
Memory Profiling for Intra-Application
Data-Communication Quantification: A Survey

Imran Ashraf, Mottaqiallah Taouil, Koen Bertels
Computer Engineering Lab, TU Delft, The Netherlands

Email: {I.Ashraf, M.Taouil, K.L.M.Bertels}@TUDelft.nl

Abstract—With the advent of technology, multi-core architec-
tures are prevalent in embedded, general-purpose as well as high-
performance computing. Efficient utilization of these platforms
in an architecture agnostic way is an extremely challenging
task. Hence, profiling tools are essential for programmers to
optimize the applications for these architectures and understand
the bottlenecks. Typical bottlenecks are irregular memory-access
patterns and data-communication among cores which may reduce
anticipated performance improvement. In this study, we first
survey the memory-access optimization profilers. Thereafter, we
provide a detailed comparison of data-communication profilers
and highlight their strong and weak aspects. Finally, recom-
mendations for improving existing data-communication profilers
and/or designing future ones are thoroughly discussed.

I. INTRODUCTION

Although the number of transistors per chip is growing
due to the technology scaling [1], increasing the clock rate
of processors is becoming economically less viable due to
fabrication cost and power consumption [2]. These limitations
shifted the trend towards the integration of a growing number
of homogeneous or heterogeneous processing cores in general-
purpose, embedded and high-performance computing plat-
forms. However, these multi-core architectures pose specific
challenges regarding their programmability, as the effective
utilization of these platforms in an architecture agnostic way
is not possible. Hardware constraints, such as memory band-
width, local scratch-pad memory etc. need to be explicitly
taken into account.

There is a huge code base of legacy, sequential applications
which need to be ported to such multi-core platforms, and
thus need to be parallelized. To port an existing sequential ap-
plication to multi-core platform, applications must be divided
into smaller parts which are mapped to the available cores in
the architecture. This is a critical task, as an improper parti-
tioning and mapping may result in performance degradation.
Main identifiable reasons are irregular memory-access patterns
and the communication among cores which may reduce the
anticipated performance improvement.

Because of the growing gap between processor and memory
speed [3], it is becoming increasingly important to optimize
memory-access behavior of an application. Secondly, with the
growing number of cores, the degradation of performance
improvement exacerbates, as communication is typically more
time-consuming than computation. Hence, this communication

is considered as the major design challenge in multi-core
architectures[4] and a major source of energy consumption[5].

Another important concern is the growing complexity of
programs as the demand of processing is increasing in var-
ious computing domains. Hence, program analysis tools are
required to highlight the hot spots and/or bottlenecks of the
programs pertaining to the architecture at hand [4]. Apart from
intra-function memory-access patterns, these tools should also
provide the inter-function data-communication information.

Profilers are program analysis tools which provide informa-
tion about various aspects of programs. For instance, number
and types of instructions, frequency of function calls, time
consumed per function call, etc. A lot of work is available
in literature for profilers that focus at the fine granularity of
instructions or at the coarse granularity of individual functions
[6], [7], [8]. Cache profiling, which is a kind of memory
profiling [9], has also been studied extensively. However,
very few tools exist which provide intra-application data-
communication information. Therefore, in this work our focus
is on memory profiling tools with a focus on those which pro-
vide intra-application data-communication information. Even
though there is no generally acknowledged classification of
memory profilers, we propose to organize the discussion based
on the following three aspects of profiling:
- Profiling objective (Section II)
- Profiling input (Section III)
- Profiling technique (Section IV)

The remainder of this paper is organized as follows. We
start by detailing the proposed classification in Section II,
Section III and Section IV. In Section V, we compare exist-
ing memory profilers which provide the data-communication
information. To the best of our knowledge, we have included
all the tools in this regard. Based on this study, we provide
some recommendations for the improvements of the existing
data-communication profilers or design of the future ones, in
Section VI. Finally, Section VII concludes the paper.

