
978-1-4673-9406-2/15/$31.00 c©2015 IEEE

Multiple Contexts in a Multi-ported VLIW Register
File Implementation

Joost Hoozemans, Jens Johansen, Jeroen van Straten, Anthony Brandon, Stephan Wong

Computer Engineering Lab, Delft University of Technology, The Netherlands
Email:{j.j.hoozemans, a.a.c.brandon, j.s.s.m.wong}@tudelft.nl

{j.johansen, j.vanstraten}@student.tudelft.nl

Abstract—The register file is an expensive component in
the design of any processor, especially, when considering the
additional ports that are needed to support multiple datapaths
within a wide-issue VLIW processor. In a recent work, these
additional resources were used to dynamically reconfigure the
register file to support a dynamically reconfigurable VLIW core.
The design can be perceived as a single 8-issue, two 4-issue, or
four 2-issue VLIW cores. Consequently, the multi-ported design
can operate in different modes, namely as one, two, or four
register files, respectively, corresponding to the active number of
cores. The implementation of the register file design on FPGAs
using Block RAMs still results in unused resources due to the
coarseness of the Block RAMs.

In this paper, we propose to re-purpose these unused BRAM
resources to additionally support multiple contexts next to earlier-
mentioned modes. In this manner, the 8-issue, 4-issue, and 2-
issue cores have access to 4, 2, and 1 contexts, respectively.
Consequently, we can avoid saving and restoring of the task states
in a multi-task environment, turning context switching from a
traditionally time-consuming event to an almost instantaneous
event. The advantage of this is the reduction of interrupt latency
and task switching latency, which are important in real-time and
embedded systems.

Our results show that our technique can improve interrupt
latency by a factor of 17.4× compared to using a software register
spill routine, depending on the behavior of the memory system.
Likewise, the task switching time can be improved by 6.7×.

I. INTRODUCTION

The ρ-VEX processor [1] is a dynamically reconfigurable
VLIW processor that can adapt its organization to the require-
ments of different workloads. One of its most important run-
time parameters is the issue-width that allows for adaptation
towards the ILP of the task(s) at hand. The design can be
configured as a single 8-way (1× 8-way), two 4-ways (2× 4-
way), four 2-way (4 × 2-way) VLIW processor core(s), or
combinations of those: e.g., two 2-ways and one 4-way. This
capability requires the design of an extensive register file to
support these different modes. In the worst case, the register
file must provide:

• 8 write ports and 16 read ports when running in the 1×8-
way mode

• 4 architecturally separate register files when running in
the 4× 2-way mode

This work has been supported by the Almarvi European Artemis project
nr. 621439.

To design a register file that satisfies these requirements we
use techniques such as Block RAM (BRAM) duplication and
a Live Value Table (LVT), which we will discuss in Section II.

A major drawback of the current design is the large resource
utilization. The BRAMs used to implement the register file on
the FPGA need to be duplicated multiple times to provide the
necessary amount of read and write ports. Every BRAM has a
capacity of 512 32-bit words (2KiB); however, the architecture
only requires 64 32-bit registers. Because of this, the resulting
design has an enormous storage capacity of which at most an
eighth is used by the processor in any particular configuration.

The design presented in this paper aims to convert the
drawback of the high BRAM usage of the register file for
wide-issue VLIW softcore processors into an advantage by
using the overcapacity to store different execution contexts.
The actual utilization of the BRAM storage capacity will in-
crease from 1

8 to 1
2 . Support for multiple contexts in hardware

relieves the core from having to spill and restore its entire
register file contents to and from memory in the event of a
task switch or interrupt. In a multi-tasking environment, this
concept changes task switches, which are traditionally very
time-consuming, into a virtually instantaneous event. Faster
context switching has advantages in numerous computing
scenarios, as it will increase responsiveness for interactive
workloads and improve interrupt latency and task switching
speeds in real-time systems. In the following, we illustrate
several cases in which our work can improve performance:

• Frequently used threads: Kernel threads, like schedulers,
must be frequently executed. In a traditional core im-
plementation, timers interrupt the core and trigger con-
text switching in order to execute such threads. In our
work, these threads can be maintained within the core
and thereby remove the need for context switching. For
example, an application is executing in the 8-issue mode
using 1 out of 4 contexts. When the scheduler needs to
execute, the current thread can be scheduled to run on a
4-issue core - this mode switch only takes several cycles
when using generic binaries [2]. In the remaining 4-issue
core, the execution of the scheduler can be resumed by
using its own context that remained “dormant” within the
core.

• Dynamic switching of execution by different cores: When
threads require more resources, e.g., when their ILP

increases, our processor design allows for it to claim
additional datapaths to execute the code more efficiently.
This does mean that another thread must be stalled for
a while. However, in our case, the context of the second
thread does not need to be saved into the memory and can
remain within the core until it is resumed. In the latter,
another context switching operation is saved.

• Context-cycling after cache misses: When our processor
is running in the 8-issue (4-issue) mode, it can have
up 4 (2) contexts stored within each core. This means
that when one thread is encountering a cache miss, thus
execution is stalled, the core can easily switch to another
thread (context) and continue execution, i.e., Switch-on-
Event Multi-Threading SoEMT.

• Embedded real-time systems with multiple tasks that
require stringent real-time constraints (e.g., control loops
with sensors and actuators). A single core can process
more events using multiple contexts [3]. Therefore, a
softcore can be used as microcontroller on an FPGA
which would save the designer from having to design
hardware circuits to handle some events or having to
resort to a multi-core system where distinct events are
handled by a dedicated core.

The register file of our ρ-VEX is a complex topic, as it is
also instrumental in supporting the core’s dynamic reconfig-
urability [4]. We limit the scope of this paper to evaluating the
benefits from multiple hardware contexts. It must therefore be
noted that the costs of this design (see Table I) are paid not
only for multiple contexts, but also to support the dynamic
reconfigurability. Our approach in this paper gives us a 17.4×
reduction in interrupt latency and 6.7× reduction in context
switching time.

II. BACKGROUND

The multi-ported register file is a challenging component in
the design of softcore VLIW processors. Wide-issue VLIW
processors like the ρ-VEX need register files with a large
number of read and write ports. The VEX instruction set
architecture (ISA) supports operations that use two source
registers and one destination register. Because of this, the
number of write ports required is equal to the issue-width,
and the number of read ports is equal to twice the issue-
width. Creating such complex register files using FPGA LUT
resources is very expensive and scales very poorly with the
number of ports. The reconfigurable ρ-VEX design and the
implementation of its multi-ported register file are introduced
in [5]. Moreover, in [6], the idea of using a Live Value Table
(LVT) is discussed that enables the use of banked memories
with duplication to create multi-ported BRAM memories. The
ideas presented in this paper are built upon a register file
design that is implemented using this technique. We will
discuss the concepts and challenges briefly in this section.

Creating RAM memories that have more read ports is
straightforward and achieved by duplicating the BRAM and
writing data into each block simultaneously. In this way, each
BRAM contains the same data, and their read ports can be

used independently of each other. Increasing the number of
write ports, however, is more difficult. Several solutions exist
in literature. The simplest solution is to divide the register
file into banks, each connected to one of the write ports [7].
This solution restricts the range of registers each write port
can write to and thus reduces the freedom the compiler has
to schedule instructions. Another solution introduced in [8]
increases the size of each bank to the original register file
size and renames the registers in between the compiler and
assembler. This solution enables a banked design with the
same scheduling freedom as an actual multi-ported register
file but utilizes a multiple of the number of registers. Note
that this technique does not necessarily require more BRAMs
since their size is a lot larger than the 64 registers specified
in the VEX ISA. It does, however, increase the number of
bits required to specify the source and destination registers in
instructions.

