
2015 IEEE International Conference on Bioinformatics and Biomedicine (BIBM)

FPGA Acceleration of the Pair-HMMs Forward
Algorithm for DNA Sequence Analysis

Shanshan Renl Vlad-Mihai Simal,2 Zaid AI-Arsl,2
2Bluebee

Molengraaffsingel 12-14
2629 JD Delft, The Netherlands
v lad.sima@bluebee.com

lComputer Engineering Lab
Delft University of Technology

2628 CD Delft, The Netherlands
Email: {s.ren.z.al-ars}@tudelft.nl

Abstract-Many DNA sequence analysis tools have been

developed to turn the massive raw DNA sequencing data

generated by NGS (Next Generation Sequencing) platforms into

biologically meaningful information. The pair-HMMs forward

algorithm is widely used to calculate the overall alignment

probability needed by a number of DNA analysis tools. In this

paper, we propose a novel systolic array design to accelerate the

pair-HMMs forward algorithm on FPGAs. A number of

architectural features have been implemented to improve the

performance of the design, such as early exit points to increase

the utilization of the array for small sequence sizes, as well as

on-chip buffering to enable the processing of long sequences

effectively. We present an implementation of the design on the

Convey supercomputing platform. Experimental results show

that the FPGA implementation of the pair-HMMs forward

algorithm is up to 67x faster, compared to software-only

execution.

Keywords-NGS, FPGA, pair-HMMs, hardware acceleration.

1. INTRODUCTION

NGS technology [1] provides a high-throughput and
cost-effective sequencing method of DNA, creating vast
opportunities for profound understanding of human disease.
The analysis and interpretation of large-scale sequencing data
produced by NGS is a ma jor challenge, requiring complex
statistical models and sophisticated bioinformatics tools to
turning raw sequencing data into biologically meaningful
information. There are a number of such tools currently
available and being used widely, such as BWA, SAMtools,
SOAP, VarScan and GATK.

Pair-HMMs (pair hidden Markov models) [2] are very
popular for finding pairwise alignment of DNA sequences.
There are two ways to use pair-HMMs in biological sequence
alignment: 1) identifying optimal sequence alignment, and 2)
providing the overall alignment probability. Using pair-HMMs
to find the optimal sequence alignment is very popular in many
different biological sequence analysis tools, such as ProbCons
[3], PicXAA [4] and GLProbs [5]. Pair-HMMs identify the
alignment with the largest probability as the optimal sequence
alignment. The algorithm to find the optimal sequence
alignment of pair-HMMs is called the Viterbi algorithm.

If the similarity of the two sequences is not strong, it is hard
to find the correct alignment that gives biological meaning.
Instead, pair-HMMs can then be used to calculate the
probability that two sequences are related, which is referred to
as the overall alignment probability [2]. The overall alignment
probability is widely used in many biological sequence analysis

978-1-4673-6799-8/15/$3l.00 m015 IEEE 1465

tools. For example, [6] exploits the overall alignment
probability to find the evolutionary distance between two
sequences. The GATK HaplotypeCaller [7] calculates the
overall alignment probability of the sequences and the
candidate mutations to identify their occurrence reliability.

Pair-HMMs forward algorithm computes the overall
alignment probability by summing over all possible alignments
of a given pair of DNA sequences. The forward algorithm is a
dynamic programming algorithm with a computational
complexity of O(nm) (n and m are the length of two sequences),
which is very large for long sequences. This drawback would
influence the performance and limit the feasibility of
pair-HMMs. In this paper, we investigate and propose an
FPGA-based acceleration of the pair-HMMs forward algorithm
with the purpose of improving its performance.

In this paper, we present the following contributions: (1)
propose a novel systolic array design of the pair-HMMs
forward algorithm; (2) analyze a number of optimization
techniques to improve performance; and (3) present an
implementation of the design on the Convey supercomputing
platform. The results shows that the FPGA-based
implementation is around 67x faster, compared to the
software-only execution.

