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Abstract—High-level synthesis (HLS) is increasingly popular
for the design of high-performance and energy-efficient heteroge-
neous systems, shortening time-to-market and addressing today’s
system complexity. HLS allows designers to work at a higher-
level of abstraction by using a software program to specify the
hardware functionality. Additionally, HLS is particularly interest-
ing for designing field-programmable gate array circuits, where
hardware implementations can be easily refined and replaced in
the target device. Recent years have seen much activity in the
HLS research community, with a plethora of HLS tool offer-
ings, from both industry and academia. All these tools may have
different input languages, perform different internal optimiza-
tions, and produce results of different quality, even for the very
same input description. Hence, it is challenging to compare their
performance and understand which is the best for the hard-
ware to be implemented. We present a comprehensive analysis
of recent HLS tools, as well as overview the areas of active
interest in the HLS research community. We also present a first-
published methodology to evaluate different HLS tools. We use
our methodology to compare one commercial and three academic
tools on a common set of C benchmarks, aiming at perform-
ing an in-depth evaluation in terms of performance and the use
of resources.

Index Terms—BAMBU, comparison, DWARYV, evaluation, field-
programmable gate array (FPGA), high-level synthesis (HLS),
LEGUP, survey.

I. INTRODUCTION

LOCK frequency scaling in processors stalled in the

middle of the last decade, and in recent years, an
alternative approach for high-throughput and energy-efficient
processing is based on heterogeneity, where designers integrate
software processors and application-specific customized hard-
ware for acceleration, each tailored toward specific tasks [1].
Although specialized hardware has the potential to provide
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huge acceleration at a fraction of a processor’s energy, the
main drawback is related to its design. On one hand, describ-
ing these components in a hardware description language
(HDL) (e.g., VHSIC hardware description language (VHDL)
or Verilog) allows the designer to adopt existing tools for reg-
ister transfer level (RTL) and logic synthesis into the target
technology. On the other hand, this requires the designer to
specify functionality at a low level of abstraction, where cycle-
by-cycle behavior is completely specified. The use of such
languages requires advanced hardware expertise, besides being
cumbersome to develop in. This leads to longer development
times that can critically impact the time-to-market.

An interesting solution to realize such heterogeneity and,
at the same time, address the time-to-market problem is the
combination of reconfigurable hardware architectures, such as
field-programmable gate arrays (FPGAs) and high-level syn-
thesis (HLS) tools [2]. FPGAs are integrated circuits that can
be configured by the end user to implement digital circuits.
Most FPGAs are also reconfigurable, allowing a relatively
quick refinement and optimization of a hardware design with
no additional manufacturing costs. The designer can mod-
ify the HDL description of the components and then use an
FPGA vendor toolchain for the synthesis of the bitstream to
configure the FPGA. HLS tools start from a software pro-
grammable high-level language (HLL) (e.g., C, C++, and
SystemC) to automatically produce a circuit specification in
HDL that performs the same function. HLS offers benefits to
software engineers, enabling them to reap some of the speed
and energy benefits of hardware, without actually having to
build up hardware expertise. HLS also offers benefits to hard-
ware engineers, by allowing them to design systems faster
at a high-level of abstraction and rapidly explore the design
space. This is crucial in the design of complex systems [3]
and especially suitable for FPGA design where many alterna-
tive implementations can be easily generated, deployed onto
the target device, and compared. Recent developments in the
FPGA industry, such as Microsoft’s application of FPGAs in
Bing search acceleration [4] and the forthcoming acquisition of
Altera by Intel, further underscore the need for using FPGAs
as computing platforms with high-level software-amenable
design methodologies. HLS has also been recently applied
to a variety of applications (e.g., medical imaging, convolu-
tional neural networks, and machine learning), with significant
benefits in terms of performance and energy consumption [5].

Although HLS tools seem to efficiently mitigate the problem
of creating the hardware description, automatically generating
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hardware from software is not easy and a wide range of dif-
ferent approaches have been developed. One approach is to
adapt the HLL to a specific application domain (e.g., dataflow
languages for describing streaming applications). These HLS
tools can leverage dedicated optimizations or microarchitec-
tural solutions for the specific domain. However, the algorithm
designer, who is usually a software engineer, has to under-
stand how to properly update the code. This approach is
usually time-consuming and error prone. For this reason, some
HLS tools offer complete support for a standard HLL, such
as C, giving complete freedom to the algorithm designer.
Understanding the current HLS research directions, the dif-
ferent HLS tools available, and their capabilities is a difficult
challenge, and a thoughtful analysis is lacking in the literature
to cover all these aspects. For example, [6] was a small sur-
vey of existing HLS tools with a static comparison (on criteria
such as the documentation available or the learning curve) of
their features and user experience. However, the tools have not
been applied to benchmarks, nor were the results produced by
the tools compared. Indeed, given an application to be imple-
mented as a hardware accelerator, it is crucial to understand
which HLS tool better fits the characteristics of the algorithm.
For this reason, we believe that it is important to have a com-
prehensive survey of recent HLS tools, research directions, as
well as a systematic method to evaluate different tools on the
same benchmarks in order to analyze the results.

In this paper, we present a thorough analysis of HLS tools,
current HLS research thrusts, as well as a detailed way to
evaluate different state-of-the-art tools (both academic and
commercial) on performance and resource usage. The three
academic tools considered are Delft workbench automated
reconfigurable VHDL generator (DWARV) [7], BAMBU [8],
and LEGUP [9]—tools under active development in three insti-
tutions and whose developers are co-authoring this paper. The
contributions of this paper are as follows.

1) A thorough evaluation of past and present HLS tools

(Section II).

Classification of High-Level Synthesis Tools Based on the Input Language.

2) A description of HLS optimizations and problems
wherein active research is underway (Section III).

3) The first-published comprehensive in-depth evaluation
(Section IV) and discussion (Section V) of selected
commercial and academic HLS tools in terms of per-
formance and area metrics.

This analysis shows that industry and academia are closely
progressing together toward efficient methods to automatically
design application-specific customized hardware accelerators.
However, several research challenges remain open.

II. OVERVIEW OF HIGH-LEVEL SYNTHESIS TOOLS

In this section, we present an overview of academic and
commercial HLS tools. The presentation will be done accord-
ing to a classification of the design input language as shown
in Fig. 1. We distinguish between two major categories,
namely tools that accept domain-specific languages (DSLs)
and tools that are based on general-purpose programmable lan-
guages (GPLs). DSLs are split into new languages invented
specially for a particular tool-flow and GPL-based dialects,
which are languages based on a GPL (e.g., C) extended with
specific constructs to convey specific hardware information
to the tool. Under each category, the corresponding tools are
listed in green, red, or blue fonts, where green represents the
tool being in use, red implies the tool is abandoned, and blue
implies N/A, meaning that no information is currently known
about its status. Furthermore, the bullet type, defined in the fig-
ure’s legend, denotes the target application domain for which
the tool can be used. Finally, tool names which are under-
lined in the figure represent tools that also support SystemC
as input. Using DSLs or SystemC raises challenges for adop-
tion of HLS by software developers. In this section, due to
space limitations, we describe only the unique features of each
tool. For general information (e.g., target application domain,
support for floating/fixed-point (FP) arithmetic, and automatic
testbench generation), the reader is referred to Table 1. We
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first introduce the academic HLS tools evaluated in this study,
before moving onto highlight features of other HLS tools
available in the community (either commercial or academic).

