
High Performance and Resource Efficient Biological Sequence

Alignment

Laiq Hasan Zaid Al-Ars Mottaqiallah Taouil

Computer Engineering Laboratory, Delft University of Technology,

Mekelweg 4, 2628 CD, Delft, The Netherlands

E-mail: L.HASAN@TUDELFT.NL

Abstract—In this paper, we present a novel method based
on hardware partitioning to reduce the execution time and
improve the resource utilization of biological sequence align-
ment, resulting in a higher performance as compared to
conventional approaches. The paper shows that the method
reduces the execution time and improves the resource utilization
up to 33.3%. Further, equations are derived, showing the
general trend of execution time reduction, resource utilization
improvement and hence performance enhancement.

Index Terms—Bioinformatics, Sequence Alignment, Smith-
Waterman Algorithm, High Performance, Resource Utilization

I. INTRODUCTION

Sequence alignment is an essential activity in Bioinfor-

matics, used to identify regions of similarity between DNA

or protein sequences [1], [2]. The similarity may be a conse-

quence of functional , structural or evolutionary relationship

between the sequences [3]. Various methods are available

for local and global sequence alignments [4]. Heuristics

based approaches like BLAST, FASTA and HMMER [5],

[6], [7] are fast, but they do not guarantee an optimal

alignment. Although slow in aligning long sequences, the

Smith-Waterman (S-W) algorithm [8], based on dynamic

programming (DP) [9], is a method that finds an optimal

local alignment between two DNA or protein sequences (the

query sequence Nq and the subject sequence Ns).

Work has been done on accelerating the S-W algorithm in

hardware [10], [11], [12], [13], [14], where the main focus

is on full scale implementation, i.e. utilizing the maximum

available processing elements (PEs) on a given platform.

Such implementations improve the performance in terms of

cell updates per second, but increase the hardware overhead

cost as a consequence. The reason is that the number of

unused PEs increases with the increasing length of the query

sequence (Nq).

In this paper, we present a novel method based on hard-

ware partitioning to reduce the execution time and improve

the resource utilization, resulting in a higher performance as

compared to other traditional approaches.

The remainder of the paper is organized as follows:

Section II presents the method to reduce the execution time

and improve the resource utilization by hardware partition-

ing. Section III presents generalized equations to reduce the

execution time, improve the resource utilization and hence

enhance the performance. Section IV concludes the paper.

II. HARDWARE PARTITIONING

For the S-W local alignment, a matrix Hi,j is used to keep

track of the degree of similarity between the two sequences

to be aligned i.e. Nq and Ns. Each element of the matrix

Hi,j is calculated according to the following equation:

Hi,j = max















0
Hi−1,j−1 + Si,j

Hi−1,j − d

Hi,j−1 − d

(1)

where Si,j is the similarity score of comparing sequence

Nq to sequence Ns and d is the penalty for a mismatch.

Figure 1 shows the data flow graph and resource utilization

of the S-W hardware implementation, where the length of the

query sequence (Nq) is the same as the number of PEs (N ).

Figure 1(a) shows that the elements in each operation (anti

diagonal) are computed in parallel, as they are independent

of each other. In Figure 1(b), each row shows the number

of PEs available during each operation, whereas the solid

black cells represent the number of PEs utilized. Clearly,

not all PEs are utilized in the startup and final phase of the

calculation, resulting in an increasing overhead cost.

In the following subsections, the method based on hard-

ware partitioning to minimize this overhead cost is presented,

leading to reduced execution time, improved resource uti-

lization and hence an enhanced performance. Subsection II-

A presents the theoretical concept behind the method and

Subsection II-B shows an example to elaborate the method.

A. Theoretical concept

A parallelized S-W algorithm requires Ns + Nq − 1
operations for computing the entire Hi,j matrix [15]. Since

every operation performed by one S-W PE takes time TPE ,

the total execution time is given by,

Texec = (Ns + Nq − 1)× TPE

where TPE = CPE×Tcycle, such that CPE is the number

of cycles consumed by 1 PE and Tcycle is the cycle time.