The rest of this paper is organized as follows. Section 2
presents a brief overview of related work. Section 3 discusses
the details of the pair-HMMs forward algorithm. Section 4
discusses the design specification and optimizations of the
accelerated version of the algorithm. The implementation
results are discussed in Section 5. We conclude the paper and
discuss future work in Section 6.

II. RELATED WORK

FPGAs are widely used to accelerate biological algorithms
to achieve large speedup as many bioinformatics workloads
lend themselves well to parallel execution. Examples range
from commercially available implementations such as the
Tera-BLAST [8], to more research oriented algorithm
acceleration, such as the acceleration of SAMtools [9].
Tera-BLAST is an FGPA implementation of the BLAST
aligner that achieves a 27x speedup over a 32-core CPU
implementation. [9] accelerates SAMtools on FPGAs, which
achieve a speedup of 2.93x over the original version of
SAMtools.

As the Viterbi algorithm has been used in many topics,
such as pairwise alignments, multiple sequence alignment and
gene prediction, there is much research focusing on the

acceleration of the Viterbi algorithm [10][11][12]. The
acceleration of the Viterbi algorithm commonly utilizes a
log-transformation of the original equations, which transform
floating-point multiplication operations into floating-point
addition operations. The forward algorithm, on the other hand,
requires an addition operation in the probability domain, which
prevents using the log-transformation to the forward algorithm.
Therefore the acceleration approach used for the Viterbi
algorithm cannot be applied to accelerate the forward
algorithm.

TIT. PATR-HMMs FORWARDALGORTTHM

Pair-HMMs have evolved from the basic HMMs. In a
pair-HMM, the HMM model generates an aligned pair of
sequences instead of only a single sequence. Figure 1 shows a
typical pair-HMM, which is widely used in biological sequence
analysis. We assume the two sequences generated by the
pair-HMM are sequence X and Y. Figure l(a) shows the state
transition of the pair-HMM, which has three hidden states lx,
ly and M. Ix and ly are used to emit a single unaligned symbol
only in sequence X and Y, respectively. M is used to emit an
aligned pair of two symbols, where one symbol is added to
sequence X and the other symbol is added to sequence Y. By
traversing between the states lx, ly and M, the pair-HMM
generates two sequences. Figure l(b) shows an example of an
aligned pair of sequences X=ACGTC and Y=ACGAA, which
are generated according to the hidden state sequence
MMMlxlxlyly The first three symbols in sequence X and
sequence Y are emitted by state M. The last two symbols in
sequence X are emitted by state Ix and the last two symbols in
sequence Y are emitted by state ly. The probability of the
generated alignment is the product of the state transition
probabilities.

X: A C GTe
Y: A eG A A

states: M M M L L h h

(a) (b)

Figure 1. Example of a pair-HMM (a) The state transition diagram of a
pair-HMM (b) An example of a sequence pair (X, Y) generated by the
pair-HMM

From the simple example shown by Figure 1, we could see
that a hidden state sequence generates an aligned pair of
sequences with a specific alignment probability. If we want to
find the overall alignment probability, we need to add the
alignment probability of all hidden state sequences. Obviously,
it is not practical to enumerate all hidden state sequences. Thus,
the forward algorithm is proposed to solve this problem.

The pair-HMMs forward algorithm is implemented as a
dynamic programming algorithm, as shown by Equations (1) to
(3), where n and m are the length of sequence X and Y,
respectively. a, fl 0 y, (50 E 0 � and lJ are the transmission
probabilities, while ,1, eo and v are the emission probabilities.
The transmission probabilities and the emission probabilities

1466

are supplied by the two sequences. In these equations,

Mi,j stands for the overall alignment probability of two
sub-sequence X[I] ... X[i] and Y[I] ... Y[j]. li,j stands for the
overall alignment probability of X[I] ... X[i] and Y[I] ... Y[j]
with X[i] aligned to gap. Di,j stands for the overall alignment
probability of X[I] ... X[i] and Y[I] ... Y[j] with Y[j] aligned to
gap.