The register file used in the ρ-VEX uses the technique
introduced by [6]. This scheme also duplicates the register file
for each write port. However, instead of uniquely naming the
registers in each bank, a Live Value Table (LVT) keeps track
of which bank holds the most recent value of each register. It
uses this information to multiplex the right bank to the read
ports, as shown in Figure 1. The LVT needs to be implemented
as a multi-ported LUT based RAM because it still needs one
write port per register file write port. However, since it only
needs to hold a bank address, it is much narrower than the
original register file that the scheme seeks to replace. While
this technique enables the register file to be implemented
mostly with BRAMs instead of LUTs, it still scales poorly
with the number of ports. The number of BRAMs required is
equal to the product of the number of read and write ports. The
depth of the LVT scales linearly with the number of registers
in the register file while the width scales logarithmically with
the number of write ports. The number of ports required for
the LVT is equal to the number of ports on the register file.

III. RELATED WORK

In [9] the authors analyzed the high requirements that wide-
issue VLIW processors pose on the register file. They discuss
hypothetical FPGA primitives similar to existing BRAMs but
featuring many more read and write ports. These primitives
do not exist in current FPGAs, therefore, the use of large
BRAM or LUT-based structures is required to emulate this
behavior [6].

In [10], it is stated that “the context switch time is one of the
most significant overhead factors in any operating system” and
shows that high timer interrupt handling latency can impede
schedulability of real-time tasks. In [3], it is measured that
using a multi-threaded architecture with 4 register sets allows
an autonomous guided vehicle to run at a 28% higher velocity.
In [11], measurements were performed to quantify the interrupt
latency of several embedded Linux distributions running on a
Xilinx Microblaze.

There are numerous examples of processors which use
the concept of multiple register files to enhance the context

LVT
64

Entries
BRAM

MUX

Figure 1. Block diagram of register file implementation using multiple banks
of BRAMs. The green arrows indicate write ports, while the blue arrows
indicate read ports. The shaded area represents the portion of the BRAM
used for storing a single context.

switching time and interrupt latency in hardware. In [12],
comparisons are made (by means of simulations) between
increasing the number of cores and increasing the number of
register sets in terms of increasing performance for a parallel
workload. In [13], the MIPS architecture is extended by
duplicating the register file multiple times and adding special
instructions to switch between them when a context switch is
required. In [14], the authors propose a novel architecture,
which also supports holding multiple contexts in hardware
simultaneously, and extend it with a dedicated cache to hold
contexts to prevent spilling to main memory. Among other
things the effects of the additional contexts on interrupt latency
is investigated. Storing multiple contexts is also a requisite for
(Simultaneous) Multi-Threading (SMT) [15]. An example of a
VLIW processor with SMT support is the Itanium [16]. These
technologies target high-end ASIC processors while this work
targets the embedded (FPGA) domain.

The synthesizable ARPA-MT [17] and RTBlaze [18] proces-
sors also use SMT to improve schedulability and performance
for embedded real-time systems. However, all the resource
investments in this core are only used for SMT. The ARPA-
MT core has a single execution pipeline. The fetch and decode
circuits as well as the register file need to be duplicated for
each thread slot.

In contrast, the ρ-VEX uses the additional resources to
support: 1) a very wide VLIW to exploit ILP, 2) multiple
hardware contexts and 3) a multi-core configuration (in other
words, all contexts can be active and executing at the same
time). Therefore, it uses the additional resources in a more
efficient way compared to the previous work.

IV. IMPLEMENTATION

Figure 1 shows the implementation of a register file with
four write ports and eight read ports (4W×8R), using BRAMs
and an LVT. The 8W × 16R version would be 4 times as
large. The hatched area represents the part of the BRAM that
is actually used to store the 64 registers used by the ρ-VEX.
The figure shows that a large part of the BRAMs is unused.