��������	
�����	
������ ��
��
�
�
��
�
��
��
��
��
�
�
��
�

�
�
�
�	
��
�
��

	

��
��
�

� � � �

�

�

 

�

�

�

�

�

�

 

!�����	�����

!�������	�����

Fig. 1. Number of operations and PEs utilization during each operation

�������������

��������������������

����	
������

������	�	������������	�	������

�� ��

��

�����������������������������	���	
���	
���������	����

������	�	��������������������������������������������	����

Fig. 2. 2-sequence alignment (a) Sequential (b) Partitioned and in parallel

If two query sequences (Nq1 and Nq2) need to be aligned

one after the other against the same subject sequence (Ns),

as shown in Figure 2(a),

then the execution time becomes,

Texec1 = (2Ns + N − 1)× TPE (2)

where Nq1 = Nq2 = The nubmer of PEs (N)
The resource utilization ratio for this case is,

Utilization ratio =
PEs utilized

PEs available

=
2Ns ×N

(2Ns + N − 1)×N
=

1

1 + N−1

2Ns

(3)

Figure 2(b) shows that each query sequence is partitioned

into two parts and is processed in two passes, in parallel

with the other. The number of PEs utilized by each query

sequence is half its size, and is given as,

N
′

=
Nq1

2
=

Nq2

2
= N

2

The execution time for this case is given by,

Texec2 = (2Ns + N
′

− 1)× TPE (4)

The resource utilization ratio for this case is,

Utilization ratio =
2Ns ×N

′

(2Ns + N
′

− 1)×N
′

=
1

1 + N
′
−1

2Ns

(5)

B. Example of the process

Figure 3 shows an example, where,

Nq1 = Nq2 = Ns = N = 4, N
′

= 2

��

���

���

���	
��	���

�� ��

�������
�
�����

�
�
�

�
�
�

�������
�
�����

�
�
�
��
��
�
��


�
�

�
�
�
��
��
�
��


�
�

�
�
�
��
��
�
��


�
�

�
�
�
��
��
�
��


�
�

�
������	���	���	��� �
������	���	���	���

��
������	���

Fig. 3. 2-sequence alignment example (a) Sequential (b) Partitioned and
in parallel

Figure 3(a) depicts the case, where two query sequences

(Nq1 and Nq2) are aligned one after the other, against the

same subject sequence (Ns). The solid black cells in Figure

3(a) represent the data flow and PEs utilization for Nq1,

whereas the light gray cells for Nq2. In Figure 3(b), the

hardware is split in two equal partitions such that the two

query sequences are aligned in parts and in parallel with

each other, against the same subject sequence (Ns). The solid

black cells in Figure 3(b) represent the data flow and PEs

utilization for Nq1, whereas the light gray cells for Nq2.

% Time reduction =
Texec1− Texec2

Texec1

=
(2Ns + N − 1)× TPE − (2Ns + N

′

− 1)× TPE

(2Ns + N − 1)× TPE

=
N −N

′

2Ns + N − 1

(6)

Substituting values in Equation 6 results in 18.18% reduction

in the execution time.

Substituting values for the given example in Equation 3,

Utilization ratio = 1

1+
4−1

2×4

= 0.73 = 73%

Similarly, substituting the same values in Equation 5,

Utilization ratio = 1

1+
2−1

2×4

= 0.89 = 89%

Thus 16% better resource utilization ratio is achieved by

applying the hardware partitioning method.

In practice, the lengths of the query and subject sequences

are 500 characters long in most cases [16]. To evaluate

a practical case, consider Nq1 = Nq2 = Ns = N =
500, N

′

= 1. Substituting these values in Equation 6,

a 33.3% reduction in the execution time is achieved. To



evaluate the resource utilization improvement, the values

are substituted in Equations 3 and 5, showing thereby an

improvement of 33.3% in resource utilization.

III. GENERALIZING THE HARDWARE PARTITIONING

METHOD

To generalize the method, consider P number of query

sequences that needs to be aligned against the same subject

sequence (Ns), such that the length of each query sequence is

equal to the number of available PEs (N ). Figure 4(a) depicts

the case, where P query sequences are aligned one after the

other against Ns. Here 1 ≤ P ≤ i, such that i > 1 is an

integer. Figure 4(b) shows that the hardware is partitioned

into Q parts such that P query sequences are aligned in

parts and in parallel with the others, against the same Ns.

The number of PEs utilized by each query sequence in this

case is, N
′

=
Nq1

Q
=

Nq2

Q
= ... =

Nqi

Q
= N

Q

�����������������������������

�	������
��	������
�

�������������������������

������������������������������

�� ��

��

���������������������������������� ���������������!����!���� ���������

������������������������������������ ����������������� ���������

������� �	������
�

���������������

��

Fig. 4. P -sequence alignment (a) Sequential (b) Partitioned and in parallel

The execution time becomes,

Texec = (P ×Ns + N
′

− 1)× TPE (7)

Table I shows the execution time in microseconds for

various number of query sequences (Ps) and valid number

of hardware partitions (Qs), such that P is divisible by Q.

The execution time is computed as per Equation 7, where

Nq = Ns = 500 and TPE = 10 ns. The table demonstrates

that the execution time decreases with the increasing number

of hardware partitions (Qs), for all Ps.

