A Sparse VLIW Instruction Encoding Scheme
Compatible with Generic Binaries

Anthony Brandon*, Joost Hoozemans!, Jeroen van Straten!, Arthur Lorenzon®, Anderson Sartor¥,
Antonio Carlos Schneider Beck!l, Stephan Wong**

Computer Engineering Lab
Delft University of Technology

Email: {a.a.c.brandon*, j.j.hoozemans, j.s.s.m.wong**} @tudelft.nl,

j-vanstraten @ student.tudelft.nl*

Abstract—Very Long Instruction Word (VLIW) processors are
commonplace in embedded systems due to their inherent low-
power consumption as the instruction scheduling is performed
by the compiler instead by sophisticated and power-hungry
hardware instruction schedulers used in their RISC counterparts.
This is achieved by maximizing resource utilization by only
targeting a certain application domain. However, when the
inherent application ILP (instruction-level parallelism) is low,
resources are under-utilized/wasted and the encoding of NOPs
results in large code sizes and consequently additional pressure
on the memory subsystem to store these NOPs.

To address the resource-utilization issue, we proposed a dy-
namic VLIW processor design that can merge unused resources
to form additional cores to execute more threads. Therefore, the
formation of cores can result in issue widths of 2, 4, and 8.
Without sacrificing the possibility of code interruptability and
resumption, we proposed a generic binary scheme that allows a
single binary to be executed on these different issue-width cores.
However, the code size issue remains as the generic binary scheme
even slightly further increases the number NOPS.

Therefore, in this paper, we propose to apply a well-known
stop-bit code compression technique to the generic binaries that,
most importantly, maintains its code compatibility characteristic
allowing it to be executed on different cores. In addition, we
present the hardware designs to support this technique in our
dynamic core. For prototyping purposes, we implemented our
design on a Xilinx Virtex-6 FPGA device and executed 14
embedded benchmarks. For comparison, we selected a non-
dynamic/static VLIW core that incorporates a similar stop-bit
technique for its code compression.

We demonstrate, while maintaining code compatibility on top
of a flexible dynamic VLIW processor, that the code size can
be significantly reduced (up to 80%) resulting in energy savings,
and that the performance can be increased (up to a factor of
three). Finally, our experimental results show that we can use
smaller caches (2 to 4 times as small), which will further help in
decreasing energy consumption.

I. INTRODUCTION

VLIW processors exploit ILP by means of a compiler,
which statically analyzes the code and builds large instruction
words (bundles) composed of instructions (syllables) that will

This work has been supported by the Almarvi European Artemis project
nr. 621439.

Institute of Informatics
Universidade Federal do Rio Grande do Sul
Email: {alorenzon§, alsartorﬂ, cacoH}@inf.ufrgs.br

execute in parallel. Since the compiler takes the burden of
finding parallelism, VLIW processors occupy less area and
dissipate less power when compared to superscalar processors.
However, one of the major drawbacks of traditional VLIW
processors is the large code size [I]. Because of this, in-
struction cache misses are more likely for VLIW processors
when compared to conventional processors for a given cache
size. Consequently, there will be more accesses to the main
memory, which has higher delay and needs even more energy
when compared to cache memories [2]. One solution would be
increasing the cache size. However, this will also significantly
increase the power dissipation, as several studies [3], [4] show
that the energy consumption of the cache subsystem accounts
for over 50% of the overall chip.

One reason for the large code size is the canonical in-
struction format that dictates the location of the syllables
within each instruction word to correspond with the location
of the functional units in the different datapaths. Consequently,
unused datapaths must be issued NOPs that in turn must
be encoded. One way to address this issue is to loosen the
relationship between the instruction encoding and the datapath
locations at the expense of having a more complex instruction
decoder/scheduler. An intermediate solution maintains the
canonical nature but encodes all NOPs at the end of an
VLIW word with a single bit, the stop bit. These solutions
reduce the code size and, consequently, reduce the pressure
on the instruction cache (I-cache), reduce the number of I-
cache misses, improve the performance of an application, and
reduce energy consumption.