LVT
256

Entries

0
1
2
3

0
1
2
3

0
1
2
3

0
1
2
3

0
1
2
3

0
1
2
3

0
1
2
3

0
1
2
3 0

1
2
3

0
1
2
3

0
1
2
3

0
1
2
3

0
1
2
3

0
1
2
3

0
1
2
3

0
1
2
3 0

1
2
3

0
1
2
3

0
1
2
3

0
1
2
3

0
1
2
3

0
1
2
3

0
1
2
3

0
1
2
3 0

1
2
3

0
1
2
3

0
1
2
3

0
1
2
3

0
1
2
3

0
1
2
3

0
1
2
3

0
1
2
3

MUX

Figure 2. Block diagram of register file implementation supporting multiple
contexts. Here the number of BRAMs is the same, but the LVT is larger.

Because the ρ-VEX can be configured as four independent
processors, it also needs four separate register files. However,
the total number of read and write ports is the same for one
large 8-issue processor or four separate 2-issue processors.
Because of this characteristic, the same multi-ported register
file can be used in each configuration. The number of registers,
however, needs to be quadrupled, for a total of 256 registers,
since each core needs a separate register file of 64 registers.
The BRAM resources on contemporary FPGA boards provide
more than sufficient storage capacity to accommodate this, so
there is no added cost in BRAM resources. However, the LVT
does need to increase in size, to keep track of the most recent
location of all 256 registers.

Figure 2 shows how the multiple contexts can be stored
in the previously unused space of the BRAMs. Creating four
separate register spaces is a necessary cost to enable the ρ-
VEX to be split into four separate processors. However, not
all of the register spaces are used when the core is configured
as a single 8-issue processor or two 4-issue processors. This
creates the opportunity to re-purpose these unused register
spaces as alternative register windows, which can be used
to store the register context of inactive processes. Since the
four register windows are implemented as a larger continuous
address space, the uppermost bits can be used to select one of
the four register windows.

The ρ-VEX utilizes more registers than just the 64 general
purpose registers. It also has the following registers, that must
be stored for a context switch:

1) A special 32-bit register used to store the return address
for a function call (the link register).

2) Eight 1-bit registers used for conditional branching.
3) The program counter.
4) Various control registers, used for example for interrupt

handling.
These registers cannot easily be stored in BRAMs, as the
control logic needs to be able to access all these registers at
once. Therefore, these registers are implemented in LUTs. To
support running as 4 × 2-issue processors, all these registers
need to be duplicated as well, and can thus be used as part of

task A
context

save

pipeline

!ush

context

restore
scheduler task B

task A scheduler task B

interrupt latency

context switching latency

interrupt latency

context switching latency

Software

Context Switching

Hardware

Context Switching

Figure 3. Context switching and interrupt latency definition.

the hardware contexts. Some additional hardware is required
to use these registers for context switching, as not every lane
would necessarily need access to all duplicates of the registers
for reconfiguration only, while this is necessary for context
switching. However, when this is done, the only registers
which need to be spilled and restored are those registers which
are used by the context switching routine, or scheduler itself.
Because the additional hardware cost is small, our context
switching design incorporates this feature.

A hardware context switch is not entirely free in terms of
cycles in the current ρ-VEX design. To avoid complicating
the forwarding logic, context switches are only possible when
the pipeline is empty. Because the ρ-VEX has a five stage
pipeline, five cycles are needed to flush the pipeline before a
context switch can occur. In addition, the context switches are
currently controlled by the dynamic reconfiguration controller,
which takes three additional cycles to decode and commit
a new configuration. Two of these are spent still executing
instructions in the old context.

V. EXPERIMENTAL SETUP

Our measurements are carried out using the ρ-VEX VLIW
softcore processor clocked at 37.5 MHz running on a
Xilinx ML605 development board, which incorporates an
XC6VLX240T Virtex 6 FPGA. We use a timer connected
to the interrupt request input of the processor to generate
interrupts at different rates to measure the impact of our
approach on the performance of the system.