Initialization:

Recurrence:

{ Mo,o = 1,10,0 = Do,o = °
Mi,o = li,O = 0,0 < I :::; n

Mo,j = Do,j = 0,0 < j :::; m

{Mi'1 : ,1x(aMi-I,j-1 + flh-I,j-I + yDi-I,j-I)

It,J - eX((5Mt-I,J + E/t-I,J)
Di,j = VX(�Mi,j_1 + lJDi,j-I)

(1 :::; i :::; n,l :::; j :::; m)

Termination:

Result = Mn,m + In,m + Dn,m

(1)

(2)

(3)

As shown by these equations, three matrices are filled and
the process to fill these matrices contains much inherent
parallelism. Each matrix element of Mi,j, li,j and Di,j only
depends on the up-left, up and left neighbor elements of each
matrix, This implies all elements on the same anti-diagonal in
each matrix can be computed in parallel,

Algorithm 1 shows a pseudo code of the pair-HMMs
forward algorithm, As shown by Algorithm 1, the computation
complexity of the pair-HMMs forward algorithm is O(nm).
When the lengths of the two sequences increase, the execution
time of the dynamic programming algorithm increases
quadratically, which causes the high computational complexity
of pair-HMMs.

Numerical underflow is a significant problem when
implementing the pair-HMMs forward algorithm, as the
probability of some alignments would be smaller than the
smallest representable floating-point value. There are two
methods to solve this problem: implementing a "log-sum"
operation and rescaling [13][14]. The first method transforms
the floating-point multiplications into floating-point addition in
the log probability domain, but it needs to build a large look-up
table containing the values used in the computation process,
The second method is rescaling, which rectifies the
intermediate results, however leading to many extra
computations.

Some DNA sequence analysis tools, such as GATK
HapltoypeCaller, implement the pair-HMMs forward algorithm
directly in the probability domain without using either of these
two complex methods. The reason is that, on the one hand, the
numerical underflow problem does not frequently occur in
DNA sequence analysis, as the length of DNA sequences is
70�250bps and numbers in the double floating-point format
have an approximate range of 10.308 to 10308. On the other hand,
if a number underflows, the impact on the final result is
negligible, Thus, we would implement the pair-HMMs forward
algorithm in the probability domain as well,

I

Intel-based -------
host processor

HCMI

i i
+ +

Host memory
I

FPGAs-based

I FPGA II FPGA IIFPGA I FP?A

mpmre"oc

I

�
o 1 2 .,

i i \
... ...

I I
Coprocessor

memory

Hybrid-Core Globally Shared Memory(HCGSM)

/'

�
Start

\

X shift, Y shift, Y last M out

X_shift, PE lout Result -Y shift Data data Ar ray D out Block result --)
Control FIFOs

Block XJength, ,---. r--
Y Jength

�
Mid-data Y shift � FIFOs

Figure 2. Block diagram of the overall architecture design

Algorithm 1. The pseudo code of the pair-HMMs forward
algorithm

M[0] [0]=1;
D [0] [0] =1 [0] [0] =0;
for(i=l;i<=n;i++)
begin

M[i] [0]=1[i] [0]=0;
end
for(i=l;i<=m;i++)
begin

M[0] [i]=D[0] [i]=0;
end
for(i=l;i<=n;i++)
begin

for(j=l;j<=m;j++)
begin
M [i] [j] = AX

(axM[i-l] [j-l]+pxI[i-l] [j-l]+yxD[i-l] [j-l])
1[i] [j]=ex(8xM[i-l] [j]+Ex1[i-l] [j])

D[i] [j]=vx«(xM[i] [j-l]+T]xD[i] [j-l])
end

end

resul t=M [n] [m] +1 [n] [m] +D [n] [m] ;

IV. DESIGN SPECIFICATION

In this section, we first present an overview of the system
architecture of the FPGA implementation and then introduce
the details of the hardware design.