II. MEMORY PROFILERS BASED ON PROFILING OBJECTIVE

Based on the profiling objective, we further classify memory
profilers into four classes, namely, memory-access optimiza-
tion, memory debugging, dependence analysis and work-
load characterization, depicted in Figure 1. Furthermore,
memory-access optimization profilers are further classified

978-1-4673-9994-4/15/$31.00 c©2015 IEEE

Memory Profiling
Objective

Memory Access
Optimization

Memory
Debugging

Workload
Characterization

Dependence
Analysis

Cache/Locality
 Profiling

Communication
Profiling

Comm. Profiling
for Shared

Memory Systems

Architecture
Dependent

Comm. Profiling

Architecture
Independent

Comm. Profiling

Comm. Profiling
for Distributed

Memory Systems

Fig. 1. Classification of memory profilers based on profiling objective.

into cache/locality profilers and data-communication profiling.
The focus of this work is on profilers designed for memory-
access optimization. We believe that the other classes of
profilers have been discussed in other studies and a number
of example tools are available.

A. Memory profiling for memory-access optimization

Profilers in this class analyze performance issues related
to memory accesses in applications. For instance, the perfor-
mance of an application may suffer because of pure locality
of memory accesses. Cache/locality profilers can highlight the
parts of the application responsible for such behavior. Another
aspect of performance optimization is the communication
among the parts of applications running on separate homo-
geneous/heterogeneous cores. Data-communication profilers
provide such information and highlight communication related
performance bottlenecks.

1) Locality/cache profilers: In order to decrease the gap
between processor and main memory, small but very fast
memories, known as caches, are used. As the size of these
memories is small, only the most frequently used data can be
stored in these memories based on the prediction of the algo-
rithm in cache controller. Hence, analysis of cache behavior
is crucial to increase the performance of the programs, and/or
design new cache algorithms. Various tools exist which profile
applications to analyze cache behavior as listed in Table I. A
few well-known open-source tools are detailed below.

Cachegrind [10] is Valgrind tool which can detect first
and last level instruction and data cache misses for C/C++
programs. Cachegrind tracks cache statistics (I1, D1 and L2
hits and misses) for every individual line of source code
executed by the program. At program termination, it prints
a summary of global statistics, and dumps the line-by-line
information to a file. This information can then be used by an
accompanying script to annotate the original source code with
per-line cache statistics. KCachegrind, a visualization tool for
the profiling data generated by Cachegrind, is also available.

Oprofile [11] is a hardware dependent, open-source pro-
filing tool that works on recording events from hardware
performance measurement units. Apart from various other
performance events, it can sample events related to L1, L2
instruction and data caches to provide information about cache
hits/misses by an application on a certain platform.

NumaTOP [12] is an open-source tool for runtime memory
locality characterization and analysis of processes and threads
running on a NUMA system. It utilizes Intel hardware per-
formance counters sampling technologies to identify where
NUMA related performance bottlenecks reside. This perfor-
mance data is associated with Linux runtime information to
provide real-time analysis in a GUI on production systems.

2) Data-communication profilers: Memory profilers in this
class, profile applications to measure communication among
various parts of an application. These profilers are further
classified in to the following two classes.

a) Shared Memory Data-communication Profilers: Ta-
ble II provides a summary of such profilers. QUAD (Quanti-
tative Usage Analysis of Data) [21] provides dynamic infor-
mation regarding data usage between any pair of co-operating
functions in an application. This tool is based on Pin [25]
and it tracks the reads and writes to a memory location at
the granularity of byte. When a function writes to a memory
location, it is saved as a producer of this memory location in a
Trie data structure. The function reading this memory location
is called the consumer and by getting the information from
the Trie, a producer-consumer communication relationship is
established. Apart from providing the quantitative information
about the number of bytes, two other metrics are also reported.
The first metric is the number of unique memory addresses,
while the second metric is the number of data values uniquely
communicated from producer to consumer.

PINCOMM [22], [26] is a tool based on Pin [25] which
constructs Dynamic Data Flow Graph (DDFG) to report the
communication flow between various parts of the program.
The parts can be functions, data structures, threads etc. which
are represented on DDFG. The communication is reported in
the form of producer-consumer relationship. The information
can also be provided in terms of marked region in the code
which appear on the DDFG. These markers can also be used to
start and stop communication. The dynamic objects allocated
during the execution of the program are also detected to report
the communication through these objects.

