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Abstract-Many DNA sequence analysis tools have been 

developed to turn the massive raw DNA sequencing data 

generated by NGS (Next Generation Sequencing) platforms into 

biologically meaningful information. The pair-HMMs forward 

algorithm is widely used to calculate the overall alignment 

probability needed by a number of DNA analysis tools. In this 

paper, we propose a novel systolic array design to accelerate the 

pair-HMMs forward algorithm on FPGAs. A number of 

architectural features have been implemented to improve the 

performance of the design, such as early exit points to increase 

the utilization of the array for small sequence sizes, as well as 

on-chip buffering to enable the processing of long sequences 

effectively. We present an implementation of the design on the 

Convey supercomputing platform. Experimental results show 

that the FPGA implementation of the pair-HMMs forward 

algorithm is up to 67x faster, compared to software-only 

execution. 
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1. INTRODUCTION 

NGS technology [1] provides a high-throughput and 
cost-effective sequencing method of DNA, creating vast 
opportunities for profound understanding of human disease. 
The analysis and interpretation of large-scale sequencing data 
produced by NGS is a ma jor challenge, requiring complex 
statistical models and sophisticated bioinformatics tools to 
turning raw sequencing data into biologically meaningful 
information. There are a number of such tools currently 
available and being used widely, such as BWA, SAMtools, 
SOAP, VarScan and GATK. 

Pair-HMMs (pair hidden Markov models) [2] are very 
popular for finding pairwise alignment of DNA sequences. 
There are two ways to use pair-HMMs in biological sequence 
alignment: 1) identifying optimal sequence alignment, and 2) 
providing the overall alignment probability. Using pair-HMMs 
to find the optimal sequence alignment is very popular in many 
different biological sequence analysis tools, such as ProbCons 
[3], PicXAA [4] and GLProbs [5]. Pair-HMMs identify the 
alignment with the largest probability as the optimal sequence 
alignment. The algorithm to find the optimal sequence 
alignment of pair-HMMs is called the Viterbi algorithm. 

If the similarity of the two sequences is not strong, it is hard 
to find the correct alignment that gives biological meaning. 
Instead, pair-HMMs can then be used to calculate the 
probability that two sequences are related, which is referred to 
as the overall alignment probability [2]. The overall alignment 
probability is widely used in many biological sequence analysis 
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tools. For example, [6] exploits the overall alignment 
probability to find the evolutionary distance between two 
sequences. The GATK HaplotypeCaller [7] calculates the 
overall alignment probability of the sequences and the 
candidate mutations to identify their occurrence reliability. 

Pair-HMMs forward algorithm computes the overall 
alignment probability by summing over all possible alignments 
of a given pair of DNA sequences. The forward algorithm is a 
dynamic programming algorithm with a computational 
complexity of O(nm) (n and m are the length of two sequences), 
which is very large for long sequences. This drawback would 
influence the performance and limit the feasibility of 
pair-HMMs. In this paper, we investigate and propose an 
FPGA-based acceleration of the pair-HMMs forward algorithm 
with the purpose of improving its performance. 

In this paper, we present the following contributions: (1) 
propose a novel systolic array design of the pair-HMMs 
forward algorithm; (2) analyze a number of optimization 
techniques to improve performance; and (3) present an 
implementation of the design on the Convey supercomputing 
platform. The results shows that the FPGA-based 
implementation is around 67x faster, compared to the 
software-only execution. 

The rest of this paper is organized as follows. Section 2 
presents a brief overview of related work. Section 3 discusses 
the details of the pair-HMMs forward algorithm. Section 4 
discusses the design specification and optimizations of the 
accelerated version of the algorithm. The implementation 
results are discussed in Section 5. We conclude the paper and 
discuss future work in Section 6. 