A. Academic HLS Tools Evaluated in This Study

DWARV [7] is an academic HLS compiler developed at
the Delft University of Technology. The tool is based on the
CoSy commercial compiler infrastructure [10] developed by
ACE. The characteristics of DWARV are directly related to the
advantages of using CoSy, which are its modular and robust
back-end, and that is easily extensible with new optimizations.

BAMBU [8] is an academic HLS tool developed at the
Politecnico di Milano and first released in 2012. BAMBU is
able to generate different Pareto-optimal implementations to
tradeoff latency and resource requirements, and to support
hardware/software partitioning for designing complex hetero-
geneous platforms. Its modular organization allows the evalu-
ation of new algorithms, architectures, or synthesis methods.
BAMBU leverages the GNU compiler collection compiler’s
many compiler-based optimizations and implements a novel
memory architecture to efficiently support complex constructs
of the C language (e.g., function calls, pointers, multidimen-
sional arrays, and structs) [11]. It is also able to support
different data types, including FP arithmetic, in order to
generate optimized micro-architectures.

LEGUP [9] is a research compiler developed at the
University of Toronto, first released in 2011 and currently on
its forth public release. It accepts a C-language program as
input and operates in one of two ways: 1) it synthesizes the
entire C program to hardware or 2) it synthesizes the program
to a hybrid system comprising a processor (a microproces-
sor without interlocked pipeline stages (MIPS) soft processor
or ARM) and one or more hardware accelerators. In the lat-
ter flow, the user designates which C functions to implement
as accelerators. Communication between the MIPS/ARM and
accelerators is through Altera’s memory-mapped on-chip bus
interface (LEGUP is designed specifically to target a variety
of Altera FPGA families). For hardware synthesis, most of
the C language is supported, with the exception of dynamic
memory allocation and recursion. LEGUP is built within
the open-source low level virtual machine (LLVM) compiler
framework [12]. Compared to other HLS tools, LEGUP has
several unique features. It supports Pthreads and OpenMP,
where parallel software threads are automatically synthesized
into parallel-operating hardware. Automated bitwidth reduc-
tion can be invoked to shrink datapath widths based on
compile-time (static) variable range and bitmask analysis.
Multi-cycle path analysis and register removal are also sup-
ported, wherein LEGUP eliminates registers on some paths
permitted more than a single cycle to complete, generating
constraints for the back-end of the toolflow accordingly.

B. Other HLS Tools

CyberWorkBench [13] is a set of synthesis, verification, and
simulation tools intended for system-level design. The tool
input is the behavioral description language (BDL), i.e., a
superset of the C language extended with constructs to express
hardware concepts. Examples of such constructs are user-
defined bitwidth for variables, synchronization, explicit clock
boundaries specification, and concurrency.
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Bluespec Compiler (BSC) [14] is a tool that uses Bluespec
System Verilog (BSV) as the design language. BSV is a
high-level functional HDL based on Verilog and inspired by
Haskell, where modules are implemented as a set of rules
using Verilog syntax. The rules are called guarded atomic
actions and express behavior in the form of concurrently coop-
erating finite state machines (FSMs) [15]. Using this language,
and implicitly the BSC tool, requires developers with specific
expertise.

PipeRench [16] was an early reconfigurable computing
project. The PipeRench compiler was intended solely for
generating reconfigurable pipelines in stream-based media
applications. The source language is a dataflow intermediate
language, which is a single-assignment language with C oper-
ators. The output of the tool is a bitstream to configure the
reconfigurable pipeline in the target circuit.

HercuLeS [17] is a compiler that uses an N-address code
intermediate representation, which is a new typed-assembly
language created by a front-end available through GCC
Gimple. The work deals only with complete applications
targeting FPGAs.

CoDeveloper [18] is the HLS design environment provided
by Impulse accelerated technologies. Impulse-C is based on a
C-language subset to which it adds communicating sequen-
tial processes (CSP)-style extensions. These extensions are
required for parallel programming of mixed processor and
FPGA platforms. Because the basic principle of the CSP
programming model consists of processes that have to be
independently synchronized and streams for interprocess com-
munication, the application domain is limited primarily to
image processing and streaming applications.

DK Design Suite [19] uses Handel-C as the design language,
which is based on a rich subset of the C language extended
with hardware-specific language constructs. The user however,
needs to specify timing requirements and to describe the paral-
lelization and synchronization segments in the code explicitly.
In addition, the data mapping to different memories has to be
manually performed. Because of these language additions, the
user needs advanced hardware knowledge.

Single-Assignment C (SA-C) [20] is a compiler that uses a C
language variant in which variables can be set only once. This
paper provided the inspiration for the later riverside optimizing
compiler for configurable computing (ROCCC) compiler. The
language introduces new syntactical constructs that require
application rewriting.

The Garp [21] project’s main goal was to accelerate loops
of general-purpose software applications. It accepts C as input
and generates hardware code for the loop.

The Napa-C [22] project was one of the first to con-
sider high-level compilation for systems which contain both a
microprocessor and reconfigurable logic. The NAPA C com-
piler, implemented in Stanford University Intermediate Format
and targeting national semiconductor’s NAPA1000 chip, per-
formed semantic analysis of the pragma-annotated program
and co-synthesized a conventional program executable for the
processor, and a configuration bit stream.

In eXCite [23], communication channels have to be inserted
manually to describe the communication between the software
and hardware. These channels can be streaming, blocking,
or indexed (e.g., for handling arrays). Different types of
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TABLE I

OVERVIEW OF HIGH-LEVEL SYNTHESIS TOOLS

10, OCTOBER 2016

Status Compiler Owner License Input Output Year | Domain TestBench | FP | FixP
eXCite Y Explorations | Commercial C VHDL/Verilog | 2001 All Yes No Yes
CoDeve- Impulse . VHDL Image
loper Accelierate d Commercial | Impulse-C Verilog 2003 Strea n%ing Yes Yes No
Catapult-C Calypto Design Commercial ClC++ VHDL/Verilog 2004 All Yes No Yes
Systems SystemC SystemC
Cynthesizer FORTE Commercial SystemC Verilog 2004 All Yes Yes Yes
Bluespec BlueSpec Inc. Commercial BSV SystemVerilog | 2007 All No No No
CHC Altium Commercial C subset VHDL/Verilog | 2008 All No Yes Yes
% CtoS Cadence Commercial ngli/t;rcnf_,. S\;:g;% 2008 All O;cl(}:]ugtcel ¢ | No Yes
= -
a DK Demgn Ment9r Commercial | Handel-C VH.DL 2009 | Streaming No No Yes
Suite Graphics Verilog
GAUT U. Bretagne Academic C/C++ VHDL 2010 DSP Yes No Yes
MaxCompiler Maxeler Commercial MaxJ RTL 2010 | DataFlow No Yes No
ROCCC Jacquard Comp. | Commercial C subset VHDL 2010 | Streaming No Yes No
Synpch ony Synopsys Commercial C/C++ VHS]; I;t/;/ircﬂ()g 2010 All Yes No Yes
W(il}i]]?;rl;ch NEC Commercial BDL z//e}rlill)o[g; 2011 All ISO };:rlleall Yes | Yes
LegUp U. Toronto Academic C Verilog 2011 All Yes Yes No
Bambu PoliMi Academic C Verilog 2012 All Yes Yes No
DWARV TU. Delft Academic C subset VHDL 2012 All Yes Yes Yes
VivadoHLS Xilinx Commercial C/C++ VHDL/Verilog 2013 All Yes Yes Yes
SystemC SystemC
Trident Los Alamos NL Academic C subset VHDL 2007 | Scientific No Yes No
< CHiMPS U. Washington Academic C VHDL 2008 All No No No
2 Kiwi U. Cambridge Academic C# Verilog 2008 NET No No No
gec2verilog [45] U. Korea Academic C Verilog 2011 All No No No
HercuLeS Ajax Compiler | Commercial C/NAC VHDL 2012 All Yes Yes Yes
Napa-C Sarnoft Corp. Academic C subset VHDL/Verilog | 1998 Loop No No No
DEFACTO U. South Cailf. Academic C RTL 1999 DSE No No No
- Garp U. Berkeley Academic C subset bitstream 2000 Loop No No No
2 MATCH U. Northwest Academic MATLAB VHDL 2000 Image No No No
S PipeRench U.Carnegie M. Academic DIL bitstream 2000 Stream No No No
ES SeaCucumber U. Brigham Y. Academic Java EDIF 2002 All No Yes Yes
Q SA-C U. Colorado Academic SA-C VHDL 2003 Image No No No
SPARK U. Cal. Irvine Academic C VHDL 2003 Control No No No
AccelDSP Xilinx Commercial | MATLAB | VHDL/Verilog | 2006 DSP Yes Yes Yes
C2H Altera Commercial C VHDL/Verilog | 2006 All No No No
CtoVerilog U. Haifa Academic C Verilog 2008 All No No No