CETA (Communication Extraction from Threaded Appli-
cations) [23] provides data-flow information between multiple
threads. Memory reads and writes are tracked at runtime using
Simics multiprocessor architecture simulator [27]. Hash table
is utilized to record the writing thread of an address. When
the read is performed the communication is updated in another
hash table. After the completion of simulation, Python scripts
report the collected information as a DOT graph.

Redux [24] is a Valgrind based tool for drawing the detailed
dynamic data flow graphs of programs. Because of these de-
tails, it can only be used for small kernels or parts of programs,
as discussed by authors. Secondly, the purpose of the tool as

TABLE I
CACHE/LOCALITY PROFILERS

Profiler Input Output CL/IDE Technique Based on Availability Supported Platform
Src/Binary Language ST/MT OS Architecture

Cachegrind[10] Binary NA MT Text Reports, CL, IDE DBI Valgrind Open-Src Linux, OSX Intel, AMD,
Graphical Reports Android PPC

Oprofile[11] Binary NA MT Text Reports CL HWC Arch. Perf. Open-Src Linux Intel, AMD,
Counters ARM, PPC, IBM

NUMATop[12] Binary NA MT Text Reports CL HWC Arch. Perf. Open-Src Linux IntelCounters (Intel PMU)

Dprof[13] Binary NA MT Text Reports CL HWC Arch. Perf. Open-Src Linux AMDCounters (AMD IBS)

Zoom[14] Binary NA MT Graphical Reports CL, IDE HWC Arch. Perf. Free Linux, OSX Intel, AMD,
Counters Windows ARM

Vtune[15]
Src for detailed C, C++, C#, Java

MT Graphical Reports CL, IDE HWC, DBI
Arch. Perf. Commercial Linux, Win Intelgraphical Fortran, OpenMP, Counters (Intel PMU),

reports MPI, OpenCL Pin (Intel)
Graphical Program Src for detailed C, C++, MT Graphical Reports CL, IDE SBI ATOM Commercial Tru64 IntelAnalysis Toolkit[16] graphical reports pthreads (HP)

Caliper[17] Src for detailed C, C++ MT Graphical Reports CL, IDE DBI - Commercial(HP) HP-UX HP Integrity
graphical reports Free(Non-Commercial) Servers

CodeXL [18](successor Src for detailed C, C++, MT Graphical Reports CL, IDE HWC Arch. Perf. Counters Commercial(AMD), Linux, Win AMD(of Code Analyst) graphical reports OpenCL (AMD IBS, TBS) Open-Src (Linux)

Visual Profiler[19]
Src for detailed C, C++, C#, C++ AMP,

MT Graphical Reports CL, IDE HWC
Arch.

Free Win Intel, AMDgraphical reports Visual Basic, Visual F#, Perf.
Java Script, OpenMP Counters

Solaris Studio[20] Src for detailed C, C++, OpenMP, MT Graphical Reports IDE HWC Arch. Perf. Counters, Free Solaris, SPARC,
graphical reports MPI, Java VampirTrace(MPI) RHEL X86-64

Src: Source, ST: Single Threaded, MT: Multi threaded, DBI: Dynamic Binary Instrumentation, SBI: Static Binary Instrumentation, CL: Command line, IDE: Integreted Development Environment, HWC: Hardware Counters,
IBS: Instruction Based Sampling, TBS: Time Based Sampling, PMU: Performance Monitoring Unit

TABLE II
DATA-COMMUNICATION PROFILERS

Profiler Input Output CL/IDE Technique Based on Availability Supported Platform
Src/binary Language ST/MT OS Architecture

QUAD[21] binary NA ST DOT, XML CL DBI Intel Pin Open-Src Win, Linux, Intel, ARMAndroid, OS X

Pincomm[22] binary NA MT CSV CL DBI Intel Pin Open-Src Win, Linux, Intel, ARMAndroid, OS X

CETA[23] binary NA ST DOT CL architecture Virtutech Open-Src Win, Linux Intelsimulation Simics

Redux[24] binary NA ST text CL DBI Valgrind Open-Src Linux, Android, Intel, AMD,
OS X ARM, PPC

Src: Source, ST: Single Threaded, MT: Multi threaded, DBI: Dynamic Binary Instrumentation, CL: Command line, IDE: Integreted Development Environment

reported by authors is to represent the computational history
of a program and not the communication behavior.