The code size issue is mainly due to the low inherent
parallelism of the application, i.e., it is not possible to fill
all parallel slots of a VLIW word. The nature of VLIW archi-
tectures automatically translates this issue into underutilized
hardware resources. The p-VEX processor was introduced to
deal with this low resource utilization by either power gating
of datapaths to lower power consumption or merge datapaths
together to form additional cores to execute parallel threads
(if any). This capability allows the dynamic version of the
p-VEX to switch at run-time between 2-, 4-, and 8-issue
modes. One of the key innovations of the p-VEX processor

is the introduction of the generic binary [5] that maintain
code compatibility among different (dynamic) configurations
of the processor allowing the code to be executable on any
configuration (2-, 4-, or 8-issue) and interruptable at any point.
The generic binary “suffers” from the same fate as their static
counterparts when considering the code size.

In this paper, we propose a modified version of the variable
length instruction bundle technique, which can be applied to
the generic binaries of the dynamic VLIW processor (p-VEX).
We also show how this compression technique leverages the
current dispatch hardware and extra functional units to make
its implementation more straightforward. More specifically,
our approach is to apply the sparse instruction encoding
(supported by the ISA of the processor) to the dynamic VLIW
by using functional units required for supporting dynamic re-
configuration in order to reduce the complexity of dispatching
sparse instruction bundles. In conclusion, we are proposing a
new approach for code size reduction that marries the benefits
of a well-known technique with the dynamic characteristics
of the p-VEX processor. For comparison purposes, we use
a static (non-reconfigurable) VLIW with an implementation
of sparse instruction encoding similar to that found in the
st200 [1]. The result is twofold: code sizes are reduced, and
the difference in performance and energy between the static
and dynamic versions decreases (slightly decreasing the price
paid for adaptability).

Our contributions in this paper are:

« We implement support for the variable length instruction
bundle, based on stop bits, in the dynamic p-VEX core
to decrease code size, while maintaining compatibility for
generic binaries, and therefore the run-time adaptability.

« By leveraging the additional functional units and dispatch
logic already present, we show that the extra hardware
complexity and overhead needed are insignificant.

o We compare the proposed approach to the non-dynamic
version (with and without code compression) of the same
processor, which is similar to a processor from the indus-
try (STmicroelectronics’ st200 VLIW). We demonstrate
that the code compression is highly efficient in both
versions, and that in most cases the dynamic version with
compression has almost the same performance and energy
consumption as the static one.

Comparing the dynamic version with and without the pro-
posed technique, we achieve a code size reduction of over
50%, resulting in cache performance equivalent to that of a
cache up to 4 times larger. Additionally, we can save up to
63% on energy consumption, while a maximum speedup of 3
times can be obtained in the best case.

II. RELATED WORK

Conventional VLIW implementations had major drawbacks
in the form of low instruction encoding efficiency (a large
fraction of the code consisted of NOPs), which, together with
the large number of operations that can be needed in a single
cycle, resulted in enormous memory bandwidth requirements

for instruction fetching. In order to address this issue, several
approaches have been proposed:

e Instruction mask bits. The MAIJC architecture [6] from
Sun Microsystems exploits the parallelism at multiple lev-
els: instruction, data, thread and process, through vertical
and speculative multithreading, and chip multiprocessing.
Mask bits indicate how many and what type of operations
the instruction contains. In [7] and [&], the authors use a
mask word that encodes which operations are present in
the following bundle.

e Instruction template bits. These templates are used to
limit code size, helping to decode and route the instruc-
tions, as used in the Itanium [9] and TM3270 media-
processor [10]. The latter uses the templates to determine
the compression of the next bundle, which relaxes the
timing requirements of the decoding process.

o Stop-bits. A bit is reserved in each syllable, indicating
whether it is the last syllable in a bundle or not, as
presented in [1 1], [12], [13], [14], and [15].

However, none of the above-mentioned approaches are
directly applicable to a dynamically reconfigurable VLIW
processor. In order to apply variable length instruction bun-
dle encoding to the p-VEX, we implement an extension of
the stop-bit approach, which makes it suitable for variable
issue widths, therefore maintaining the processor’s dynamic
adaptability.