communication between the software and hardware parts
(e.g., streaming and shared memory) are possible.

The ROCCC [24] project focused mainly on the paral-
lelization of heavy-compute-density applications having little
control. This restricts its application domain to streaming
applications, and it means that the input C is limited to a subset
of the C language. For example, only perfectly nested loops
with fixed stride, operating on integer arrays are allowed.

Catapult-C [25] is a commercial HLS tool initially ori-
ented toward the application-specific integrated circuit (ASIC)
hardware developer, however, it now targets both FPGAs and
ASICs. It offers flexibility in choosing the target technology,
external libraries, setting the design clock frequency, mapping
function parameters to either register, random-access memory,
ROM, or streaming interfaces.

C-to-Silicon (CtoS) [26], offered by Cadence, offers support
for both control- and dataflow applications. Since it accepts
SystemC as input, it is possible to accurately specify differ-
ent interface types, from simple function array parameters to
cycle-accurate transmission protocols.

SPARK [27] was targeted to multimedia and image pro-
cessing applications along with control-intensive microproces-
sor functional blocks. The compiler generated synthesizable
VHDL can be mapped to both ASICs or FPGAs.

The C to Hardware Compiler [28] generates hardware to be
offloaded onto a application specific processor core, for which
verification has to be done manually by loading and execut-
ing the generated design on an Altium Desktop NanoBoard
NB2DSKO1.

A distinct feature of the GAUT [29] project is that besides
the processing accelerator, it can generate both communication
and memory units. A testbench is also automatically generated
to apply stimuli to the design and to analyze the results for val-
idation purposes. Fixed-point arithmetic is supported through
Mentor Graphics Algorithmic C class library.

Trident [30] is a compiler that is an offshoot of an earlier
project called Sea Cucumber [31]. It generates VHDL-based
accelerators for scientific applications operating on FP data
starting from a C-language program. Its strength is in allow-
ing users to select FP operators from a variety of standard
libraries, such as FPLibrary and Quixilica, or to import
their own.

C2H [32] was an HLS tool offered by Altera Corporation
since 2006. The tool is technology dependent, generating
accelerators that can only communicate via an Altera Avalon
bus with an Altera NIOS II configurable soft processor.
Furthermore, using this tool required advanced hardware
design knowledge in order to configure and connect the
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accelerators to the rest of the system—tasks performed in
Altera’s development environment.

Synphony C [33], formerly PICO [34], is an HLS tool for
hardware DSP design offered by Synopsys. The tool can sup-
port both streaming and memory interfaces and allows for
performance-related optimizations to be fine-tuned (e.g., loop
unrolling and loop pipelining). FP operations are not per-
mitted, but the programmer can use fixed-point arithmetic.
Comparison results published by BDTi [35] showed that per-
formance and area metrics for Synphony-produced circuits are
comparable with those obtained with AutoESL (the product
that become Vivado HLS when acquired by Xilinx).

The goal of the MATCH [36] software system was to
translate and map MATLAB code to heterogeneous comput-
ing platforms for signal and image processing applications.
The MATCH technology was later transferred to a startup
company, AccelChip [37], bought in 2006 by Xilinx but dis-
continued in 2010. The tool was one of the few on the
market that started from a MATLAB input description to gen-
erate VHDL or Verilog. Key features of the product were
automation conversion of FP to fixed point.

The CHiMPS compiler [38] targets applications for high-
performance. The distinctive feature of CHiMPS is its many-
cache, which is a hardware model that adapts the hundreds of
small, independent FPGA memories to the specific memory
needs of an application. This allows for many simultaneous
memory operations per clock cycle to boost performance.

DEFACTO [39] is one of the early design environments that
proposed hardware/software co-design solutions as an answer
to increasing demands for computational power. DEFACTO is
composed of a series of tools such as a profiler, partitioner,
and software and hardware compilers to perform fast design
space exploration (DSE) given a set of design constraints.

MaxCompiler [40] is a data-flow specific HLS tool. The
compiler accepts MaxJ, a Java-based language, as input
and generates synthesizable code for the hardware data-flow
engines provided by Maxeler’s hardware platform.

The Kiwi [41] programming library and its associated syn-
thesis system generates FPGA co-processors (in Verilog) from
C# programs. Kiwi allows the programmer to use parallel con-
structs such as events, monitors, and threads, which are closer
to hardware concepts than classical software constructs.

Sea cucumber [31] is a Java-based compiler that generates
electronic design interchange format netlists and adopts the
standard Java thread model, augmented with a communication
model based on CSP.

Cynthesizer [42], recently acquired by Cadence, includes
formal verification between RTL and gates, power analysis,
and several optimizations, such as support for FP operations
with IEEE-754 single/double precision.

Vivado HLS [43], formerly AutoPilot [44], was developed
initially by AutoESL until it was acquired by Xilinx in 2011.
The new improved product, which is based on LLVM, was
released early 2013, and includes a complete design envi-
ronment with abundant features to fine-tune the generation
process from HLL to HDL. C, C++, and SystemC are
accepted as input, and hardware modules are generated in
VHDL, Verilog, and SystemC. During the compilation pro-
cess, it is possible to apply different optimizations, such
as operation chaining, loop pipelining, and loop unrolling.
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Furthermore, different parameter mappings to memory can be
specified. Streaming or shared memory type interfaces are both
supported to simplify accelerator integration.

III. HIGH-LEVEL SYNTHESIS (HLS) OPTIMIZATIONS

HLS tools feature several optimizations to improve the per-
formance of the accelerators. Some of them are borrowed from
the compiler community, while others are specific for hardware
design. In this section, we discuss these HLS optimizations,
which are also current research trends for the HLS community.

A. Operation Chaining

Operation chaining is an optimization that performs opera-
tion scheduling within the target clock period. This requires
the designer to “chain” two combinational operators together
in a single cycle in a way that false paths are avoided [46].
Concretely, if two operations are dependent in the data-flow
graph and they can both complete execution in a time smaller
than the target clock period, then they can be scheduled in
the same cycle; otherwise at least two cycles are needed to
finish execution, along with a register for the intermediate
result. Generally, chaining reduces the number of cycles in
the schedule, improving performance, and reducing the global
number of registers in the circuit. However, this is highly tech-
nology dependent and requires an accurate characterization of
the resource library (see Section III-E).