b) Distributed Memory Data-communication Profilers:
Message Passing Interface (MPI) [28] is a popular example
of distributed memory programming model. The MPI pro-
vides communication functionality between a set of processes
in a language independent way. This explicit communica-
tion is carried out through routines like MPI_send and
MPI_recieve. Various commercial [29], [20], [30] and well
maintained open-source [31], [32], [33], [34] tools exist which
track these routines to characterize communication in MPI
programs. We refer the reader to the comparative studies [35],
[36] for further details. We would like to highlight here that
these tools are not designed to provide the communication
profile of sequential applications. These tools are based on
the technique which requires MPI parallel program as input.
Hence, it only helps in validating the parallel program written
only in MPI, rather than constructing one.

III. MEMORY PROFILERS BASED ON INPUT APPLICATION

Memory profilers can take sequential or parallel application
as an input to provide the memory access behavior of an ap-
plication. Profilers also exist which can profile both sequential
and parallel applications.

A. Profiling sequential applications

Profilers in this class profile sequential applications for per-
formance analysis, report communication, trace bugs, detect
data-races etc. QUAD [21] is an example of such profilers.

B. Profiling parallel applications

Profilers in this class provide information about the memory
access behavior of the parallel applications. ParallelTracer
[37] is a trace-based performance analysis framework for
heterogeneous multicore systems. It instruments source code
to trace various events in the application. It is an extension of
Trace Collection and Trace Post Processing (TCPP) framework
[38]. Furthermore, pin based tools [39], such as Parallel
Amplifier, are available for the analysis and optimization of
parallel C/C++ programs.

IV. MEMORY PROFILERS BASED ON THE PROFILING
TECHNIQUE

Based on the technique, memory profilers are broadly
classified as static and dynamic analysis tools as shown in
Figure 2. Static analysis tools provide the information based
on the source-code without running the application. These
tools can predict the communication in regularly structured
programs. The polyhedral model is usually imposed in this
analysis to compute the communication and data-dependencies
analytically. For instance, the work presented in [40] uses

InstrumentationArchitecture
Simulation

Static
Analysis

Binary
Instrumentation

Dynamic
Binary

Instrumentation

Static
Binary

Instrumentation

Dynamic
Analysis

Hardware
Performance

Counters

Memory Profiling
Technique

Fig. 2. Classification of memory profilers based on profiling technique.

exact data-dependence analysis provided by the polyhedral
model to automatically explore the opportunities for communi-
cation/computation overlap. This kind of analysis is infeasible
for a large number of existing and emerging applications as
these programs have irregular structure. Furthermore, prob-
lems such as pointer analysis, is still very difficult, even
exponential-time algorithms do not always produce sufficiently
precise results [41].

Tools based on dynamic analysis collect information by
running the application in a simulator or on the target platform.
These are further classified as architecture simulation and
instrumentation. Architecture simulation involves modeling
a virtual computer system with CPU and memory hierar-
chy. SimpleScalar [42] is an example in this class, which
can simulate various architectures with non-blocking caches,
speculative execution, and state-of-the-art branch prediction.
A drawback of this technique is that it is computationally
intensive, which limit its use to small data inputs. Furthermore,
simulation with these small data inputs may not exhibit the
realistic memory-access patterns.

Binary instrumentation is a widely used instrumentation
technique in which an instrumentation tool injects instrumenta-
tion code to the compiled binary. This type of instrumentation
can be done statically or dynamically.

Static binary instrumentation was pioneered by ATOM [43].
ATOM organizes the final executable such that the application
program and user’s analysis routines run in the same address
space. Hence, there is a possibility to mix code and data in an
executable. Third Degree [44] and Graphical program analysis
toolkit [16] by HP are example of tools in this regard.

Dynamic binary instrumentation involves the dynamic com-
pilation of binary of an application to insert the instrumenta-
tion code anywhere in it. The program binary is instrumented
just before its execution. Examples of tools utilizing this
technique are QUAD [21] and PINCOMM [22], [26] which are
based on Pin [25]. Similarly, Memcheck [45] and Redux [24]
are examples of the tools based on Valgrind [46].