II. RELATED WORK 

FPGAs are widely used to accelerate biological algorithms 
to achieve large speedup as many bioinformatics workloads 
lend themselves well to parallel execution. Examples range 
from commercially available implementations such as the 
Tera-BLAST [8], to more research oriented algorithm 
acceleration, such as the acceleration of SAMtools [9]. 
Tera-BLAST is an FGPA implementation of the BLAST 
aligner that achieves a 27x speedup over a 32-core CPU 
implementation. [9] accelerates SAMtools on FPGAs, which 
achieve a speedup of 2.93x over the original version of 
SAMtools. 

As the Viterbi algorithm has been used in many topics, 
such as pairwise alignments, multiple sequence alignment and 
gene prediction, there is much research focusing on the 



acceleration of the Viterbi algorithm [10][11][12]. The 
acceleration of the Viterbi algorithm commonly utilizes a 
log-transformation of the original equations, which transform 
floating-point multiplication operations into floating-point 
addition operations. The forward algorithm, on the other hand, 
requires an addition operation in the probability domain, which 
prevents using the log-transformation to the forward algorithm. 
Therefore the acceleration approach used for the Viterbi 
algorithm cannot be applied to accelerate the forward 
algorithm. 

TIT. PATR-HMMs FORWARDALGORTTHM 

Pair-HMMs have evolved from the basic HMMs. In a 
pair-HMM, the HMM model generates an aligned pair of 
sequences instead of only a single sequence. Figure 1 shows a 
typical pair-HMM, which is widely used in biological sequence 
analysis. We assume the two sequences generated by the 
pair-HMM are sequence X and Y. Figure l(a) shows the state 
transition of the pair-HMM, which has three hidden states lx, 
ly and M. Ix and ly are used to emit a single unaligned symbol 
only in sequence X and Y, respectively. M is used to emit an 
aligned pair of two symbols, where one symbol is added to 
sequence X and the other symbol is added to sequence Y. By 
traversing between the states lx, ly and M, the pair-HMM 
generates two sequences. Figure l(b) shows an example of an 
aligned pair of sequences X=ACGTC and Y=ACGAA, which 
are generated according to the hidden state sequence 
MMMlxlxlyly The first three symbols in sequence X and 
sequence Y are emitted by state M. The last two symbols in 
sequence X are emitted by state Ix and the last two symbols in 
sequence Y are emitted by state ly. The probability of the 
generated alignment is the product of the state transition 
probabilities. 

X: A C GTe 
Y: A eG A A 

states: M M M L L h h 

(a) (b) 

Figure 1. Example of a pair-HMM (a) The state transition diagram of a 
pair-HMM (b) An example of a sequence pair (X, Y) generated by the 
pair-HMM 

From the simple example shown by Figure 1, we could see 
that a hidden state sequence generates an aligned pair of 
sequences with a specific alignment probability. If we want to 
find the overall alignment probability, we need to add the 
alignment probability of all hidden state sequences. Obviously, 
it is not practical to enumerate all hidden state sequences. Thus, 
the forward algorithm is proposed to solve this problem. 

The pair-HMMs forward algorithm is implemented as a 
dynamic programming algorithm, as shown by Equations (1) to 
(3), where n and m are the length of sequence X and Y, 
respectively. a, fl 0 y, (50 E 0 � and lJ are the transmission 
probabilities, while ,1, eo and v are the emission probabilities. 
The transmission probabilities and the emission probabilities 
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are supplied by the two sequences. In these equations, 

Mi,j stands for the overall alignment probability of two 
sub-sequence X[I] ... X[i] and Y[I] ... Y[j]. li,j stands for the 
overall alignment probability of X[I] ... X[i] and Y[I] ... Y[j] 
with X[i] aligned to gap. Di,j stands for the overall alignment 
probability of X[I] ... X[i] and Y[I] ... Y[j] with Y[j] aligned to 
gap. 