III. IMPLEMENTATION

We will compare our implementation of sparse instruction
encoding in a dynamic core to an existing encoding scheme
applied to a static core. Both schemes are based on the stop-
bit approach. The dynamic core is run-time reconfigurable in
the number of datapaths. It can be configured as an 8-, 4-, or
2-issue core, whereas the static core has a fixed issue-width
of 4 because the st200 toolchain which we use to compile
applications for it only supports 4-issue.

A. Shared requirements

A number of properties are required by both cores. They
will be outlined here and the precise implementations will
be discussed in their respective sections. To support a sparse
encoding, the hardware must support the following:

« Instruction bundles of variable length. That is, the loca-
tion of the stop-bit determines which syllables should be
executed, and also impacts the calculation of the next
Program Counter (NextPC).

« Instruction bundles that cross a cache line boundary. An
instruction buffer is used to store the relevant parts of the
previous cache line to accommodate this in both designs.

B. Static Core

1) Overview: The VEX ISA is very closely related to
STmicroelectronics’ st200/Lx [11]. Both use an instruction
encoding scheme with the following restrictions [16] that help
to reduce the complexity of the fetch hardware [17]:

o Branch operations must be the first syllable in a bundle.

PC =0 mod 8 PC =4 mod 8
>

I Br M

-— 4 |—
4
M 4= Mul I
‘¢ 2
— ’ —
7\’

I N Mul M

— v/, -
4
M Mem I Mem

Fig. 1. Possibilities for the dynamic issue hardware using the st200 encoding
scheme for bundles stored on even (left) and odd (right) word addresses.

e Multiplication operations must be stored at odd word
addresses. This also restricts the number of multiplication
operations to two per bundle.

o Long immediate extensions must be stored at even word
addresses.

Considering these restrictions, the next section discusses the
hardware modifications necessary for the implementation of
the encoding technique.

2) Hardware: As opposed to the st200 implementation,
our instruction cache does not support unaligned accesses and
the core is designed to be generic (design-time configurable).
To be generic, the design is very “lane-oriented”, because
the number of execution lanes or “datapaths” is generic, and
every lane can be configured with multiple functional units
(load/store, branch, ALU, and multiplication unit).

The first step in order to enable variable sized instruction
bundles in the design is to add support for unaligned in-
struction cache accesses and bundles that cross a cache-line
boundary. To this end, we add an instruction buffer between
the cache and the fetch unit. This adds an additional stage
to the datapath, increasing the branch delay by one cycle.
The instruction buffer is similar to the design discussed in
Section III-C2a.

The second step is to add dispatching logic that can send
each syllable to a datapath that contains the functional unit
that can execute the syllables operation type. The hardware
required to fully support this can be quite complex. When
every datapath needs to be able to accept an operation from
any syllable slot in a bundle, a full crossbar is required [14].
Fortunately, the restrictions in the encoding scheme reduce
this routing complexity to the diagram depicted in Fig. 1.
The figure shows the locations of the MEM (load/store),
MUL (multiplication) and BR (branch) units. Each datapath
also contains an ALU, which is not depicted. The figure
also depicts whether each syllable slot can contain a long
immediate extension (I) or a multiplication (M) for even or
odd instruction bundle start addresses. The arrows show which
lanes it is possible to dispatch a particular syllable to. The
dotted arrows depict an indirect requirement that is needed
when two operations need to be swapped (e.g., if a MEM
operation is located in syllable 0 and an ALU operation is
located in slot 3, they will need to be swapped as the MEM

TABLE I
LAYOUT OF FUNCTIONAL UNITS IN AN 4-ISSUE DYNAMIC p-VEX.

| Datapath 0 | Datapath 1 | Datapath 2 | Datapath 3 |

ALU ALU ALU ALU
MUL MUL MUL MUL
MEM BR MEM BR

unit is located in datapath 3).