V. COMPARISON OF DATA-COMMUNICATION PROFILERS

Table III lists the profilers which can be utilized for
memory-access optimizations. To present a combined view,
this table depicts the classification of these profilers on the
all the three aspects of the proposed criteria. An important
observation that can be made from this table is that hardware
performance counters and dynamic binary instrumentation is
the most widely used technique utilized by these profilers.
Another observation is that most of the existing tools focus on
cache-access optimizations. Similarly, a number of tools exist
with perform communication profiling for distributed memory
systems where communication is explicit. However, very few
tools provide architecture independent data-communication
profiling information. Therefore, these tools are studied and
there strengths and weaknesses are discussed and compared
in this section.

Redux provides the communication information at a fine-
granularity of operations. Due to the amount of the details
involved, it can only be used for very small toy applications,
as discussed by authors.

Utilizing the architecture simulation as used by CETA, is
computationally intensive. To give reader an idea, Gem5 [48]
achieves a simulation speed of 200 KIPS. With this speed,
simulating a single core will take around 8 hrs. Hence, this
slow simulation speed limits the use of such tools to small
data inputs. Simulation with these small data inputs may not
exhibit the realistic memory-access and data-communication
patterns. Furthermore, it requires the design and develop-
ment of a cycle accurate simulator of these architectures as
CETAs implementation is necessarily specific to the processor-
architecture, simulator, and OS in use, as is also reported by
authors. Therefore, our focus in this comparison is limited to
QUAD and PINCOMM which are especially designed to pro-
vide data-communication information. A summary of various
characteristics of both the tools is provided in Table IV.

For the detailed comparison, we performed tests on a
2.66GHz Intel(R) Core(TM)2 Quad CPU with 12GB of
main memory. We used Pin v2.12 running on Ubuntu 12.04
LTS with Linux kernel 3.5.0− 45− generic.

A. Comparison of the Generated Profiles

Both QUAD and PINCOMM are based on Pin DBI frame-
work, hence are used as pintools. The binary of the application
to be profiled is given as an argument to the tool to generate
data-communication information.

PINCOMM generates a trace file which is processed by a Perl
script to generate user readable information. The advantage
of generating this trace file is that temporal aspect of data-
communication is preserved. In this way, various phases during
the application run can be characterized. The disadvantage
is that the size of this trace file grows very large for real
applications executed with realistic workloads.

QUAD provides output in the form of a dot graph and
XML file. The nodes represent the functions in the application
and edges correspond to the data-communication between
functions. In each communication relationship, the number

TABLE III
CLASSIFICATION SUMMARY OF MEMORY-ACCESS OPTIMIZATION PROFILERS BASED ON THE PROPOSED CRITERIA.

ST/MT
Profiling Technique

Architecture Static Binary Dynamic Binary Hardware
Simulation Instrumentation Instrumentation Counters

M
em

or
y-

ac
ce

ss
O

pt
im

iz
at

io
n

Pr
ofi

le
rs

Cache/ ST HP Graphical Cachegrind[10], Oprofile[11], Dprof[13], Zoom[14], NUMATop[12]
Locality + Program Vampir [30], Intel Vtune[15], AMD CodeXL[18],
Profilers MT Analysis Toolkit[16] HP Caliper[17] MS Visual Profiler[19], Oracle Solaris Studio[20]

Comm. Shared Arch. MT CETA[23] NUMATop[12], Intel Parallel Studio XE[29],
Depend AMD CodeXL[18], Nvidia NVVP[47]

Mem. Arch. ST QUAD[21], Pincomm[22], Redux[24]

Profilers
Indep. MT Pincomm[22]

Distributed MT TAU[31], mpiP[32], Scalasca[33], Vampir Toolset[30], TAU[31],
Memory periscope[34] Intel Parallel Studio XE[29], Oracle Solaris Studio[20]

TABLE IV
COMPARITIVE SUMMARY OF QUAD AND PINCOMM.