We quantify the impact on performance by measuring two
different values, namely:

1) Interrupt Latency: The number of cycles elapsed be-
tween the moment an interrupt request is received by
the core, and the first instruction of the interrupt handler
being executed.

2) Context switching latency: The number of cycles elapsed
between the moment a context switch is requested (due
to an interrupt), and the first instruction being executed
in the new context.

Figure 3 shows what these latencies are made up of, namely:
pipeline flushing, saving context registers, running the inter-
rupt service routine (in our case the task scheduler), and finally
restoring the context registers. By using hardware contexts the

latency of saving and restoring registers can be eliminated.
We measured these quantities by creating a workload of
four programs. At every timer interrupt a scheduler selects a
different program to execute, and performs the context switch
to that program. The programs themselves have no impact on
the measurements, since they are purely dependent on the time
it takes to save and restore all context registers.

In order to measure the difference between hardware and
software context switching, we wrote a software and a hard-
ware context switching routine. The software version saves the
complete context to the stack of the currently running task,
stores the stack pointer to a predefined memory location, and
starts executing the interrupt handler. The interrupt handler
then calls the scheduler in order to schedule the next task. The
current stack pointer is then replaced with the stack pointer
of the new task. Next, the application context of the newly
selected task is restored from the stack, after which control is
handed back to the application. The hardware switch routine
does not need to save or restore all registers. Instead it only
has to do so for the registers used by the interrupt routine, in
this case the scheduler.

The scheduler utilizes a linked list in memory to determine
which task to switch to; each entry representing a task, with a
mapping to another task. When a task completes, the linked list
is rebuilt such that the context switching code does not switch
back to the completed task, and a context switch is requested
immediately using a software trap instruction. When the last
task completes, it signals completion to the platform.

Because cache behavior will impact the latencies for saving
and restoring the contexts we perform the measurements for
different memory access latencies. We measure using latencies
from 0 (single cycle memory access) to 30 cycle memory
access on cache miss. The cache itself consists of a separate
instruction and data cache, respectively 32KiB and 8KiB in
size. The size has intentionally been kept small, because the
programs under test had to be small as well for the entire
memory to fit on the FPGA; it is assumed that, under normal
circumstances, larger caches will be used, but the running
programs will also use wider regions of more memory. Both
caches have single-cycle hit latency for reads. The data cache
has a two-cycle latency for writes for both hits and misses, as
long as one of the four write buffers is vacant.

To evaluate the context switching overhead in multi-process
time-sharing systems, overall performance of the multi-task
system is tested on hardware using the cached system. The
timer is used to generate an interrupt at a fixed frequency, often
referred to as the system “tick,” in which a context switch is
performed. Clearly, the context switching overhead is directly
related to the frequency of the system tick [10]. The frequency
of the tick is usually in the order of 50 to 1000 Hz. A lower
frequency will lead to lower switching overhead, but higher
frequencies will result in a more responsive system. Systems
that require more responsiveness will therefore have a higher
tick frequency. For example, the Linux kernel uses a system
tick of 1000 Hz for desktop systems, but this can be reduced
to 100 Hz for server systems to reduce overhead. On the other

Table I
RESOURCE USAGE OF REGISTER FILE WITH AND WITHOUT SUPPORT FOR

MULTIPLE CONTEXTS.

Register File
1 Context 4 Contexts Core Increase

over Core
Slice Registers 806 1392 8529 6.9%
Slice LUTs 10764 15591 35148 13.7%
RAMB18E1 128 128 147 0%
RAMB36E1 0 0 128 0%

hand, the Windows kernel uses 66 Hz. The frequency is varied
between tests to evaluate its effect. In addition, the system is
evaluated with varying bus latencies. The latencies used are
estimates of what the average latency would be for a real off-
chip memory system.

A cycle counter available within the ρ-VEX processor is
used to measure the time from system reset to the program
completion signal, which is given by the task switching
implementation when all tasks have completed. For each timer
and memory system configuration, both context switching
implementations are evaluated. Because all other factors are
kept constant, the difference in total execution time is only
dependent on the context switching overhead. The speedup
between the baseline and hardware context switching imple-
mentations is then determined to quantify this overhead.