Figure 5 shows execution time reduction by applying the

hardware partitioning for various number of query sequences

(Ps). The Texec versus Q curves, shown in the figure for

various number of Ps, demonstrate that the execution time

decreases with the increasing number of hardware partitions,

where Texec is computed as per Equation 7.

The resource utilization ratio is given by,

Utilization ratio =
P ×Ns ×N

′

(P ×Ns + N
′

− 1)×N
′

=
1

1 + N
′
−1

P×Ns

(8)

where the utilization ratio is dependent on the N
′

−1

P×Ns
term.

The smaller the N
′

−1

P×Ns
term, the better the resource utiliza-

tion. The N
′

−1

P×Ns
term in itself decreases with the increasing

2 4 6 8 10 12
60

61

62

63

64

65

Number of hardware partitions (Q)

T
e
x
e
c
 i
n
 m

ic
ro

s
e
c
o
n
d
s P = 12

5 10 15
90

91

92

93

94

95

Number of hardware partitions (Q)

T
e
x
e
c
 i
n
 m

ic
ro

s
e
c
o
n
d
s P = 18

5 10 15 20
100

101

102

103

104

105

Number of hardware partitions (Q)

T
e
x
e
c
 i
n
 m

ic
ro

s
e
c
o
n
d
s P = 20

5 10 15 20
120

121

122

123

124

125

Number of hardware partitions (Q)

T
e
x
e
c
 i
n
 m

ic
ro

s
e
c
o
n
d
s P = 24

Fig. 5. Execution time reduction by hardware partitioning

number of hardware partitions (i.e. decreasing N
′

), so an

increasing number of hardware partitions leads to a better

resource utilization, as shown in Figure 6. The figure demon-

strates that the resource utilization ratio improves with the

increasing number of hardware partitions for various number

query sequences (Ps), where the resource utilization ratio is
computed as per Equation 8.

1 2 3 4 5 6
0.85

0.9

0.95

1

Number of hardware partitions (Q)

R
e
s
o
u
rc

e
 u

ti
liz

a
ti
o
n
 r

a
ti
o

P = 6

2 4 6 8
0.85

0.9

0.95

1

Number of hardware partitions (Q)

R
e
s
o
u
rc

e
 u

ti
liz

a
ti
o
n
 r

a
ti
o

P = 8

2 4 6 8 10
0.9

0.92

0.94

0.96

0.98

1

Number of hardware partitions (Q)

R
e
s
o
u
rc

e
 u

ti
liz

a
ti
o
n
 r

a
ti
o

P = 10

2 4 6 8 10 12
0.9

0.92

0.94

0.96

0.98

1

Number of hardware partitions (Q)

R
e
s
o
u
rc

e
 u

ti
liz

a
ti
o
n
 r

a
ti
o

P = 12

Fig. 6. Resource utilization improvement by hardware partitioning

Table II shows the resource utilization ratio for various

number of query sequences (Ps) and valid number of

hardware partitions (Qs), such that P is divisible by Q.

The resource utilization ratio is computed as per Equation

8, where Nq = Ns = 500. The table demonstrates that

the resource utilization ratio improves with the increasing

number of hardware partitions (Qs), for all Ps.



TABLE I

Execution time (Texec) in µsec for various number of query sequences (Ps) and hardware partitions (Qs)

H
H

H
H

P

Q
1 2 3 4 5 6 8 9 10 12 18 20 24

12 65 62.5 61.6 61.2 — 60.8 — — — 60.4 — — —

18 95 92.5 91.6 — — 90.8 — 90.5 — — 90.3 — —

20 105 102.5 — 101.2 101 — — — 100.5 — — 100.2 —

24 125 122.5 121.6 121.2 — 120.8 120.6 — — 120.4 — — 120.2

TABLE II

Resource utilization ratio for various number of query sequences (Ps) and hardware partitions (Qs)

H
H

H
HP

Q
1 2 3 4 5 6 8 9 10 12 18

6 0.8574 0.9234 0.9477 — — 0.9733 — — — — —

8 0.8891 0.9414 — 0.9699 — — 0.9849 — — — —

10 0.9093 0.9526 — — 0.9806 — — — 0.9903 — —

12 0.9232 0.9602 0.9731 0.9798 — 0.9865 — — — 0.9933 —

18 0.9475 0.9731 0.9819 — — 0.9909 — 0.9940 — — 0.9970

The same theory applies for reducing the execution time

and improving the resource utilization ratio for the case,

when there is only one query sequence and the database is

split into equal parts, such that the same query sequence is

scanned against all parts of the database in parallel.