A. Architecture overview
Convey proposed innovative hybrid-core platforms (HC-l,

HC-1ex, HC-2 and HC-2ex) [15], which combine classic Intel
x86 microprocessors with a coprocessor comprised of FPGAs.
The platforms are useful for acceleration of computationally
intensive applications, by offloading complex kernels onto the
FPGA at runtime, while running the other part of the
application on the host processor. We exploited HC-2ex to
implement the acceleration of the pair-HMMs forward
algorithm. Figure 2 shows the overall architecture of the
design.

1467

As shown in Figure 2, the host processor and coprocessor
have their own physical memory. The two physical memories
are mapped in the same virtual memory address space, which
makes it very easy for the application developers. Efficient data
transfer mechanisms are provided for transferring between the
two memories. The hybrid-core memory interconnect (HCMI)
is responsible for signals between the host processor and the
coprocessor, such as the start signal sent by the host processor
and the finish signal sent by the coprocessor.

The pair-HMMs forward algorithm is implemented on the
coprocessor. The function of each block is described below:

Control Block: This block is used to control the progress
of the pair-HMMs algorithm. It gets the start signal from the
host processor, which indicates that the FPGAs can start their
computational cycle; it gets the length of two sequences from
Data FIFOs.

Data FIFOs: These FIFOs are used to store data from the
memory and output data to the PE array and Control Block
according to the control signals from the Control Block.

PE Array: This is used to compute the elements in the
three matrixes M(i, j), I(i, j) and D(i, j). It is described in Section
IV.B.2.

Mid-data FIFOs: This block is used to store the
intermediate data generated by the PE array.

Result Block: This block consists of three floating-point
adders and one register to calculate the result.

B. Systolic array mapping
1) Systolic arrays
The potential parallelism of the pair-HMMs forward

algorithm allows us to exploit systolic arrays to accelerate the
performance on FPGAs. Systolic arrays were proposed by H. T.
Kung and C. E. Leiserson [16] and have since been widely
used in computing matrix multiplication, LU-decomposition
and dynamic programming algorithms. A systolic array is an
array of identical Processing Elements (PEs), each of which
gets its inputs from the previous PE and passes its outputs to
the next PE. All these PEs operate in parallel. This
characteristic can be used to compute the elements on the same
anti-diagonal in each matrix, which can be computed in
parallel.

1'1-<: arTay
Sequence Y) � Y:l Y� Y1 YO T '9 � '9 , ,,,, (.!,,,1

�() l'

YO cp cP
Yl cp ¢
Y2 cp 0)
Y3 0) 0

1� l'

cP 0
0 0

0 0

G) (2)

0-

f
ini tial
va lues

matrix

Figure 3. Mapping the pair-HMMs forward algorithm to a systolic array

We map the pair-HMMs forward algorithm to a systolic
array, as shown by Figure 3. Sequence X is shifted through the
array and each PE stores one of the elements of X. Then the
bases of Sequence Y shift through the PEs. In each cycle, a PE
calculates one element of each matrix and passes the resulting
values to the next element. As the PEs run in parallel, the PE
array calculates the elements in the same anti-diagonal in each
cycle. For example, in the fourth clock cycle, the PE array is
mapped to calculate the elements marked with 4.

UUlplll

(a) Standard systolic array

(b) Vanable length systolic array

output

(c) Variable length systolic array with FIFOs
Figure 4. Systolic arrays

Figure 4(a) shows one implementation of the PE array in
case the number of PEs is equal to the read length. In this case,
the total computation time is shown by Equation (4).