3) Discussion: As we can see in Fig. 1 the dispatch logic
for a 4-issue core is already quite complex. Expanding the
dispatch hardware discussed in this section to an 8-way VLIW
would complicate the circuitry even more. The complexity
would increase considerably, but not exponentially, because
not all of the functional units (e.g. load/store, branch) are
duplicated when doubling the issue width. As we will see in
the following sections, our approach in the dynamic p-VEX
core is able to dispatch operations with simpler logic that can
be more efficiently scaled to an §-way VLIW.

C. Dynamic Core

1) Overview: The dynamic core consists of multiple datap-
aths, which are divided into groups of two. Each datapath has
a fixed set of functional units. Each group of two datapaths
can function as a separate VLIW core, or can be combined
with adjacent groups to form a larger VLIW core. In order to
allow this, each group of two datapaths must have a functional
unit layout that is identical to that of the the other groups.
Additionally, to allow each datapah group to function as a
separate VLIW core, each group must have a load/store unit
and a branch unit. However, when the groups are configured to
combine into a 4-issue VLIW, these additional load/store and
branch units go unused. For example, the layout of functional
units in each datapath is shown in Table I for a 4-issue
configuration. By using this arrangement of functional units
we are able to support sparse instruction encoding without
decoding logic to dispatch instructions to different functional
units.

2) Hardware: In addition to the requirements mentioned in
Section III-A, in order to support sparse instruction encoding
in the dynamic core, we also require the next PC calculation
to be able to support dynamic switching of issue-width. This
means that it should be possible to calculate either a single
address, or multiple addresses based on the core configuration.
Additionally, unlike in the static core, branch instructions must
be able to appear in any lane to maintain the single/multiple
core adaptability.

a) Instruction Buffer: When using sparse instruction
encoding, bundles no longer have a fixed size. Because of
this, the cache line size is no longer divisible by the bundle
size, which means that instruction bundles can cross cache line
boundaries. We handle this by fetching the next cache line and
storing the previous one in a buffer in order to complete the
instruction bundle.

Fig. 2 shows a diagram of the instruction buffer. Each lane-
group has a register to store the previously fetched syllables

Previous fetch Current fetch

Group 0
> register
Lane 0
Group 0 —
ICache Group 0
>—<{ Lane 1 I
Group 1
> register
Lane 2
Group 1 —
ICache Group 1
Lane 3
Fig. 2. This figure shows how the instruction buffer is implemented for a

4-issue dynamic core consisting of two lane groups.

(two syllables per group). The muxes select which syllable
goes to which datapath based on the current configuration of
the core (2-, 4-, or 8-issue), and the least significant bits of the
program counter. The gray lines indicate paths that are only
used when the core is configured in 4-issue mode. The dotted
line indicates a path which would be used if the core were in
8-issue mode.

The instruction buffer registers are loaded whenever a new
fetch address is sent to the cache. This can be determined by
comparing the least significant bit of the current and previous
fetch address, reducing the size of the required comparator
significantly. Note that when a branch to an unaligned address
occurs, the syllables in the instruction buffer are undefined.
Additional logic is present in the branch unit to stall the core
for an extra cycle in this case, during which an additional
instruction fetch is performed in order to fill the instruction.
This additional stall could adversely affect performance if it
occurs often enough.

The muxes that select between the previously fetched data
and the current fetched data are controlled by signals based on
the current configuration (2-issue, 4-issue, or 8-issue) and the
LSBs (Least Significant Bits) of the Program Counter (PC).
For the case where the core is configured as the largest possible
configuration (all lane-groups work together as one core) the
mux select signals are equal to the least significant bits of the
Program Counter.

b) Address Calculation: When using variable sized in-
struction bundles, the next value of the program counter
depends on the size of the current fetched instruction bundle.
This complicates the calculation of the next PC, which can
now be PC + 4, 8, 12 or 16 (for a 4-issue VLIW). We deal
with this by splitting the calculations into two parts:

o Calculation of the least significant bits (depicted in Fig. 3)
is done for each lane to determine what the least signif-
icant bits would be if the instruction bundle ended in a
particular lane. In each lane, a value corresponding to
a different instruction bundle size is added to the least
significant bits of the PC. For example, if the stop-bit is
in the first instruction, that means the instruction bundle
size is 4 bytes, and 4 is added to the PC. Additionally, the

Group 0
PC add f_'_\ Lane 0
value (4) —»\J Disable
lane
Stop bit
PC add /-l—\ Lane 1
value (8) —»\J Disable
fane
pC —— 0170 h
Stop bit 01/
Next PC
Next fetch
Connect address
groups
Group 1

PC add value __|

> 2
(4 or 12) Lane 2

PC add value __|

8or16 ¢
8 orl6) Lane 3 > Next PC

> Next fetch
address

PC —

Fig. 3. This figure shows how the LSB of the next PC and next fetch address
are calculated in each lane.