Category QUAD Pincomm

Input Binary Binary
Input Type ST ST/MT
Output dot, xml csv
Technique DBI DBI
Internal Data Structure Trie Hash table
Availability Open source Open source
Based on Intel Pin Intel Pin
Supported OS Win, Linux, OS X Win, Linux, OS X
Supported Architecture Intel, ARM Intel, ARM
Reported Metrics + (Bytes, UNMA, UNDV) - (Bytes only)
Profiling Granularity - (8-bit only) + (8,16,32,64-bit)
Execution-time Overhead + -
Memory-usage Overhead - +
Documentation + -

+ indicates profiler is better in this category

TABLE V
OVERHEAD COMPARISON OF QUAD AND PINCOMM

Domain Application Execution-time Overhead Memory-usage Overhead
QUAD Pincomm QUAD Pincomm

Img. Proc. canny 342.8 712.8 1209.3 204
KLT 1596.5 3580.2 751.3 152.5

SPLASH-2
ocean-NC 2503.1 3774.6 377.7 64.4

fmm 2100.8 2657.7 340.2 55.9
raytrace 2897.3 6690.7 361.3 61.3

Bio Inform. bwa-mem 1693.3 3765 410.5 73.5
Average 1855.63 3530.17 575.05 101.93

of bytes (Bytes), Unique Memory Addresses (UnMAs) and
number of Unique Data Values (UnDVs) are reported on the
edges. Furthermore, the intensity of the data-communication
is also depicted by the color of the edge in the descending
order of Red, Brown, Green etc.

QUAD only supports sequential applications while PIN-
COMM can also profile multi-threaded applications. Inter-
thread data-communication information can be utilized to see
the effect of parallelization and drive the mapping of threads
to cores for reduced inter-core data-communication.

B. Comparison of Overheads

Both the tools are utilizing dynamic analysis to report
the data-communication information, hence large overhead is
expected. In order to perform a comparison of the execution-
time and memory-usage requirements of QUAD and PIN-
COMM, we run the two profilers on the same machine to
generate the data-communication information. The execution-
time is the wall-clock time measured in seconds by the Linux
time utility. The memory usage is the peak resident set size

(VmHWM) measured in Mega Bytes (MB) by using the Linux
/proc/<pid>/status.

Table V details the execution-time and memory-usage over-
head of PINCOMM and QUAD. These results are provided
for applications from various domains as depicted in the
first two columns the table. The numbers in Columns 3 and
4 present the ratios of application execution-time with the
native application execution time. These numbers represent
the slow-down caused by the application execution because
of the profiling. For example, PINCOMM and QUAD slow the
execution of canny application by a factor of 712.8 and 342.8,
respectively. In order to compare the two profilers, Column 5
lists the ratio of the PINCOMM overhead compared to QUAD.
Similarly, Columns 6 and 7 report the memory-usage overhead
caused by profiling. Column 8 report the ratio of the QUAD
memory-usage overhead compared to the PINCOMM.

It can be seen from the results in Table V that, on the
average, PINCOMM has about 2 × higher execution-time
overhead than QUAD to generate the same information. Main
source of the overheads in these tools is the data-structure
which stores and retrieves the information about the producer
of a memory address. This data-structure is critical to the
performance of these tools as it is accessed on each memory
read/write performed in the application. In this regard, PIN-
COMM uses the STL map, whereas QUAD uses a Trie data-
structure. Access time increases linearly with the increase in
number of accesses for STL map, whereas, in the case of
Trie, it stays constant. This means the performance of STL
map suffers with the growing size of map, due to the growing
application complexity.

Second reason for the variation in overheads of these tools
is that PINCOMM writes the gathered information to the
disk, whereas QUAD keeps this information in the memory.
Therefore, on the average, the memory-usage of QUAD is
about 5 × higher than PINCOMM. This is because of the
space required for extra metrics reported by QUAD, which are
stored in the internal data-structure in the memory, resulting in
the higher memory-usage overhead than PINCOMM. In short,
QUAD makes a trade-off in order to be time-efficient, by
keeping information in the memory, while PINCOMM is space-
efficient as it commits the information to the disk.

VI. DISCUSSION AND RECOMMENDATIONS

In this section, we summarize some recommendations for
the improvements of existing data-communication profilers
and/or the design future ones based on the study in this work.

1) Reduction of overheads: Reducing the execution-time and
memory-usage is critical for the usability of the tools. This
implies the improvement of the following:
- Efficient trace collection by utilizing hardware perfor-
mance counters

- Efficient storage of producer consumer relationship
- Efficient design to shift computation from analysis to
instrumentation.