T = 2 X Length(X) + Length(Y) - 1 (4)

If the FPGA is able to host more PEs than the needed
length of Sequence X, the total computation time would be

T = 2 X PEnumber + Length(Y) - 1 (5)

In this case, the computation time is not limited by the actual
length of the sequence, but by the time needed for the systolic
array to complete processing all its PEs. This is caused by the
fact that Sequence X and Y need to travel through the entire PE
array in order to produce the final result to the output, thereby
causing unnecessary latency, in addition to a reduced
utilization efficiency of the systolic array. To overcome this
limitation, we insert exit points after each PE in the PE array,
as shown in Figure 4(b) [17]. U sing this method, the bases of
Sequence X are copied into the needed PEs and Sequence Y

1468

only needs to travel through the PEs where the bases are stored.
Thus, the total computation time is reduced according to
Equation (4).

Y last in
Y_lasL_in

B
- - Y_Iast out �--=-----------------�.D Q'�-----------------'

Y_out

X in

£ in

6 in

£

f3 ou L

y _oUl

(l out

Figure 5. PE schematic for the pair-HMMs forward algorithm

If the number of PEs is smaller than the length of Sequence
X, we divide the read into sub-sequences. In each iteration, one
of the sub-sequences is shifted into the systolic array and the
results are stored in the FIFOs. In subsequent iterations, the
results in the Mid-data FIFOs and the next sub-sequence are
shifted into the systolic array. This PE array is shown in Figure
4(c). The number of iterations is specified according to the
length of Sequence X and the number of PEs in the systolic
array. The actual systolic array implemented on the Convey
FPGA is the one shown in Figure 4(c).

2) PE schematic
Figure 5 shows the PE schematic for the pair-HMMs

forward algorithm. X_in and Y_in represent the base of the
Sequence X and Y respectively. a_in, �_in, y_in, o_in, t_in,

Cin and lLin, represent a, (3, y, 0, t, <; and TJ respectively.

M _in, D _in and Un respectively represent M(i, j), D(i, j) and
I(i, j), which are calculated by the previous PE. Y _lasUn
indicates the last base of the Sequence Y is shifting into the PE

As shown by Figure 5, there are 10 floating-point
multipliers and 4 floating-point adders. In order to avoid the
high area costs of floating point arithmetic units, we use the
DSP DSP48E I components on the FPGAs to implement these
arithmetic computations.

C. Transfer overhead
When the host processor has a pair of sequences to compute

its overall alignment probability, the first step is that the host
processor sends a start signal to the coprocessor and the
coprocessor start to execute. Then the Control Block sends
request to the memory to transfer data and store data in FIFOs
on FPGAs. When the data transfer finishes, the Control Block
sends signal to the PE array and FIFOs to start to compute.
When the computation finishes, the Control Block writes
results back to memory.

I Host process I I Memory I I Coprocessor I
start signal

memory request

data

compute

memory request D data
memory request

store result
data D memory request

store result

compute

finish signal store result [) compute

Figure 6. The flow chart of the execution for the pair-HMMs forward
algorithm.

If we have several pairs of sequences to deal with, the steps
described above are not an efficient solution as the data transfer
is very time consuming and it makes the execution time very
large. We propose a flow chart of the execution of the forward
algorithm, as shown by Figure 6. For the first pair of sequences,
the coprocessor waits for the data transfer from memory. As
the coprocessor is computing the result of the first pair of
sequences, it continues to load data from memory to be stored
in the Data FIFOs. The size of Data FIFOs decides the size of
the preload data. Based on profile of the FPGA implementation
we determined that the most efficient is that the Data FIFOs
holds 4 pairs. When the coprocessor finishes the computation
of the first pair, it does not need to wait for data transfer of the
following pairs of sequences and starts to compute immediately.
In this way, data transfer and computation work in parallel,
reducing the total execution time by hiding the data transfer
overhead.

1469

V. EXPERIMENTAL RESULTS

A. Experimental setup
All tests were run on the Convey HC-2EX platform. The

platform has two Intel Xeon E5-263 processors (four cores
each, HyperThreading disabled) running at 3.3 GHz with 64
GB of DDR3 memory and four Xilinx Virtex-6 LX760 FPGA
co-processors each with 64 GB of SG-DIMM of memory.