“align up” adder rounds up the calculated least significant
bits to a cache line boundary. This will be used for the
next fetch address.

e The most significant bits of the next PC are calculated
in each branch unit (for the 4-issue configuration used in
this paper that would be lanes 1 and 3). Finally, the least
and most significant bits are combined to form the next
PC based on the final position of the stop bit.

By splitting the program counter calculation in this way, we
only need four 27-bit adders to calculate the most significant
bits, of which only two are used in 4-way mode, and eight
3-bit adders for the least significant bits, instead of needing
eight 32-bit adders.

c) Branch Instruction Dispatch: As mentioned in [5],
generic binaries require that the branch instruction is always
the last in a bundle, rather than the first. This requirement is in
place to ensure that the bundle will still be executed completely
by a core running in a 2-way configuration (otherwise, the
syllables following the branch would be skipped because of
the branch). In order to support this, additional logic is present
to route the last instruction in a bundle to the last coupled
lane if it is a branch instruction, so only one physical branch
resource is used for executing branch instructions.

Because instruction bundles can now cross cache line
boundaries, it is possible that after a branch only part of the
next instruction bundle is fetched. The hardware detects this
by checking if one of the fetched syllables (starting from the
branch target address) has a stop-bit set. If not, the core stalls
while the second part of the bundle is fetched. This means that
for unaligned branches the branch delay is two cycles instead
of one, which can cause performance degradation.

TABLE 11
THE RESOURCE USAGE ON THE FPGA FOR THE DYNAMIC CORE WITH
AND WITHOUT STOP-BIT IMPLEMENTATION.

Resource | Original | Stop-bit | Increase

Registers 30153 30537 1.3%

Luts 61927 62379 0.7%

BRAMs 125 125 0.0%
IV. RESULTS

We evaluated four different versions of the processors: static
baseline, static with stop-bit, dynamic baseline, and dynamic
with stop-bit — all of them in their 4-issue configurations.
We use the 4-issue configurations to provide a fair comparison
between the static and dynamic cores. The difference between
dynamic and static versions is that the binaries for the former
are compiled as generic binaries. We considered instruction
cache sizes ranging from 1KiB to 32KiB. These sizes were
chosen so that at the largest cache size each of the programs
fits in the instruction cache entirely.

The designs are implemented in VHDL and prototyped on
a Xilinx Virtex 6 FPGA (ML605 Development board). With
these prototypes, we use performance counters to determine
the number of cache accesses, misses, and the number of
running cycles. The cache stall time is 16 cycles per 4-byte
bus access. We use the Cadence Encounter RTL Compiler
to obtain power dissipation in ASIC (Application Specific
Integrated Circuit), using a 65nm CMOS cell library from
STMicroeletronics. The energy consumption of the memory
subsystem was calculated with the Cacti Tool [18].

We use applications from the Powerstone benchmarks [19].
All sources are compiled with the HP VEX compiler [20]
and assembled with either the p-VEX port of GNU as, or our
modified version of the st200 assembler. The dynamic stop-
bit versions are assembled with alignment turned off, so that
instruction bundles are not padded at all. Since the processor
lacks floating point operations, we use the floatlib library
included with the HP VEX compiler (based on Berkeley
SoftFloat [21]).

A. FPGA Resource usage

Table II shows the resource usage of the dynamic core on the
FPGA. It shows that the increase is only 1.3% for the number
of registers and 0.7% for the number of lookup tables. As we
will show in the following sections, with this small increase
in area we achieve significant improvements in performance,
energy, and code size.