- Configurable Profiling granularity
2) Architecture independent communication characteriza-

tion: to support sequential applications as well.
3) Detection of communication patterns: Spatial and tempo-

ral data-communication information is important. This will
also provide insights in mapping the data-structure in an
application to the architecture memory hierarchy.

4) Source-code related profiling information: In order to
make the profile easily usable by programmers. This is
also important for the automation of communication-aware
optimizations of applications.

VII. CONCLUSION

Both the memory bottleneck and the multi-core trend create
the need for detailed data-communication profiling. In this
work, we have discussed various memory profilers, with
a deeper focus on data-communication profiling. We have
proposed a categorization of memory profilers based on the
profiling objective and profiling technique. In addition, we
have provided a detailed comparison of the existing data-
communication profilers. The important features of these
profilers have been extensively discussed. Furthermore, the
shortcoming in these tools are highlighted, which serve as
recommendations for the improvement of the existing and/or
the design of future data-communication profilers.

ACKNOWLEDGMENT

This research is partially supported by the Artemis EMC2
project (grant 621429), the Artemis Almarvi project (grant
621439) and the Artemis Crafters project (grant 295371).

REFERENCES

[1] M. Horowitz et al., “How scaling will change processor architecture,”
in ISSCC, 2004, pp. 132–133 Vol.1.

[2] Y. Taur, “Cmos design near the limit of scaling,” IBM Journal of
Research and Development, vol. 46, no. 2.3, pp. 213–222, March 2002.

[3] W. A. Wulf et al., “Hitting the memory wall: Implications of the
obvious,” SIGARCH Comput. Archit. News, vol. 23, no. 1, Mar. 1995.

[4] G. Martin, “Overview of the MPSoC design challenge,” in 43rd
ACM/IEEE DAC, 2006, pp. 274–279.

[5] S. Borkar et al., “The future of microprocessors,” Commun. ACM,
vol. 54, pp. 67–77, May 2011.

[6] B. Wun, Survey of Software Monitoring and Profiling Tools.
[7] J. Tong et al., “Profiling tools for fpga-based embedded systems: Survey

and quantitative comparison,” Journal of Computers, vol. 3, no. 6, 2008.
[8] S. L. Graham et al., “Gprof: A Call Graph Execution Profiler,” SIGPLAN

Not., vol. 17, no. 6, pp. 120–126, 1982.
[9] A. Jaleel et al., CMP$im: A Pin-Based On-The-Fly Multi-Core Cache

Simulator.
[10] N. Nethercote, “Dynamic binary analysis and instrumentation,” Ph.D.

dissertation, University of Cambridge, UK, Nov 2004.
[11] W. Cohen, “Multiple Architecture Characterization of the Build Process

with OProfile,” 2003. URL: http://oprofile.sourceforge.net

[12] Y. Jin, “Numatop: A tool for memory access locality characterization
and analysis,” https://01.org/numatop, 2013.

[13] A. Pesterev et al., “Locating cache performance bottlenecks using data
profiling,” ser. EuroSys, 2010, pp. 335–348.

[14] “Zoom by Rotate Right,” http://www.rotateright.com/zoom.
[15] “vTune by Intel,” http://software.intel.com/en-us/intel-vtune.
[16] “Program Analysis Toolkit by Hewlett Packard,”

http://h30097.www3.hp.com/developerstoolkit/tools.html.
[17] “Caliper by Hewlett Packard,” https://h20392.www2.hp.com/portal/

swdepot/displayProductInfo.do?productNumber=CALIPEREVAL.
[18] “CodeXL by AMD,” http://developer.amd.com/tools-and-sdks/

opencl-zone/codexl.
[19] “Visual Profiler by Microsoft,” http://msdn.microsoft.com/en-us/library/

aa969767%28v=vs.110%29.aspx.
[20] “Solaris Studio by Oracle,” http://www.oracle.com/technetwork/

server-storage/solarisstudio/overview/index-jsp-142272.html.
[21] S. Ostadzadeh, “Quantitative application data flow characterization for

heterogeneous multicore architectures,” Ph.D. dissertation, TU Delft,
Dec 2012.