B. Bitwidth Analysis and Optimization

Bitwidth optimization is a transformation that aims to
reduce the number of bits required by datapath operators. This
is a very important optimization because it impacts all non-
functional requirements (e.g., performance, area, and power)
of a design, without affecting its behavior. Differently from
general-purpose processor compilers, which are designed to
target a processor with a fixed-sized datapath (usually 32 or
64 bits), a hardware compiler can exploit specialization by
generating custom-size operators (i.e., functional units) and
registers. As a direct consequence, we can select the minimal
number of bits required for an operation and/or storage of
the specific algorithm, which in turns leads to minimal space
used for registers, and smaller functional units that translates
into less area, less power, and shorter critical paths. However,
this analysis cannot be usually completely automated since
it often requires specific knowledge of the algorithm and the
input data sets.

C. Memory Space Allocation

FPGAs contain multiple memory banks in the form of dis-
tributed block RAMs (BRAMs) across the device. This allows
the designer to partition and map software data structures
onto dedicated BRAMs in order to implement fast memory
accesses at low cost. As a result, the scheduler can perform
multiple memory operations in one cycle once it is able to
statically determine that they access different memories in the
same cycle without contention. This feature is similar to the
allocation of different memory spaces used in the embedded
systems domain. Using multiple BRAMs increases the avail-
able parallelism. On the other hand, these memory elements
have a limited number of memory ports and the customization
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of memory accesses may require the creation of an efficient
multi-bank architecture to avoid limiting the performance [47].

D. Loop Optimizations

Hardware acceleration is particularly important for algo-
rithms with compute-intensive loops. Loop pipelining is a key
performance optimization for loops implemented in hardware.
This optimization exploits loop-level parallelism by allowing
a loop iteration to start before the completion of its predeces-
sor, provided that data dependencies are satisfied. The concept
is related to software pipelining [48], which has widely been
applied in very long instruction word processors. A key con-
cept in loop pipelining is the initiation interval (II), which
is the number of clock cycles between successive loop itera-
tions. For high throughput, it is desirable that II be as small
as possible, ideally one, which implies that a new loop iter-
ation is started every cycle. Achieving the minimum II for a
given design can be impeded by two factors: 1) resource con-
straints and 2) loop-carried dependencies. Regarding resource
constraints, consider a scenario where a loop body contains
three load operations and one store operation. In this case,
achieving an II less than two is impossible if the memory
has two ports, since each loop iteration has four memory
operations. For this reason, loop optimizations are frequently
combined with multi-bank architecture to fully exploit the par-
allelism [47]. With respect to loop-carried dependencies, if a
loop iteration depends on a result computed in a prior itera-
tion, that data dependency may restrict the ability to reduce II,
as it may be necessary to delay commencing an iteration until
its dependent data has been computed.

For example, DWARV leverages CoSy to implement loop
pipelining. The heuristic applied is based on swing modulo
scheduling [49], which considers operation latencies between
loop instructions to move conflicting instructions and reduce
the II. However, due to the high availability of resources in
FPGAs, the loop pipelining algorithm for hardware generation
can be relaxed. This can be accomplished by fixing the II to a
desired value, i.e., based on a required design throughput, and
then generating enough hardware (e.g., registers and functional
units) to accommodate the particular II.

Recent research has focused on loop pipelining for nested
loops. Consider, for example, a doubly nested loop whose out-
ermost loop (with induction variable i) iterates 100 times, and
whose innermost one (with induction variable j) iterates up to i
times. The iteration space traversed by i and j can be viewed as
a polyhedron (in this case, a triangle) and analytically analyzed
with the polyhedral model [50]. Applying loop transformations
(e.g., exchanging the outer and inner loop) result in differ-
ent polyhedra and potentially different IIs. Polyhedral-based
optimizations have been applied to synthesize memory archi-
tectures [51], improve throughput [52], and optimize resource
usage [53].

E. Hardware Resource Library

In the process of HLS, in order to generate an efficient
implementation that meets timing requirements while min-
imizing the use of resources, it is essential to determine
how to implement each operation. Specifically, the front-
end phase first inspects the given behavioral specification
and identifies operations characteristics, such as the type of
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each operation (e.g., arithmetic or non-arithmetic), its operand
types (e.g., integer and float), and its bit-width. At this stage,
some operations may benefit from specific optimizations. For
example, multiplications or divisions by a constant are typ-
ically transformed into operations that use only shifts and
adds [54], [55] in order to improve area and timing. All these
characteristics are then used during the module allocation
phase, where the resulting operations are associated with func-
tional units contained in the resource library [46]. This heavily
impacts the use of resources and the timing of the resulting
circuit. Hence, the proper composition of such a library and
its characterization is crucial for efficient HLS.

The library of functional units can be quite rich and may
contain several implementations for each single operation.
On one hand, the library usually includes resources that are
specific for the technology provider (e.g., the FPGA ven-
dor). Some of these resources may leverage vendor-specific
intrinsics or IP generators. The module allocation will exploit
resources that have been explicitly tailored and optimized for
the specific target. This is usually adopted by HLS tools that
are specific for some FPGA vendors (e.g., [43]). The library
may also contain resources that are expressed as templates in
a standard HDL (i.e., Verilog or VHDL). These templates can
be retargeted and customized based on characteristics of the
target technology, like in FloPoCo [56]. In this case, the under-
lying logic synthesis tool can determine the best architecture
to implement each function. For example, multipliers can be
mapped either on dedicated DSP blocks or implemented with
look-up-tables (LUTS).

To perform aggressive optimizations, each component of
the library needs to be annotated with information useful
during the entire HLS process, such as resource occupation
and latency for executing the operations. There are sev-
eral approaches to library characterization. The first approach
performs a rapid logic synthesis during the scheduling and
binding of the operations to determine the most suitable can-
didate resources, like in Cadence’s C-to-Silicon [57]. However,
this approach has a high cost in terms of computation time,
especially when the HLS is repeatedly performed for the
same target. An alternative approach is to precharacterize all
resources in advance, as done in BAMBU [8]. The performance
estimation starts with a generic template of the functional unit,
which can be parametric with respect to bitwidths and pipeline
stages. Latency and resource occupation are then obtained by
synthesizing each configuration and storing the results in the
library. Mathematical models can be built on top of these
actual synthesis values [58], [59]. Additionally, this infor-
mation can also be coupled with delays obtained after the
place-and-route phase. This may improve the maximum fre-
quency and the design latency and it makes the HLS results
more predictable [60].

F. Speculation and Code Motion

Most HLS scheduling techniques can extract parallelism
only within the same control region (i.e., the same CDFG basic
block). This can limit the performance of the resulting accel-
erator, especially in control-intensive designs. Speculation
is a code-motion technique that allows operations to be
moved along their execution traces, possibly anticipating
them before the conditional constructs that control their
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execution [61]-[64]. A software compiler is less likely to use
this technique since, in a sequential machine, they may delay
the overall execution with computations that are unnecessary
in certain cases. In hardware, however, speculated operations
can often be executed in parallel with the rest of the operations.
Their results simply will be simply maintained or discarded
based on later-computed branch outcomes.

G. Exploiting Spatial Parallelism

A primary mechanism through which hardware may provide
higher speed than a software implementation is by instantiating
multiple hardware units that execute concurrently (spatial par-
allelism). HLS tools can extract fine-grained instruction-level
parallelism by analyzing data dependencies and loop-level
parallelism via loop pipelining. It is nevertheless difficult to
automatically extract large amounts of coarse-grained paral-
lelism, as the challenges therein are akin to those faced by an
auto-parallelizing software compiler. A question that arises,
therefore, is how to specify hardware parallelism to an HLS
tool whose input is a software programming language. With
many HLS tools, a designer synthesizes an accelerator and
then manually writes RTL that instantiates multiple instances
of the synthesized core, steering input/output data to/from
each, accordingly. However, this approach is error prone and
requires hardware expertise. An alternative approach is to
support the synthesis of software parallelization paradigms.