VI. RESULTS

In Table I we show the increase in resource utilization of
the register file when adding support for four contexts. As
expected the number of BRAMs used does not increase. Only
the number of registers and LUTs increases, since these are
used to implement the LVT. While these increases seems
large, when compared to the total usage of the core they
are less significant. Additionally, note that this increase in
resources in the register file is required to support the dynamic
reconfigurability of the processor.

As we can observe in Table II, the interrupt latency is 87
cycles for software context switching. The interrupt latency
when using hardware contexts is only 5 cycles, solely due to
the pipeline flush performed by the trap handling logic. A full
context switch, i.e., the time between a tick interrupt request
and the execution of the first instruction in the new context,
takes 174 cycles using the software implementation, compared
to 26 cycles using the hardware contexts.

Table II
INTERRUPT AND CONTEXT SWITCHING LATENCY WITH SINGLE-CYCLE

MEMORIES IN CYCLES.

Software Hardware Reduction

Interrupt Latency 87 5 17.4×
Context Switch Latency 174 26 6.7×

In Table III, we can observe the results of the same
experiments run using a cached memory system, with a bus
latency of 20 cycles. We observe that the improvement due

1.0

1.1

1.2

1.3

0 250 500 750 1000 1250
Task Switching Frequency (Hz)

Sp
ee

du
p

Bus Latency

0

10

20

40

Figure 4. Speedup of the multi-task system due to the hardware context
switching implementation.

to the hardware context switching is greater in this system,
with the improvement in interrupt latency increasing from
17.4 to 23.5×, and the improvement of context switching time
increasing from 6.7 to 14.8×.

Table III
INTERRUPT AND CONTEXT SWITCHING LATENCY WITH CACHE AND 20

CYCLES BUS LATENCY IN CYCLES.

Software Hardware Reduction

Interrupt Latency 16798 713 23.5×
Context Switch Latency 31861 2148 14.8×

Figure 4 shows the speedup for different frequencies of the
timer tick parameterized for different memory latencies, as
measured on hardware using the cached system. It can be seen
that in the region of higher task switching frequencies the
difference between hardware and software context switching
can be quite substantial depending on the memory system. A
speedup of over 1.3× can be achieved for a bus latency of 40
cycles at a switching frequency of 1280 Hz.

VII. CONCLUSIONS

The concept of using additional register files to speed up
multi-threading performance has been applied in numerous
designs in the past. In this paper, we apply the concept to
an existing design, exploiting the overcapacity of the BRAMs
in the existing implementation of the multi-ported register
file and the additional logic required by the parameterized
reconfigurability of the ρ-VEX softcore. We have demon-
strated that the proposed design can decrease the interrupt
latency by a factor of over 20 times in a realistic environment.
Likewise, the total context switching time can be decreased by
a factor of over 10 times. In a simple multi-task system the
effect of this is apparent as the decrease in overhead results
in a speedup of 1.3× in the most extreme case evaluated.
For applications with few real-time requirements, where the

system tick frequency would be relatively low, the speedup is
negligible, as the task switching code would not be executed
as often. However, embedded real-time systems that need to
process large numbers of events will benefit most from the
improvements.

REFERENCES

[1] S. Wong and F. Anjam, “The Delft Reconfigurable VLIW Processor,”
in 17th International Conference on Advanced Computing and Commu-
nications, 12 2009, pp. 244–250.

[2] A. Brandon and S. Wong, “Support for dynamic issue width in VLIW
processors using generic binaries,” in Design, Automation Test in Europe
Conference Exhibition (DATE), 2013, March 2013, pp. 827–832.

[3] U. Brinkschulte, C. Krakowski, J. Kreuzinger, and T. Ungerer, “Interrupt
service threads-a new approach to handle multiple hard real-time events
on a multithreaded microcontroller,” RTss WIP sessions, Phoenix, pp.
11–15, 1999.