B. Code Size Reduction and Instruction Cache Miss Rate

In Table III, we show the reduction in code size for each of
the 14 benchmarks used. We can see that the average reduction
is around 50%. The reductions for the dynamic core in 8-way
configuration are included for reference, and are even more
extreme. These reductions will impact the cache behavior. In
Fig. 4, we show the cache miss rates for the two different
cores with and without sparse instruction encoding. The results

TABLE III
THE CODE SIZE REDUCTION FOR EACH OF THE BENCHMARKS.

Program code size reduction
static dynamic dynamic
4-way core | 4-way core | 8-way core
adpcm 49% 48% 73%
bent 35% 38% 64%
blit 47% 45% 67%
compress 53% 51% 74%
crc 48% 48% 71%
des 42% 44% 68%
engine 57% 54% 77%
fir 60% 54% 76%
g3fax 58% 55% 76%
jpeg 53% 51% 73%
pocsag 55% 51% 74%
qurt 67% 65% 82%
ucbgsort 57% 54% 76%
v42 56% 53% 75%
average 53% 51% 73%
64.00 - ¥
— i ‘
o .
XX 16.00 - ¢ s .
g
o]
o
7
=
©
=
&
O 0.06 = 3 s s s
=
0.02 + + . ‘ .
| | | | | |
1 2 | 8 16 32

Cache Size (KiB)

Dynamic Baseline ==== Dynamic Stopbit

Static Baseline == Static Stopbit

Fig. 4. Cache miss percentage for the dynamic and static cores, both with
and without sparse instruction encoding for different instruction cache sizes.
The dots represent the individual benchmarks, whereas the lines represent the
average miss percentage for a particular configuration.

show that both designs achieve a similar reduction in cache
misses. In fact, with sparse instruction encoding the miss rates
are similar to those of canonical encoding with a cache almost
four times as large. This might seem like a larger improvement
than expected, since the code size was only reduced by half.
However, because loops account for a majority of the executed
instructions, code size reduction that allow an entire loop body
to fit into the cache will have a disproportionate impact on the
cache miss rate.

C. Execution Time

Fig. 5 shows the speedup in execution time achieved for
both the dynamic and static cores. We can see that for larger
cache sizes, the execution time of some benchmarks is larger

16 =

Speedup

I I I I I I
8 16 3

1 8
Cache Size (KiB)

NS}

Dynamic Core Static Core

Fig. 5. Speedup for stop-bit implementation for different instruction cache
sizes. The lines represent the average speedup for a particular cache size.

with sparse instruction encoding than without. This is because
at those cache sizes the entire application fits in the cache,
and the reduction in cache misses is offset by the penalty
of having a longer branch delay. This could be remedied by
inserting alignment NOPs to ensure that branch targets are
always aligned, at the cost of an increase in cache misses.

In the same figure we also observe that for very small
instruction cache sizes, the speedup is not as significant as
it is for intermediate sizes. This is caused by the fact that the
reduction in cache misses for intermediate cache sizes is far
larger than for small cache sizes, as seen in Fig. 4.

Fig. 6 shows the normalized execution times for the dy-
namic core. The baseline is the average of the worst execution
time of each application individually, executing on the dy-
namic baseline design with a cache size of 1KiB. This figure
shows, for instance, that for smaller cache sizes, the dynamic
stop-bit implementation performs equivalent to the dynamic
version without stop-bit with a cache between 2 and 4 times
larger.

D. Energy Results

Fig. 7 presents the total energy consumed by each of
the benchmarks. The lines show the geometric mean of all
applications at each cache size. We can see that for small
cache sizes, due to the additional hardware required to support
reconfiguration, the dynamic core consumes more energy than
the static core. However, at large cache sizes the different
designs are closer together in terms of energy consumption.