LEGUP supports the HLS of pthreads and OpenMP [65],
which are two standard ways of expressing parallelism in C
programs, widely used by software engineers. The general idea
is to synthesize parallel software threads into an equal num-
ber of parallel-operating hardware units. With pthreads, a user
can express both task and data-level spatial parallelism. In
the former, each hardware unit may be performing a different
function, and in the latter, multiple hardware units perform
the same function on different portions of an input data set.
LEGUP also supports the synthesis of two standard pthreads
synchronization constructions: 1) mutexes and 2) barriers.
With OpenMP, the authors have focused on supporting the
aspects of the standard that target loop parallelization, e.g., an
N-iteration loop with no loop-carried dependencies can be split
into pieces that are executed in parallel by concurrently oper-
ating hardware units. An interesting aspect of LEGUP is the
support for nested parallelism: threads forking threads. Here,
the threads initially forked within a program may themselves
fork other threads, or contain OpenMP parallelization con-
structs. A limitation of the LEGUP work is that the number
of parallel hardware units instantiated must exactly match the
number of software threads forked since in hardware there is
no support for context switching.

Altera has taken an different approach with their OpenCL
SDK [66], which supports HLS of OpenCL programs. The
OpenCL language is a variant of C and is heavily used for
parallel programming of graphics processing units (GPUs).
With OpenCL, one generally launches hundreds or thou-
sands of threads that are relatively fine-grained, for example,
each computing a vector dot product, or even an individual
scalar multiplication. Altera synthesizes OpenCL into a deeply
pipelined FPGA circuit that connects to an x86-based host
processor over peripheral component interconnect express. The
support for OpenCL HLS allows Altera to compete directly
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with GPU vendors, who have been gaining traction in the
high-performance computing market.

H. If-Conversion

If-conversion [67] is a well-known software transformation
that enables predicated execution, i.e., an instruction is exe-
cuted only when its predicate or guard evaluates to true. The
main objective of this transformation is to schedule in parallel
instructions from disjoint execution paths created by selec-
tive statements (e.g., 1f statements). The goals are two fold.
First, it increases the number of parallel operations. Second, it
facilitates pipelining by removing control dependencies within
the loop, which may shorten the loop body schedule. In
software, this leads to a 34% performance improvement, on
average [68]. However, if-conversion should be enabled only
when the branches have a balanced number of cycles required
to complete execution. When this is not the case, predicated
execution incurs a slowdown in execution time because, if the
shorter branch is taken, useless instructions belonging to the
longer unselected branch will need to be checked before exe-
cuting useful instructions can be resumed. Therefore, different
algorithms have been proposed to decide when it is benefi-
cial to apply if-conversion and when the typical conditional
jump approach should be followed. For example, in [69], a
generic model to select the fastest implementation for if-then-
else statements is proposed. This selection is done according to
the number of implicated if statements as well as the balance
characteristics. The approach for selecting if-conversion on a
case-by-case basis changes for hardware compilers generating
an FPGA hardware circuit. This is because resources can be
allocated as-needed (subject to area or power constraints), and
therefore, we can schedule branches in a manner that does not
affect the branch-minimal schedule. Data and control instruc-
tions can be executed in parallel and we can insert “jumps” to
the end of the if-statement to short-cut the execution of (use-
less) longer branch instructions when a shorter path is taken.
This was demonstrated in [70] (incorporated in DWARV),
which proposed a lightweight if-conversion scheme adapted
for hardware generation. Furthermore, the work showed that
such a lightweight predicative scheme is beneficial for hard-
ware compilers, with performance always at least as good as
when no if-conversion is enabled.

IV. EVALUATION OF HIGH-LEVEL SYNTHESIS TOOLS

In this section, we define a common environment to eval-
uate four HLS tools, one commercialize and three academic:
DwARv, BAMBU, and LEGUP. With LEGUP, we target the
fastest speedgrade of the Altera Stratix V family [71], while
with the other tools we target the fastest speedgrade of the
Xilinx Virtex-7 family [72]. Both Stratix V and Virtex-7 are
28 nm state-of-the-art high-performance FPGAs fabricated
by TSMC. The primary combinational logic element in both
architectures is a dual-output 6-input LUT.

Three metrics are used to evaluate circuit performance:
maximum frequency (Fmax in MHz), cycle latency (i.e., the
number of clock cycles needed for a benchmark to com-
plete the computation), and wall-clock time (minimum clock
period x cycle latency). Clock period (and the corresponding
Fmax) is extracted from post-routing static timing analysis.
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Cycle latency is evaluated by simulating the resulting RTL
circuits using ModelSim (discussed further below). We do not
include in the evaluations the HLS tool execution times as this
time is negligible in comparison with the synthesis, mapping,
placement, and routing time.

To evaluate area, we consider logic, DSP, and memory
usage. For logic area, in Xilinx devices, we report the total
number of fracturable 6-LUTSs, each of which can be used
to implement any single function of up to six variables, or
any two functions that together use at most five distinct vari-
ables. For Altera, we report the total number of used adaptive
logic modules (ALMs), each of which contains one frac-
turable 6-LUT, that can implement any single function of
up to six variables, any two four-variable functions, a five-
and three-variable function, and several other dual-function
combinations. With respect to DSP usage, we consider the
DSP units in Altera and Xilinx devices to be roughly equiv-
alent (Xilinx devices contain hardened 25 x 18 multipliers,
whereas Altera devices contain hardened 18 x 18 multipliers).
For memory, we report the total number of dedicated blocks
used (e.g., BRAMs), which are equivalent to 18 Kb in Virtex-7
and 20 Kb in Stratix V.

A. Potential Sources of Inaccuracy

Although we have endeavored to make the comparison
between tools as fair as possible, we discuss potential sources
of inaccuracy to better understand the results. First, the
evaluated HLS tools are built within different compilers
(e.g., BAMBU is built within GCC, LEGUP within LLVM, and
DWwARYV within CoSy), and target different FPGA devices. It
is thus impossible to perfectly isolate variations in circuit area
and speed attributable to the HLS tools versus other criteria.
Each compiler framework has a different set of optimizations
that execute before HLS, with potentially considerable impact
on HLS results. Likewise, we expect that Altera’s RTL and
logic synthesis, placement and routing, are different than those
within Xilinx’s tool. Moreover, while the chosen Virtex-7 and
Stratix V are fabricated in the same TSMC process, there are
differences in the FPGA architecture itself. For example, as
mentioned above, the fracturable 6-LUTSs in Altera FPGAs are
more flexible than the fracturable 6-LUTs in Xilinx FPGAs,
owing to the Altera ALMs having more inputs. This will
impact the final resource requirements for the accelerators.
Finally, although we have selected the fastest speedgrade for
each vendor’s device, we cannot be sure whether the fraction
of die binned in Xilinx’s fastest speedgrade is the same as that
for Altera because this information is kept proprietary by the
vendors.

