGRAs. In Proceeding of DAC conference on
design automation conference (pp. 1-6). ACM.

Hamzeh, M., Shrivastava, A., Vrudhula, S.B. (2013). Regimap:
register-aware application mapping on coarse-grained reconfig-
urable architectures (CGRAs). In Proceeding of DAC conference
(p- 18).

Hartenstein, R. (2001). Coarse grain reconfigurable architecture
(embedded tutorial). In Proceedings of the 2001 asia and south
pacific design automation conference, ASP-DAC "01.

Hatanaka, A., & Bagherzadeh, N. (2007). A modulo schedul-
ing algorithm for a coarse-grain reconfigurable array template. In
IPDPS 2007 (pp. 1-8).

Hoogerbrugge, J., & Corporaal, H. (1994). Register file port
requirements of transport triggered architectures. In Proceedings
of the 27th annual international symposium on microarchitecture
(pp. 191-195). ACM.

Jadskeldinen, P., Kultala, H., Viitanen, T., Takala, J. (2014). Code
density and energy efficiency of exposed datapath architectures.
Journal of Signal Processing Systems, 1-16.

Kim, Y., Lee, J., Shrivastava, A., Yoon, J., Cho, D.,
Paek, Y. (2011). High throughput data mapping for coarse-
grained reconfigurable architectures. IEEE Transactions on CAD
of International Circuits and Systems, 30(11), 1599-1609.
doi:10.1109/TCAD.2011.2161217.

Laboratories, & H.P. (2014). Vex toolchain. http://www.hpl.hp.
com/downloads/vex/.

Lee, G., Choi, K., Dutt, N. (2011). Mapping multi-domain appli-
cations onto coarse-grained reconfigurable architectures. IEEE
Transactions on Computer-Aided Design of Integrated Circuits
and Systems, 30(5), 637-650.

Lin, TJ., Chen, S.K., Kuo, Y.T., Liu, C.W., Hsiao, P.C.
(2008). Design and implementation of a high-performance and
complexity-effective vliw dsp for multimedia applications. Jour-
nal of Signal Processing Systems, 51(3), 209-223.

Loeffler, C., Ligtenberg, A., Moschytz, G.S. (1989). Practical fast
1-d dct algorithms with 11 multiplications. In 1989 international
conference on acoustics, speech, and signal processing, 1989.
ICASSP-89 (pp. 88-991). IEEE.


http://dx.doi.org/10.1109/TCAD.2011.2161217
http://www.hpl.hp.com/downloads/vex/
http://www.hpl.hp.com/downloads/vex/

J Sign Process Syst

26.

217.

28.

29.

30.

McCool, M. (2007). Signal processing and general-purpose com-
puting and gpus [exploratory dsp]. IEEE Signal Processing Mag-
azine, 24(3), 109-114.

Mei, B., Vernalde, S., Verkest, D., De Man, H., Lauwereins, R.
(2002). Dresc: a retargetable compiler for coarse-grained recon-
figurable architectures. In Proceedings FPT (pp. 166-173).

Mei, B., Vernalde, S., Verkest, D., Man, H.D., Lauwereins, R.
(2003). Exploiting loop-level parallelism on coarse-grained recon-
figurable architectures using modulo scheduling. In Proceedings
DATE.

Oh, T., Egger, B., Park, H., Mahlke, S. (2009). Recurrence cycle
aware modulo scheduling for coarse-grained reconfigurable archi-
tectures. In Proceedings LCTES (pp. 21-30).

Paek, J.K., Choi, K., Lee, J. (2011). Binary acceleration using
coarse-grained reconfigurable architecture. SIGARCH Computers
Architecture News, 38(4), 33-39.

Waldir  Denver  Muniz
Meireles was born in Cel.
Fabriciano, Brazil, in 1983.
He received the degree in
Computer Science from the
Federal University of Vicosa
in 2011 and master’s degree
in Computer Science from the
Federal University of Vicosa
in 2014 with emphasis on
Reconfigurable Architectures.
He is currently a Embedded
Systems developer at iVision
Systems Image and Vision
SA. His research interests
include Embedded Systems

31. Park, H., Fan, K., Kudlur, M., Mahlke, S. (2006). Modulo graph Design, Reconfigurable Hard-
embedding: mapping applications onto coarse-grained reconfig- ware (CGRA) and FPGA,
urable architectures. In Proceedings CASES (pp. 136-146). Sensor Network, unmanned vehicles and machine vision.

32. Park, H., Fan, K., Mahlke, S.A., Oh, T., Kim, H., Kim, H.s.

(2008). Edge-centric modulo scheduling for coarse-grained recon-
figurable architectures. In Proceedings PACT. Monica Pereira  received

33. Park, H., Park, Y., Mahlke, S. (2009). Polymorphic pipeline her Bachelor degree in Com-
array: a flexible multicore accelerator with virtualized execu- uter Science from Federal
tion for mobile multimedia applications. In Proceedings MICRO % . f Rio Grand
(pp. 370-380). d“‘V;rS“ty Nt

34. Rau, B.R. (1994). Iterative modulo scheduling: an algorithm for 2805. (éth’ rec:i\alle d r:z]lvl'slcr%
software pipelining loops. In Proceedings MICRO (pp. 63-74). in 2008 also in Computer

35. Wong, S., Van As, T., Brown, G. (2008). p-vex: A reconfigurable Science from Federal Uni-

36.