[22] W. Heirman et al., “A communication profiler to optimize embedded
resource usage,” Annual Workshop on Circuits, Systems and Signal
Processing, 2009.

[23] A.-H. Liu et al., “Automatic run-time extraction of communication
graphs from multithreaded applications,” in CODES+ISSS, Oct 2006.

[24] N. Nethercote et al., “Redux: A dynamic dataflow tracer,” Electronic
Notes in Theoretical Computer Science, no. 2, pp. 149–170, Oct. 2003.

[25] C. Luk et al., “Pin: Building Customized Program Analysis Tools with
Dynamic Instrumentation,” in PLDI ’05. New York, NY, USA: ACM,
2005, pp. 190–200.

[26] W. Heirman et al., “PinComm: characterizing intra-application commu-
nication for the many-core era,” in ICPADS, Dec. 2010, pp. 500–507.

[27] P. Magnusson et al., “Efficient memory simulation in simics,” in
Simulation Symposium, Apr 1995, pp. 62–73.

[28] M. Snir et al., MPI-The Complete Reference, Volume 1: The MPI Core,
2nd ed. Cambridge, MA, USA: MIT Press, 1998.

[29] “Parallel Studion XE by Intel,” https://software.intel.com/en-us/
intel-parallel-studio-xe.

[30] A. Knpfer et al., “The vampir performance analysis tool-set,” in Tools
for High Performance Computing, 2008, pp. 139–155.

[31] “TAU Performance System,” cs.uoregon.edu/research/tau/home.php.
[32] “mpiP: Lightweight, Scalable MPI Profiling,” mpip.sourceforge.net.
[33] M. Geimer et al., “The scalasca performance toolset architecture,”

Concurr. Comput. : Pract. Exper., vol. 22, no. 6, pp. 702–719, 2010.
[34] M. Gerndt et al., “Automatic performance analysis with periscope,”

Concurr. Comput. : Pract. Exper., vol. 22, no. 6, pp. 736–748, 2010.
[35] I.-H. Chung et al., “MPI Performance Analysis Tools on Blue Gene/L,”

in SC, Nov 2006.
[36] H. Brunst et al., “Performance analysis of large-scale OpenMP and

hybrid MPI/OpenMP applications with vampir NG,” in OpenMP Shared
Memory Parallel Programming, 2008, vol. 4315, pp. 5–14.

[37] S. H. Hung et al., “Trace-based performance analysis framework for
heterogeneous multicore systems,” ser. ASPDAC ’10, 2010, pp. 19–24.

[38] S. H. Hung et al., “New tracing and performance analysis techniques
for embedded applications,” ser. RTCSA, 2008, pp. 143–152.

[39] M. Bach et al., “Analyzing parallel programs with pin,” Computer,
vol. 43, no. 3, pp. 34–41, Mar. 2010.

[40] S. Pellegrini et al., “Exact dependence analysis for increased communi-
cation overlap,” ser. LNCS, 2012, vol. 7490, pp. 89–99.

[41] M. D. Ernst, “Static and dynamic analysis: Synergy and duality,” in
WODA, Portland, Oregon, May 2003, pp. 24–27.

[42] T. Austin et al., “Simplescalar: an infrastructure for computer system
modeling,” Computer, vol. 35, no. 2, pp. 59–67, Feb 2002.

[43] A. Srivastava et al., “ATOM: a system for building customized program
analysis tools,” SIGPLAN, vol. 29, no. 6, pp. 196–205, Jun. 1994.

[44] “Third Degree by Hewlett Packard,” http://h30097.www3.hp.com/
developerstoolkit/tools.html.

[45] J. Seward et al., “Using valgrind to detect undefined value errors with
bit-precision,” in USENIX ATC, ser. ATEC ’05, 2005.

[46] N. Nethercote et al., “Valgrind: a framework for heavyweight dynamic
binary instrumentation,” SIGPLAN, vol. 42, no. 6, pp. 89–100, Jun. 2007.

[47] Nvidia, “Nvprof and nvvp, nvidia command-line and visual profilers.”
URL: http://docs.nvidia.com/cuda/profiler-users-guide

[48] N. Binkert et al., “The gem5 simulator,” SIGARCH Comput. Archit.
News, vol. 39, no. 2, pp. 1–7, Aug. 2011.