Other differences relate to tool assumptions, e.g., about
memory implementation. For each benchmark kernel, some
data are kept local to the kernel (i.e., in BRAMs instanti-
ated within the module), whereas other data are considered
“global,” kept outside the kernel and accessed via a memory
controller. As an example, in LEGUP, the data are considered
local when, at compile time, are proven to solely be accessed
within the kernel (e.g., an array declared within the kernel
itself and used as a scratch pad). The various tools evaluated do
not necessarily make the same decisions regarding which data
is kept local versus global. The performance and area numbers
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TABLE II
BENCHMARK CHARACTERISTICS AND TARGET
FREQUENCIES FOR OPTIMIZED FLOW (MHZz)

Benchmark Domain Source BAMBU DWARV LEGUP Commercial
adpcm_encode Comm CHStone 333 150 333 400
aes_encrypt Encrypt CHStone 250 200 333 363
aes_decrypt Encrypt CHStone 250 200 1000 312
gsm Comm CHStone 200 150 333 400
sha Encrypt CHStone 200 200 333 400
blowfish Encrypt CHStone 250 200 200 400
dfadd Arith CHStone 250 200 333 400
dfdiv Arith CHStone 250 150 200 400
dfmul Arith CHStone 250 150 200 400
dfsin Arith CHStone 250 100 200 303
jpeg Media CHStone 250 N/A 1000 400
mips Compute  CHStone 400 300 200 400
motion Media CHStone 250 150 200 ERR
satd Compute ~ DWARV 455 100 100 400
sobel Media DWARV 500 300 1000 285
bellmanford Compute DWARV 500 300 333 400
matrix Arith Bambu 250 300 250 400

reported reflect the kernel itself and do not include the global
memory. The rationale behind this decision is to focus on the
results on the HLS-generated portion of the circuit, rather than
on the integration with the rest of the system.

B. Benchmark Overview

The synthesized benchmark kernels are listed in Table II,
where we mention in the second and third columns the applica-
tion domain of the corresponding kernel, as well as its source.
Most of the kernels have been extracted from the C-language
CHStone benchmark suite [73], with the remainder being
from DWARV and BAMBU. The selected functions originate
from different application domains, which are control-flow, as
well as data-flow dominated as we aim at evaluating generic
(nonapplication-specific) HLS tools.

An important aspect of the benchmarks used in this paper is
that input and golden output vectors are available for each pro-
gram. Hence, it is possible to “execute” each benchmark with
the built-in input vectors, both in software and also in HLS-
generated RTL using ModelSim. The RTL simulation permits
extraction of the total cycle count, as well as enables functional
correctness checking.

C. HLS Evaluation

We performed two sets of experiments to evaluate the com-
pilers. In the first experiment, we executed each tool in a
“push-button” manner using all of its default settings, which
we refer to as standard-optimization. The first experiment thus
represents what a user would see running the HLS tools “out
of the box.” We used the following default target frequencies:
250 MHz for BAMBU, 150 MHz for DWARV, and 200 MHz
for LEGUP. For the commercial tool, we decided to use a
default frequency of 400 MHz. In the second experiment,
we manually optimized the programs and constraints for the
specific tools (by using compiler flags and code annotations
to enable various optimizations) to generate performance-
optimized implementations. Table III lists for each tool the
optimizations enabled in this second experiment. As we do
not have access to the source of the commercial tool, its list is
based on the observations done through the available options
and on the inspection of the generated code. The last four
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TABLE III
OPTIMIZATIONS USED [LETTER IN () REFERS TO SUBSECTIONS IN SECTION III]. v: USED; X: UNUSED

HLS Tool Compiler Framework | Target FPGA | OC(A) | BA(B) | MS(C) | LOMD) | HWRL(E) | Sp(F) | SP(G) | IC(H)
LecUP LLVM Altera v v v v X X v v
BAMBU GCC Xilinx \ v \ X v v X v
DWARV CoSy Xilinx v v v v X X X v

Commercial Unknown Xilinx v v v v \% v v v
TABLE IV
STANDARD-OPTIMIZATION PERFORMANCE RESULTS. Fmax Is REPORTED IN MHz, WALL-CLOCK IN s
| Commerecial BAMBU DWARV LEGUP
Benchmark| Cycles Fmax Wall-clock| Cycles Fmax Wall-clock| Cycles Fmax Wall-clock| Cycles Fmax Wall-clock
adpcm_encode| 27250 281 96.87 11179 232 48.14 24454 183 133.67 7883 245 32.12
aes_encrypt| 3976 345 11.54 1574 252 6.25 5135 201 25.60 1564 395 3.96
aes_decrypt| 5461 322 16.95 2766 260 10.64 2579 255 10.11 7367 313 23.56
gsm| 5244 347 15.12 2805 200 14.01 6866 186 36.90 3966 273 14.52
sha| 197867 327 605.08 111762 259 431.62 71163 253 281.52 168886 250 676.90
blowfish| 101010 397 254.65 57590 288 200.24 70200 251 280.03 75010 468 160.22
dfadd| 552 332 1.66 404 275 1.47 465 215 2.16 650 252 2.58
dfdiv| 2068 281 7.35 1925 222 8.65 2274 179 12.69 2046 183 11.20
dfmul 200 281 0.71 174 259 0.67 293 154 1.90 209 186 1.12
dfsin| 57564 247 233.08 56021 223 251.09 64428 134 481.02 57858 189 305.79
jpeg| 994945 208  4776.73 | 662380 217 3057.55 | 748707 ERR ERR 1128109 220 5126.14
mips| 4199 281 14.93 4043 259 15.60 8320 370 22.51 5989 487 12.30
motion| ERR ERR ERR 127 287 0.44 152 163 0.93 66 338 0.20
satd 87 383 0.23 27 232 0.12 57 134 0.42 46 288 0.16
sobel 45261481 330 137142.29 [5983199 276  21665.16 (23934323 340  70295.11 |7561317 336 22502.58
bellmanford| 2838 447 6.35 3218 227 14.17 2319 360 6.44 2444 332 7.37
matrix| 363585 281 1292.54 | 198690 282 704.75 297026 391 759.79 101442 401 253.00
GEOMEAN| 11918.22 321.6 37.06 6754.93 248.51 27.1821 |10373.59 226.34  45.83 8039.75 292.514  27.48
GEOMEAN (ALL) 5681.2 246.67 23.03 6922.61 284.285  24.35

columns of Table II show the HLS target frequencies used
for the optimized experiment. It should be noted that there is
no strict correlation between these and the actual post place
and route frequencies obtained after implementing the designs
(shown in Tables IV and V) due to the actual vendor-provided
back-end tools that perform the actual mapping, placing, and
routing steps. This is explained by the inherently approximate
timing models used in HLS. The target frequency used as input
to the HLS tools should be regarded only as an indication of
how much operation chaining can be performed. As a rule of
thumb, in order to implement a design at some frequency, one
should target a higher frequency in HLS.

Table IV shows performance metrics (e.g., number of
cycles, maximum frequency after place and route, and wall-
clock time) obtained in the standard-optimization scenario,
while Table V shows the same performance metrics obtained in
the performance-optimized scenario. The error (ERR) entries
denote errors that prevented us from obtaining complete results
for the corresponding benchmarks (e.g., compiler segmenta-
tion error). Observe that geometric mean data are included at
the bottom of the rows. Two rows of geomean are shown: the
first includes only those benchmarks for which all tools were
successful; the second includes all benchmarks, and is shown
for BAMBU and LEGUP. In the standard-optimization results
in Table IV, we see that the commercial tool is able to achieve
the highest Fmax; BAMBU implementations have the lowest
cycle latencies; and BAMBU and LEGUP deliver roughly the
same (and lowest) average wall-clock time. However, we also
observe that no single tool delivers superior results for all
benchmarks. For example, while DWARV does not provide the
lowest wall-clock time on average, it produced the best results

(among the academic tools) for several benchmarks, including
aes_decrypt and bellmanford.