Fig. 8 depicts the energy consumption of the dynamic
core relative to that of the static core (values greater than
1 mean that the static version consumes less energy than the
dynamic one). We can see that the baseline dynamic design
consumes far more energy at small cache sizes, whereas when

3
|

0.50 =

Execution Time (Normalized)
;I(

I I I I I I
1 2 4 8 16 32
Cache Size (KiB)

Dynamic Baseline Dynamic Stopbit

Fig. 6. Normalized execution times for the dynamic core

1048576 +
262144 . O O
@ 65536 |
)
é 16384 $———__
E‘- 4096 S e e S—
E 1024 |] §
U 256 | 1 1 | |
E L] L] L] L] L
E 64
16
4
1 T T T T T
1 2 4 8 16 32
Cache Size (kiB)
Dynamic Baseline —#— Static Baseline
—e—Dynamic Stopbit ~ —#— Static Stopbit
Fig. 7. Energy consumption for each of the benchmarks at different cache

sizes.

using sparse instruction encoding the designs consume similar
amounts of energy.

As one can observe, the huge difference in energy consump-
tion between the static and dynamic versions is significantly
decreased when using the proposed stop-bit approach. Most
notably, both processors consume approximately the same
amount of energy at larger cache sizes. It means that one can
take advantage of all the adaptability that the dynamic version
provides, with limited additional costs in terms of energy.

V. CONCLUSION

In this paper, we extended the stop-bit technique for sparse
instruction encoding to a dynamically reconfigurable VLIW
processor. We showed that, by implementing this technique,

4.0
Baseline

3.5 . .
= = = Stopbit

3.0

’ \
Y
2.5 Bl

5 N AN
“

220 ~ —
= ===

15 >

R

1.0 Rk e

0.5

0.0 ; ; ; ; ;

1 2 4 8 16 32

Cache Size (kiB)

Fig. 8. Relative energy consumption between the static and dynamic cores
(dynamic/static) at different cache sizes.

we reduce the cost of reconfigurability in terms of energy
consumption and the performance overhead of cache misses.
This is achieved without sacrificing the code compatibility of
the generic binary and we thereby maintain full (dynamic)
adaptability of the core. Using this technique, we bring the
energy consumption of the dynamic core closer to that of the
static design. Our results show that using the stop-bit technique
in the dynamic core we can achieve similar performance and
energy consumption with up to 4x smaller I-caches.

We do notice that for some applications at certain cache
sizes the performance with stop-bit is slightly lower than
without stop-bit due to the increased branch delay. Therefore,
for future work we will investigate the effect of ensuring
that branch target addresses are always correctly aligned. This
would result in a slight increase in cache misses but also a
decrease in delays due to branches.

REFERENCES

[1] P. Faraboschi, G. Brown, J. Fisher, G. Desoll, and F. Homewood, “Lx:
a technology platform for customizable vliw embedded processing,”
in Computer Architecture, 2000. Proceedings of the 27th International
Symposium on, June 2000, pp. 203-213.

[2] V. A. Korthikanti and G. Agha, “Towards optimizing energy costs
of algorithms for shared memory architectures,” in Proceedings
of the Twenty-second Annual ACM Symposium on Parallelism
in Algorithms and Architectures, ser. SPAA ’10. New York,
NY, USA: ACM, 2010, pp. 157-165. [Online]. Available: http:
//doi.acm.org/10.1145/1810479.1810510

[3] C. Zhang, F. Vahid, and W. Najjar, “A highly configurable cache
for low energy embedded systems,” ACM Trans. Embed. Comput.
Syst., vol. 4, no. 2, pp. 363-387, May 2005. [Online]. Available:
http://doi.acm.org/10.1145/1067915.1067921

[4] W. Wang, P. Mishra, and S. Ranka, “Dynamic cache reconfiguration and
partitioning for energy optimization in real-time multi-core systems,” in
Proceedings of the 48th Design Automation Conference, ser. DAC "11.
New York, NY, USA: ACM, 2011, pp. 948-953. [Online]. Available:
http://doi.acm.org/10.1145/2024724.2024935

[5] A. Brandon and S. Wong, “Support for dynamic issue width in vliw
processors using generic binaries,” in Design, Automation Test in Europe
Conference Exhibition (DATE), 2013, March 2013, pp. 827-832.