To see the effect of execution time reduction and uti-

lization ratio improvement on performance, we observe the

performance equations, given as follows,

Performance =
Nq × fop

CPE

× Utilization ratio (9)

where fop is the operating frequency.

Performance may also be given by,

Performance =
Total operations

Texec

=
N2

q

Texec

(10)

Equations 9 and 10 imply that higher resource utilization

ratio and lower execution time improve the performance.

In comparison with the traditional approaches, the ini-

tialization process for the proposed hardware partitioning

method is modified, such that the initialization input is equal

to a predefined value at the start of the computation. For

every succeeding array computation, the initialization input

is a feed back from the last PE in the partitioned array.

IV. CONCLUSION

In this paper, we presented a novel biological sequence

alignment method to reduce the execution time and improve

the resource utilization, resulting in a higher performance as

compared to conventional approaches. Generalized equations

for reducing the execution time, improving the resource uti-

lization and hence enhancing the performance are presented.

The paper demonstrated that with the increasing number

of hardware partitions (i.e. decreasing N
′

), an execution

time reduction and resource utilization improvement of up

to 33.3% is achieved.

REFERENCES

[1] Martin Vingron and Michael S. Waterman, “Sequence Alignment and
Penalty Choice: Review of Concepts, Case Studies and Implications”,
Journal of Molecular Biology, vol. 235, pages 1–12, 1994.

[2] Asim YarKhan and Jack J. Dongarra, “Biological Sequence Alignment
on the Computational Grid Using the GrADS Framework”, Future
Generation Computer Systems, vol. 21(6), pages 980–986, June 2005.

[3] D.M. Mount, “Bioinformatics: Sequence and Genome Analysis”, Cold
Spring Harbor Laboratory Press, Cold Spring Harbor, NY, 2nd ed.,
2004.

[4] L. Hasan, Z. Al-Ars and S. Vassiliadis, “Hardware Acceleration
of Sequence Alignment Algorithms - An Overview”, Proceedings
of International Conference on Design & Technology of Integrated
Systems in Nanoscale Era (DTIS’07), pages 96–101, Rabat, Morocco,
September 2–5, 2007.

[5] S. F. Altschul, Gish, W. Miller, W. Myers and D. J. Lipman, “A Basic
Local Alignment Search Tool”, Journal of Molecular Biology, vol.
215, pages 403–410, 1990.

[6] W. R. Pearson and D. J. Lipman, “Rapid and Sensitive Protein
Similarity Searches”, Science, vol. 227, pages 1435–1441, 1985.

[7] Sean R. Eddy, “Profile Hidden Morkov Models”, Bioinformatics
Review, vol. 14(9), pages 755–763, July 1998.

[8] T. F. Smith and M. S. Waterman, “Identification of Common Molecular
Subsequences”, Journal of Molecular Biology, vol. 147, pages 195–
197, 1981.

[9] R. Giegerich, “A Systematic Approach to Dynamic Programming in
Bioinformatics”, Bioinformatics, vol. 16, pages 665–677, 2000.

[10] A. B. Buyukkur and W. Najjar, “Compiler Generated Systolic Ar-
rays for Wavefront Algorithm Acceleration on FPGAs”, International
Conference on Field Programmable Logic and Applications (FPL08),
Heidelberg, Germany, September 2008.

[11] A. Di Blas et al., “The UCSC Kestrel Parallel Processor”, IEEE
Transactions on Parallel and Distributed Systems, vol. 16(1), pages
80–92, 2005.

[12] A. Schroder et al., “Bio-Sequence Database Scanning on a GPU”
HICOMB, 2006.

[13] L. Hasan and Z. Al-Ars, “An Efficient and High Performance Linear
Recursive Variable Expansion Implementation of the Smith-Waterman
Algorithm”, 31st Annual International Conference of the IEEE EMBS,
pages 3845–3848, Minneapolis, Minnesota, USA, September 2009.

[14] L. Hasan, Z. Al-Ars, Z. Nawaz and K.L.M. Bertels, “Hardware
Implementation of the Smith-Waterman Algorithm Using Recursive
Variable Expansion”, Proceedings of 3rd Inernational Design and Test
Workshop IDT08, Monastir, Tunisia, December 2008.

[15] L. Hasan, Z. Al-Ars, M. Taouil and K.L.M. Bertels, “Performance
Optimization for Biological Sequence Alignment”, Submitted to the
28th IEEE International Conference on Computer Design (ICCD
2010), Amsterdam, The Netherlands, October 3–6, 2010.

[16] T. Oliver, B. Schmidt and D. Maskell, “Hyper Customized Processors
for Bio-Sequence Database Scanning on FPGAs”, FPGA’05, Mon-
terey, California, USA, February 20–22, 2005.