Each FPGA is programmed with a pair-HMMs forward
algorithm module. All modules on each FPGA run in parallel.
Each FPGA contains the same number of PEs, which is limited
by the available resources on the FPGA chip. The PE array
working frequency is 75MHz.

The pair-HMMs forward algorithm module is implemented
using single-precision floating-point variables as it is the case
in software packages use pair-HMMs. In general, this is
adequate for most sequence analysis tools. If numerical
underflow occurs using single precision floats, this will be
signaled and recalculated by the pair-HMMs forward algorithm
in double precision in the software.

We use the datasets downloaded from [18] to evaluate the
performance. The dataset represents pair-HMMs inputs
generated by HaplotypeCaller from GA TK version 2.7, while
calling the 1000 Genomes Pro ject sample NA12878 which is
publicly available in the 1000G FTP.

B. Speedup
First, we run the software-only implementation

programmed in C++ with default parameters (according to the
pseudo code shown by Algorithm 1) to measure the baseline
performance. We also run 5 different FPGA implementations
of the algorithm with various number of exit points: 1, 2, 3, 4
and all possible exit points. The actual locations of the exit
points in each of these designs are listed in Table l. Note that
the increase in the number of exit points uses a larger portion
of the FPGA, which results in a corresponding drop in the
number of synthesizable PEs. With only one exit point, 96 PEs
can be synthesized, while using all exit points reduces this
number to 91 PEs.

Table 1. Location of exit points in the different FPGA designs

exit points Location of exit points # synthesizable PEs

96 96 PEs

2 46,93 93 PEs

3 31,62,93 93 PEs

4 25,50,75,93 93 PEs

91 All 91 PEs

Figure 7 shows the maximum speedup attainable from the 5
different implementations with different number of exit points
as compared with the software-only implementation. The
implementation with 91 PEs and 91 exit points achieves the
highest amount of speedup of 67x. The implementation with
only one exit point results in the least amount of performance
achieving a speedup of 62x. It is interesting to note that, the
speedup correlates better with the number of exit points rather
than the number of PEs, thereby increasing the performance

with the increasing number of exit points. This can be
explained by the fact that PEs are relatively large in size and
therefore limited in number, which means that reducing the
number of PEs by a limited amount can free enough resources
to connect all PEs to an exit point.

This also indicates that the performance depends on the
length of the sequences in the input dataset, which causes the
performance to change with a changing data set.

80

70

60

50

40

30

20

10

1 exit point 2 exit points 3 exit points 4 exit points 91 exit points
96PEs 93PEs 93PEs 93PEs 91 PEs

Figure 7. Speedup of the different number of exit points implementation

Table 2 lists the hardware resource utilization of the various
designs used in the analysis. The table shows that the
implementations are mainly limited by the number of used
DSPs (used for single-precision floating-point calculations) and
the occupied slices. The table also shows that registers are
under utilized in all designs.

Table 2. Hardware resource utilization of different designs

exit # PEs %LliTs %Registers %DSPs %Occupied
points slices

96 92% 24% 100% 98%

2 to 4 93 90% 23% 97% 98%

91 91 89% 23% 95% 98%

VI. CONCLl!SIONS AND Fl!Tl!RE WORK

In this paper, we propose a novel systolic array design to
accelerate the pair-HMMs forward algorithm on FPGAs. A
number of architectural features have been implemented to
improve the performance of the design, such as early exit
points to increase the utilization of the array for small sequence
sizes, as well as on-chip buffering to enable the processing of
long sequences effectively. We implemented the design on the
Convey supercomputing platform. Experimental results show
that the improved pair-HMMs algorithm achieves a speedup of
67x, compared to software-only execution. The main limitation
in the FPGA implementation is related to the complex floating
point calculations needed by the pair-HMMs forward algorithm.
This limits the design frequency to 75MHz.

1470

Tn the future, we plan to accelerate the pair-HMMs forward
algorithm on a GPU platform to investigate its capabilities to
efficiently process floating-point operations in parallel.