For the performance-optimized results in Table V, a key
takeaway is that performance is drastically improved when
the constraints and source code input to the HLS tools are
tuned. For the commercial tool, geomean wall-clock time
is reduced from 37.1 to 19.9 us (1.9x) in the optimized
results. For BAMBU, DWARV, and LEGUP, the wall-clock time
reductions in the optimized flow are 1.6x, 1.7x, and 2x,
respectively, on average (comparing values in the GEOMEAN
row of the table). It is interesting that, for all the tools,
the average performance improvements in the optimized flow
were roughly the same. From this, we conclude that one
can expect ~1.6-2x performance improvement, on average,
from tuning code and constraints provided to HLS. We also
observe that, from the performance angle, the academic tools
are comparable to the commercial tool. BAMBU and LEGUP,
in particular, deliver superior wall-clock time to commercial,
on average.

For completeness, the area-related metrics are shown in
Tables VI and VII for the standard and optimized flows,
respectively. Comparisons between LEGUP and the other tools
are more difficult in this case, owing to architectural dif-
ferences between Stratix V and Virtex-7. Among the flows
that target Xilinx, the commercial HLS tool delivers con-
siderably more compact implementations than the academic
tools (much smaller LUT consumption) since we anticipate
it implements more technology-oriented optimizations. For all
flows (including LEGUP), we observe that, in the performance-
optimized flow, more resources are used to improve effectively
performance.



1600

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 35, NO. 10, OCTOBER 2016

TABLE V

PERFORMANCE-OPTIMIZED RESULTS. Fmax

Is REPORTED IN MHz, WALL-CLOCK IN us

| Commercial BAMBU DWARV LeGgUP
Benchmark| Cycles Fmax Wall-clock| Cycles Fmax Wall-clock| Cycles Fmax Wall-clock| Cycles Fmax Wall-clock
adpcm_encode| 12350 281 43.90 7077 258 27.40 9122 148 61.47 6635 348 19.06
aes_encrypt| 3735 331 11.29 1485 249 5.96 3282 250 13.13 1191 408 2.92
aes_decrypt| 3923 307 12.77 2585 254 10.17 2579 255 10.11 4847 319 15.19
gsm| 3584 347 10.34 2128 180 11.83 7308 333 21.92 1931 262 7.36
sha| 124339 329 377.87 51399 203 253.35 71163 253 281.52 81786 219 256.74
blowfish| 96460 350 275.68 57590 288 200.24 70200 251 280.03 64480 536 120.32
dfadd| 552 332 1.66 370 243 1.52 465 215 2.16 319 258 1.24
dfdiv| 2068 281 7.35 1374 240 5.73 2846 263 10.83 942 161 5.85
dfmul| 200 281 0.71 162 253 0.64 293 154 1.90 105 183 0.57
dfsin| 57564 247 233.08 38802 233 166.69 90662 333 271.99 22233 135 165.02
jpeg| 602725 209  2882.83 | 662380 217  3057.55 | 706151 ERR ERR 1182092 255  4639.66
mips| 4199 281 14.93 5783 411 14.06 8320 370 22.51 5989 487 12.30
motion| ERR  ERR ERR 127 285 0.45 122 167 0.73 66 338 0.20
satd| 27 497 0.05 36 442 0.08 54 473 0.11 42 289 0.15
sobel|2475541 330  7495.94 [3641402 480  7585.04 |3648547 287 12696.94 [1565741 489  3201.92
bellmanford| 2607 408 6.38 4779 509 9.38 2319 360 6.44 1036 418 2.48
matrix | 16408 281 58.33 6178 238 25.90 36162 386 93.73 19003 345 55.01
GEOMEAN| 6396.3 320.8 19.9 4704.6 283.9 16.6 7509.6 275.8 27.2 4185.8 299.9 13.6
GEOMEAN (ALL) 5089.0 279.5 18.2 4570.2  299.1 14.9
TABLE VI
STANDARD-OPTIMIZATION AREA RESULTS
| Commercial BAMBU DWARV LEGUP
Benchmark| LUTp BRAMBIS8 DSP48s| LUTp BRAMBI8 DSP48s| LUTp BRAMBI8 DSP48s| ALMs M20K DSPs
adpcm_encode| 4319 0 68 19931 52 64 5626 18 6 2490 0 43
aes_encrypt| 5802 6 1 8485 4 0 15699 16 3 4263 8 0
aes_decrypt| 6098 1 8747 4 1 12733 16 3 4297 14 0
gsm| 5271 8 49 11864 10 75 6442 0 8 4311 1 51
sha| 2161 16 0 4213 12 0 10012 0 0 6398 26 0
blowfish| 2226 0 0 6837 0 0 7739 0 0 1679 0 0
dfadd| 7409 0 0 7250 0 0 7334 0 0 2812 1 0
dfdiv| 15107 0 24 11757 0 24 13934 1 40 4679 4 42
dfmul| 3070 0 16 3430 0 16 14157 1 40 1464 1 28
dfsin| 22719 0 43 21892 0 59 30616 43 43 9099 3 72
jpeg| 16192 25 1 46757 154 26 ERR ERR ERR | 16276 41 85
mips| 1963 3 8 2501 0 8 3904 3 20 1319 0 15
motion| ERR ERR ERR | 2776 2 0 45826 6 0 6788 0 0
satd| 790 0 0 4425 0 0 1411 0 0 2004 0 0
sobel| 792 0 6 3106 0 28 1160 0 12 1241 0 36
bellmanford| 485 0 0 1046 0 0 633 0 0 493 0 0
matrix| 175 0 3 551 0 3 471 0 3 225 0 2
GEOMEAN |2711.75 1.84 4.57 |5253.60 2.15 530 |5148.72 2.43 488 [2197.66 2.01 5.67
GEOMEAN (ALL) 5754.49 2.76 5.28 2641.94 230 6.00

V. DIScUSSION FROM THE TOOL PERSPECTIVE

In this section, we describe the results for the academic HLS
tools from a tool-specific viewpoint and highlight techniques
used to improve performance in each tool.

A. Bambu

BAMBU leverages GCC to perform classical code optimiza-
tions, such as loop unrolling and constant propagation. To
simplify the use of the tool for software designers, its inter-
face has been designed such that the designer can use the same
compilation flags and directives that would be given to GCC.
In the standard-optimization case, the compiler optimization
level passed to GCC is -03, without any modifications to the
source code of the benchmarks. In the performance-optimized
study, the source code was modified only in the case of sobel,
where we used the same version modified by the LEGUP team.

Loop unrolling was used for adpcm, matrix, and sha. On three
benchmarks (gsm, matrix, and sobel), GCC vectorization pro-
duced a better wall-time, while function inlining was useful
for gsm, dfadd, dfsin, aes encrypt, and decrypt.

BAMBU’s front-end phase also implements operation trans-
formations that are specific for HLS, e.g., by transforming
multiplications and divisions which are usually very expen-
sive in hardware. BAMBU maps 64-bit divisions onto a C
library function implementing the Newton—Raphson algorithm
for the integer division. This leads to a higher number of DSPs
required by dfdiv and dfsin in the standard-optimization case.
BAMBU also supports FP operations since it interfaces with
FloPoCo library [56].