[4] F. Anjam, M. Nadeem, and S. Wong, “Targeting code diversity with
run-time adjustable issue-slots in a chip multiprocessor,” in Design,
Automation Test in Europe Conference Exhibition (DATE), 2011, March
2011, pp. 1–6.

[5] S. Wong, F. Anjam, and F. Nadeem, “Dynamically Reconfigurable
Register File for a Softcore VLIW Processor,” in Design, Automation
Test in Europe Conference Exhibition, March 2010, pp. 969–972.

[6] C. LaForest and J. Steffan, “Efficient Multi-ported Memories for FP-
GAs,” in Proceedings of the 18th Annual ACM/SIGDA International
Symposium on Field Programmable Gate Arrays, ser. FPGA ’10. ACM,
2010, pp. 41–50.

[7] M. Saghir and R. Naous, “A Configurable Multi-ported Register File
Architecture for Soft Processor Cores,” in Reconfigurable Computing:
Architectures, Tools and Applications, ser. Lecture Notes in Computer
Science, vol. 4419, 2007, pp. 14–25.

[8] F. Anjam, S. Wong, and F. Nadeem, “A Multiported Register File
with Register Renaming for Configurable Softcore VLIW Processors,”
in International Conference on Field-Programmable Technology (FPT),
2010, Dec 2010, pp. 403–408.

[9] M. Purnaprajna and P. Ienne, “Making Wide-issue VLIW Processors
Viable on FPGAs,” ACM Trans. Archit. Code Optim., vol. 8, no. 4, pp.
33:1–33:16, Jan. 2012.

[10] G. Buttazzo, Hard Real-time Computing Systems: Predictable Schedul-
ing Algorithms and Applications. Springer, 2011, vol. 24.

[11] A. Ronnholm, “Evaluation of Real-Time Operating Systems for Xilinx
MicroBlaze CPU,” Master’s thesis, Malardalens University, 6 2006.

[12] R. Thekkath and S. Eggers, “The Effectiveness of Multiple Hardware
Contexts,” SIGOPS Oper. Syst. Rev., vol. 28, no. 5, pp. 328–337, Nov.
1994.

[13] N. Rafla and D. Gauba, “Hardware implementation of context switching
for hard real-time operating systems,” in 2011 IEEE 54th International
Midwest Symposium on Circuits and Systems (MWSCAS), , Aug 2011,
pp. 1–4.

[14] K. Tanaka, “PRESTOR-1: a Processor Extending Multithreaded Ar-
chitecture,” in Innovative Architecture for Future Generation High-
Performance Processors and Systems, 2005, Jan 2005.

[15] D. M. Tullsen, S. J. Eggers, and H. M. Levy, “Simultaneous multithread-
ing: Maximizing on-chip parallelism,” in ACM SIGARCH Computer
Architecture News, vol. 23, no. 2. ACM, 1995, pp. 392–403.

[16] R. Riedlinger, R. Bhatia, L. Biro, B. Bowhill, E. Fetzer, P. Gronowski,
and T. Grutkowski, “A 32nm 3.1 billion transistor 12-wide-issue itanium
processor for mission-critical servers,” in Solid-State Circuits Conference
Digest of Technical Papers (ISSCC), 2011 IEEE International, Feb 2011,
pp. 84–86.

[17] A. Oliveira, L. Almeida, and A. de Brito Ferrari, “The arpa-mt embedded
smt processor and its rtos hardware accelerator,” Industrial Electronics,
IEEE Transactions on, vol. 58, no. 3, pp. 890–904, March 2011.

[18] T. P. Wijesinghe, “Design and implementation of a multithreaded
softcore processor with tightly coupled hardware real-time operating
system,” Master’s thesis, 2008. [Online]. Available: http://search.
proquest.com/docview/250936948?accountid=27026