[6]

[7]
[8]

[9]
[10]

(11]

[12]

[13]

[14]

[15]

[16]
(17]

[18]

[19]

[20]
[21]

M. Tremblay, J. Chan, S. Chaudhry, A. W. Conigliaro, and S. S. Tse,
“The majc architecture: A synthesis of parallelism and scalability,” IEEE
Micro, vol. 20, no. 6, pp. 12-25, 2000.

Instruction storage method with a compressed format using a mask word,
www.google.com/patents/US5057837.

S. Jee and K. Palaniappan, “Performance evaluation for a compressed-
vliw processor,” in Proceedings of the 2002 ACM symposium on Applied
computing. ACM, 2002, pp. 913-917.

H. Sharangpani and K. Arora, “Itanium Processor Microarchitecture,”
IEEE Micro, pp. 24-43, Sep. 2000.

J.-W. van de Waerdt, S. Vassiliadis, S. Das, S. Mirolo, C. Yen, B. Zhong,
C. Basto, J.-P. van Itegem, D. Amirtharaj, K. Kalra et al., “The TM3270
media-processor,” in Proceedings of the 38th annual IEEE/ACM Inter-
national Symposium on Microarchitecture. IEEE Computer Society,
2005, pp. 331-342.

J. A. Fisher, P. Faraboschi, and C. Young, Embedded Computing: A
VLIW Approach to Architecture, Compilers, and Tools. 500 Sansome
Street, Suite 400, San Francisco, CA 94111: Morgan Kaufmann Pub-
lishers, 2005.

Method and apparatus for sequencing and decoding variable length
instructions with an instruction boundary marker within each instruction,
http://www.google.com/patents/US5881260.

A. Suga and K. Matsunami, “Introducing the {fr500 embedded micro-
processor,” Micro, IEEE, vol. 20, no. 4, pp. 21-27, 2000.

T. M. Conte, S. Banerjia, S. Y. Larin, K. N. Menezes, and S. W. Sathaye,
“Instruction fetch mechanisms for VLIW architectures with compressed
encodings,” in Microarchitecture, 1996. MICRO-29. Proceedings of the
29th Annual IEEE/ACM International Symposium on. 1EEE, 1996, pp.
201-211.

B. Hubener, G. Sievers, T. Jungeblut, M. Porrmann, and U. Ruckert,
“Coreva: A configurable resource-efficient vliw processor architecture,”
in Embedded and Ubiquitous Computing (EUC), 2014 12th IEEE
International Conference on. 1EEE, 2014, pp. 9-16.

ST231 Core and Instruction Set Architecture Manual.

Instruction fetch apparatus for wide issue processors and method of
operation, http://www.google.com/patents/US7028164.

S. Thoziyoor, J. H. Ahn, A. Monchiero, J. B. Brockman, and N. P.
Jouppi, “A comprehensive memory modeling tool and its application to
the design and analysis of future memory hierarchies,” in Proc. 35th
International Symposium on Computer Architecture (35th ISCA’08).
Beijing: ACM SIGARCH, Jun. 2008.

Powerstone Benchmarks, http://www.cprover.org/goto-cc/examples/
index.php.

The HP VEX toolchain, http://www.hpl.hp.com/downloads/vex/.
http://www.jhauser.us/arithmetic/SoftFloat.html.

http://doi.acm.org/10.1145/1810479.1810510
http://doi.acm.org/10.1145/1810479.1810510
http://doi.acm.org/10.1145/1067915.1067921
http://doi.acm.org/10.1145/2024724.2024935
www.google.com/patents/US5057837
http://www.google.com/patents/US5881260
http://www.google.com/patents/US7028164
http://www.cprover.org/goto-cc/examples/index.php
http://www.cprover.org/goto-cc/examples/index.php
http://www.hpl.hp.com/downloads/vex/
http://www.jhauser.us/arithmetic/SoftFloat.html

	Introduction
	Related Work
	Implementation
	Shared requirements
	Static Core
	Overview
	Hardware
	Discussion

	Dynamic Core
	Overview
	Hardware

	Results
	FPGA Resource usage
	Code Size Reduction and Instruction Cache Miss Rate
	Execution Time
	Energy Results

	Conclusion
	References