37.

and extensible softcore vliw processor. In International con-
ference on field-programmable technology FPT (pp. 369-372).
IEEE.

Yoon, J., Shrivastava, A., Park, S., Ahn, M., Jeyapaul, R., Paek, Y.
(2008). Spkm: A novel graph drawing based algorithm for appli-
cation mapping onto coarse-grained reconfigurable architectures.
In Proceedings ASPDAC (pp. 776-782).

Zhou, L., Liu, H., Zhang, J. (2013). Loop acceleration by cluster-
based cgra. IEICE Electronics Express, 10(16).

versity of Rio Grande do
Norte and Ph.D. degree from
Federal University of Rio
Grande do Sul, Porto Ale-
gre/Brazil in 2012. In 2010,
she was at ITIV/Karlsruhe
Institute  of  Technology,
Karlsruhe/Germany, for an

internship, where she developed activities related to fault tolerance in
FPGA-based architectures. Since 2012, she is a Professor at Federal
University of Rio Grande do Norte. Her research interests include
reconfigurable architectures, embedded system design and fault
tolerant architectures.

Ricardo Ferreira (SM’99)
was born in Belo Horizonte,
Brazil, in 1969. He received
the B.E. degree in Physics and
M.Sc. in Computer Science
from the Federal University of
Minas Gerais, Brazil, in 1991
and 1994, respectively, and the
Ph.D degree in Applied Sci-
ences (Microeletronics) from
the Universite Catholique de
Louvain, Louvain-la-Neuve,
Belgium, in 1999. In 1992,
he joined the Department of
Computer Science, Federal

University of Vicosa, as a Lecturer, and currently he is an Associate

Stephan Wong was born in
Paramaribo, Suriname on
October 20th, 1973. He
obtained his PhD from the
Delft University of Technol-
ogy in December 2002 after
which I started as an assistant
professor at the same univer-
sity. His PhD thesis entitled
“Microcoded Reconfigurable
Embedded Processor” des-
cribes the MOLEN polymor-
phic processor, organization,
and (micro-)architecture. His
research interests include:
Reconfigurable  Computing,

Professor. His current research interests include reconfigurable com- Distributed Collaborative Computing, High-Performance Comput-
puting, FPGAs, GPUs, placement and routing, embedded systems, ing, Embedded Systems, Hardware/Software Co-Design, Network
and run-time approaches. Processing.

@ Springer



J Sign Process Syst

Carlos Arthur Lang Lisboa
received his degree in Civil
Engineering in 1971, his
Master in Computer Science
Degree in 1976, and his PhD
in Computer Science in 2008,
all at Universidade Federal do
Rio Grande do Sul, in Brazil.
He is currently the head
of the Applied Informatics
Department of the Informatics
Institute at the same univer-
sity. His main fields of interest
are computer architecture,
hardware fault tolerance and
embedded systems. He is

member of the IEEE and of the Brazilian Computer Society (SBC).

@ Springer

Luigi Carro was born in
Porto Alegre, Brazil, in 1962.
He received the Electrical
Engineering and the MSc
degrees from Universidade
Federal do Rio Grande do
Sul (UFRGS), Brazil, in 1985
and 1989, respectively. From
1989 to 1991 he worked at
ST-Microelectronics, Agrate,
Italy, in the R&D group.
In 1996 he received the Dr.
degree in the area of Computer
Science from Universidade
Federal do Rio Grande do
Sul (UFRGS), Brazil. He is
presently a full professor at the Applied Informatics Department at the
Informatics Institute of UFRGS, in charge of Computer Architecture
and Organization courses at the undergraduate levels. He is also a
member of the Graduation Program in Computer Science at UFRGS,
where he is co-responsible for courses on Embedded Systems, Digital
signal Processing, and VLSI Design. His primary research interests
include embedded systems design, validation, automation and test,
fault tolerance for future technologies and rapid system prototyping.
He has advised more than 20 graduate students, and has published
more than 150 technical papers on those topics. He has authored the
book Digital systems Design and Prototyping (2001-in Portuguese)
and is the co-author of Fault- Tolerance Techniques for SRAM-based
FPGAs (2006-Springer), Dynamic Reconfigurable Architectures and
Transparent optimization Techniques (2010-Springer) and Adaptive
Systems (Springer 2012). In 2007 he received the prize FAPERGS -
Researcher of the year in Computer Science. His most updated resume
is located in http://lattes.cnpq.br/8544491643812450. For the latest
news, please check www.inf.ufrgs.br/~carro.


http://lattes.cnpq.br/8544491643812450
www.inf.ufrgs.br/~carro

	A Dynamic Modulo Scheduling with Binary Translation: Loop Optimization with Software Compatibility
	Abstract
	Introduction
	Modulo Scheduling
	Simple Example
	Basic Concepts
	Tomasulo, GPU, and VLIW

	Architecture
	Binary Translation Modulo Scheduling
	Increment Vector Example
	BT MS Algorithm

	Experimental Results
	Related Work
	Conclusions
	References