REFERENCES

[I] Jay Shendure and Hanlee Ji, Next-generation DNA sequencing. Nature.
Biotechnology 26, 2008, 1135-1145

[2] Richard Durbin, et aI., 1998. Biological Sequence Analysis:
Probabilistic Models of Proteins and Nucleic Acids, page90-1 09

[3] Chuong B. Do, Mahathi S.P. Mahabhashyam, Michael Brudno, and
Serafim Batzoglou. ProbCons: Probabilistic consistency-based multiple
sequence alignment. Genome Res 2005. 15(2):330-340.

[4] Sayed Mohammad Ebrahim Sahraeian and Byung-Jun Yoon. PicXAA:
greedy probabilistic construction of maximum expected accuracy
alignment of multiple sequences. Nucleic Acids Res 2010, 38(15):
41-4928.

[5] Yongtao Ye, et al.. GLProbs: Aligning Multiple Sequences Adaptively.
IEEEIACM transactions on computational biology and bioinformatics,
vol. 12, No.1, 2015,1: 67-78.

[6] Bjarne Knudsen, Michael M. Miyamoto, Sequence Alignments and Pair
Hidden Markov Models l!sing Evolutionary History. J. Mol. BioI., 2003,
333,453-460.

[7] DePristo M, et aI., A framework for variation discovery and genotyping
using next-generation DNA sequencing data. 2011 NATl!RE
GENETICS 43:491-498

[8] Accelerated BLAST Performance with Tera-BLASTTM: a comparison
of FPGA versus GPl! and CPl! BLAST implementations," May 2013,
TimeLogic Division, Active Motif Inc. [Online].
http://www.timelogic.com/documents/TimeLogic _ Tera-BLAS T _ whitep
aper_vl.O.pdf

[9] Brett Dutro, Hardware acceleration of the SAMtools variant caller, 2015.
https:! Iwww.ideals.illinois.edulbitstreamlhandle/2142172860/Brett _ Dutr
o.pdf?sequence=1

[10] Oliver TF, Schmidt B, Jakop Y, Maskell DL. High speed biological
sequence analysis with hidden Markov models on reconfigurable
platforms. IEEE Transactions on Infromation Technology III
Biomedicine, vol. 13, no.5, ppo 740-746, 2009.

[11] Yangteng Sun, et aI., HMMer acceleration using systolic array based
reconfigurable architecture, in Proceedings of the ACM/SIGDA
International Symposium on Field Programmable Gate Arrays
(FPGA '09), New York, NY, l!SA, May 2009

[12] Steven Derrien and Patrice Quinton, Parallelizing HMMER for hardware
acceleration on FPGAs, in Proceedings of the International Conference
on Application-specific Systems, Architectures and Processors
(ASAP '07), pp. 10-17, Montreal, Canada, July 2007

[13] Sean S. Eddy, Accelerated Profile HMM Searches. PLoS Comput.
Bio!.7, Oct. 2011. pcbi:I002195

[14] W. Kurdthongmee, A Modified HMM Forward Algorithm for an
Embedded Motion Type Classification. International Journal 0 fSignal
processing System, Vol.2, No.2, Dec., 2014, pp.84-90

[15] The Convey HC-2 ™ Computer Architectural Overview

http://www.conveycomputer.com/files/4113/539417097 IConvey _ HC-2_
Architectual_ Overview. pdf

[16] Hsiang Tsung Kung and Charles Eric Leiserson, 1978. Systolic Arrays
for VLSI, Interim report, Department of Computer Science, Carnegie
Mellon l!niversity

[17] Ernst Houtgast, et aI., An FPGA-based systolic array to accelerate the
BWA-MEM Genomic Mapping Algorithm (September 2015).
International Conference on Embedded Computer Systems:
Architectures, Modeling, and Simulation (SAMOS XV 2015, July 2015,
Greece.

[18] https:/ Igithu b.com/MauricioCarneiro/PairHMM/tree/master/test_ data