All functional units are precharacterized for multiple com-
binations of target devices, bit-widths, and pipeline stages.
Hence, BAMBU implements a technology-aware scheduler
to perform aggressive operation chaining and code motion.
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TABLE VII
PERFORMANCE-OPTIMIZED AREA RESULTS

| Commercial BAMBU DWARV LEGUP
Benchmark| LUTp BRAMBI8 DSP48s| LUTp BRAMBI8 DSP48s| LUTp BRAMBIS8 DSP48s| ALMs M20K DSPs
adpcm_encode| 5325 0 116 10546 2 81 13416 0 6 2903 0 57
aes_encrypt| 5798 6 1 9793 2 1 15699 16 3 3199 0 0
aes_decrypt| 6370 4 1 12927 2 3 12733 16 3 4894 18 0
gsm| 8970 11 49 29646 16 316 6442 0 8 3442 3 59
sha| 13105 16 0 14819 12 0 10012 0 0 28289 12 0
blowfish| 3433 0 0 6799 0 0 7739 0 0 1648 0 0
dfadd| 7409 0 0 6413 0 0 7334 0 0 3506 0 0
dfdiv| 15107 0 24 7673 1 76 16209 1 40 16895 9 126
dfmul| 3070 0 16 3001 0 16 14157 1 40 1866 0 28
dfsin| 22719 0 43 21538 1 111 30616 43 43 10857 3 72
jpeg| 16099 25 1 46757 154 26 ERR ERR ERR 16669 41 85
mips| 1963 3 8 2305 0 8 3904 3 20 1319 0 15
motion| ERR ERR ERR 2678 1 0 49414 6 0 6788 0 0
satd| 1704 0 0 2447 2 0 3037 0 0 1959 0 0
sobel| 1015 0 3 722 0 0 2877 0 3 698 0 0
bellmanford| 1127 0 0 717 0 0 633 0 0 528 1 0
matrix | 3406 0 96 10531 0 384 7110 0 3 3747 0 68
GEOMEAN |4575.89 1.88 5.70 [5925.67 1.71 7.95 |7384.52 2.00 445 13159.64 192 6.25
GEOMEAN (ALL) 6385.85 2.16 7.54 3644.68 221 6.54

This reduces the total number of clock cycles, while respect-
ing the given timing constraint. Trimming of the address bus
was useful for bellmanford, matrix, satd, and sobel.

Finally, BAMBU adopts a novel architecture for memory
accesses [11]. Specifically, BAMBU builds a hierarchical dat-
apath directly connected to a dual-port BRAM whenever a
local aggregated or a global scalar/aggregate data type is used
by the kernel and whenever the accesses can be determined at
compile time. In this case, multiple memory accesses can be
performed in parallel. Otherwise, the memories are intercon-
nected so that it is also possible to support dynamic resolution
of the addresses. Indeed, the same memory infrastructure can
be natively connected to external components (e.g., a local
scratch-pad memory or cache) or directly to the bus to access
off-chip memory. Finally, if the kernel has pointers as param-
eters, it assumes that the objects referred are allocated on
dual-port BRAMs.

The optimized results obtained for blowfish and jpeg are
the same obtained in the first study since we were not able to
identify different options to improve the results.

B. DWARV

Since DWARV is based on CoSy [10], one of the main
advantages is its flexibility to easily exploit standard and cus-
tom optimizations. The framework contains 255 transformation
and optimization passes available in the form of stand-alone
engines. For the standard-evaluation experiment, the most
important optimizations that DWARV uses are if-conversion,
operation chaining, multiple memories, and a simple (i.e., anal-
ysis based only on standard integer types) bit-width analysis.
For the performance-optimized runs, pragmas were added
to enable loop unrolling. However, not all framework opti-
mizations are yet fully integrated in the HLS flow. One of
the DWARV restrictions is that it does not support global
variables. As a result, the CHStone benchmarks, which rely
heavily on global variables, had to be rewritten to transform
global variables to function parameters passed by reference.
Besides the effort needed to rewrite code accessing global
memory, some global optimizations across functions are not

considered. Another limitation is a mismatch between the clock
period targeted by operation-chaining and the selection of IP
cores in the target technology (e.g., for a divider unit), which
are not (re)generated on request based on a target frequency.
Operation chaining is set to a specific target frequency for each
benchmark (as shown in Table II). However, this can differ sig-
nificantly from that achievable within the instantiated IP cores
available in DWARVs IP library, as shown for example in the
dfxxx kernels. DWARV targets mostly small and medium size
kernels. It thus generates a central FSM and always maps local
arrays to distributed logic. This is a problem for large kernels
such as the jpeg benchmark, which could not be mapped in the
available area on the target platform. Another minor limitation
is the transformation—in the compiler back-end—of switch
constructs to if-else constructs. Generating lower-level switch
constructs would improve the aes, mips, and jpeg kernels, that
contain multiple switch statements.

C. LegUp

Several methods exist for optimizing LEGUP-produced
circuits: automatic LLVM compiler optimizations [12], user-
defined directives for activating various hardware specific
features, and source code modifications. Since LEGUP is built
within LLVM, users can utilize LLVM optimization passes
with minimal effort. In the context of hardware circuits,
for the performance-optimized runs, function inlining and
loop unrolling provided benefits across multiple benchmarks.
Function inlining allows the hardware scheduler to exploit
more instruction-level parallelism and simplify the FSM.
Similarly, loop unrolling exposes more parallelism across loop
iterations. The performance boost associated with inlining and
unrolling generally comes at the cost of increased area.

LEGUP also offers many hardware optimizations that
users can activate by means of TcL directives, such as
activating loop pipelining or changing the target clock period.
Loop pipelining allows consecutive iterations of a loop to
begin execution before the previous iteration has completed,
reducing the overall number of clock cycles. Longer clock
periods permit more chaining, reducing cycle latency. If the



1602

reduction in cycle latency does not exceed the amount by
which the clock period lengthens, wall-clock time will be also
improved.

Manual source code modifications can be made to assist
LEGUP in inferring parallelism within the program. One
such modification is to convert single-threaded execution
to multithreaded execution using pthreads/OpenMP, whereby
LEGUP synthesizes the multiple parallel threads into parallel
hardware accelerators. This optimization was applied for all
of the df benchmarks. In the df benchmarks, a set of inputs
is applied to a kernel in a data-parallel fashion—there are no
dependencies between the inputs. Such a situation is particu-
larly desirable for LEGUP’s multithreading synthesis: multiple
identical hardware kernels are instantiated, each operating in
parallel on disjoint subsets of the input data.

VI. CONCLUSION

To the authors’ knowledge, this paper represents the first
broad evaluation of several HLS tools. We presented an
extensive survey and categorization for past and present hard-
ware compilers. We then described the optimizations on
which recent and ongoing research in the HLS community
is focussed. We experimentally evaluated three academic HLS
tools, BAMBU, DWARV, and LEGUP, against a commercial
tool. The methodology aims at providing a fair compari-
son of tools, even if they are built within different compiler
frameworks and target different FPGA families. The results
shows that each HLS tool can significantly improve the perfor-
mance with benchmark-specific optimizations and constraints.
However, software engineers need to take into account that
optimizations that are necessary to realize high performance
in hardware (e.g., enabling loop pipelining and removing
control flow) differ significantly from software-oriented ones
(e.g., data reorganization for cache locality).

Overall, the performance results showed that academic and
commercial HLS tools are not drastically far apart in terms
of quality, and that no single tool produced the best results
for all benchmarks. Obviously, despite this, it should never-
theless be noted that the commercial compiler supports more
features, allowing multiple input and output languages, the
customization of the generated kernels in terms of interface
types, memory bank usage, throughput, etc., while at the same
time also being more robust than the academic tools.
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