Initialization: 

Recurrence: 

{ Mo,o = 1,10,0 = Do,o = ° 
Mi,o = li,O = 0,0 < I :::; n 

Mo,j = Do,j = 0,0 < j :::; m 

{Mi'1 : ,1x(aMi-I,j-1 + flh-I,j-I + yDi-I,j-I) 

It,J - eX((5Mt-I,J + E/t-I,J ) 
Di,j = VX(�Mi,j_1 + lJDi,j-I) 

(1 :::; i :::; n,l :::; j :::; m) 

Termination: 

Result = Mn,m + In,m + Dn,m 

(1) 

(2) 

(3) 

As shown by these equations, three matrices are filled and 
the process to fill these matrices contains much inherent 
parallelism. Each matrix element of Mi,j, li,j and Di,j only 
depends on the up-left, up and left neighbor elements of each 
matrix, This implies all elements on the same anti-diagonal in 
each matrix can be computed in parallel, 

Algorithm 1 shows a pseudo code of the pair-HMMs 
forward algorithm, As shown by Algorithm 1, the computation 
complexity of the pair-HMMs forward algorithm is O(nm). 
When the lengths of the two sequences increase, the execution 
time of the dynamic programming algorithm increases 
quadratically, which causes the high computational complexity 
of pair-HMMs. 

Numerical underflow is a significant problem when 
implementing the pair-HMMs forward algorithm, as the 
probability of some alignments would be smaller than the 
smallest representable floating-point value. There are two 
methods to solve this problem: implementing a "log-sum" 
operation and rescaling [13][14]. The first method transforms 
the floating-point multiplications into floating-point addition in 
the log probability domain, but it needs to build a large look-up 
table containing the values used in the computation process, 
The second method is rescaling, which rectifies the 
intermediate results, however leading to many extra 
computations. 

Some DNA sequence analysis tools, such as GATK 
HapltoypeCaller, implement the pair-HMMs forward algorithm 
directly in the probability domain without using either of these 
two complex methods. The reason is that, on the one hand, the 
numerical underflow problem does not frequently occur in 
DNA sequence analysis, as the length of DNA sequences is 
70�250bps and numbers in the double floating-point format 
have an approximate range of 10.308 to 10308. On the other hand, 
if a number underflows, the impact on the final result is 
negligible, Thus, we would implement the pair-HMMs forward 
algorithm in the probability domain as well, 
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Figure 2. Block diagram of the overall architecture design 

Algorithm 1. The pseudo code of the pair-HMMs forward 
algorithm 

M[0] [0]=1; 
D [0] [0] =1 [0] [0] =0; 
for(i=l;i<=n;i++) 
begin 

M[i] [0]=1[i] [0]=0; 
end 
for(i=l;i<=m;i++) 
begin 

M[0] [i]=D[0] [i]=0; 
end 
for(i=l;i<=n;i++) 
begin 

for(j=l;j<=m;j++) 
begin 
M [ i ] [j] = AX 

(axM[i-l] [j-l]+pxI[i-l] [j-l]+yxD[i-l] [j-l]) 
1[i] [j]=ex(8xM[i-l] [j]+Ex1[i-l] [j]) 

D[i] [j]=vx«(xM[i] [j-l]+T]xD[i] [j-l]) 
end 

end 

resul t=M [n] [m] +1 [n] [m] +D [n] [m] ; 

IV. DESIGN SPECIFICATION 

In this section, we first present an overview of the system 
architecture of the FPGA implementation and then introduce 
the details of the hardware design. 

A. Architecture overview 
Convey proposed innovative hybrid-core platforms (HC-l, 

HC-1ex, HC-2 and HC-2ex) [15], which combine classic Intel 
x86 microprocessors with a coprocessor comprised of FPGAs. 
The platforms are useful for acceleration of computationally 
intensive applications, by offloading complex kernels onto the 
FPGA at runtime, while running the other part of the 
application on the host processor. We exploited HC-2ex to 
implement the acceleration of the pair-HMMs forward 
algorithm. Figure 2 shows the overall architecture of the 
design. 
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As shown in Figure 2, the host processor and coprocessor 
have their own physical memory. The two physical memories 
are mapped in the same virtual memory address space, which 
makes it very easy for the application developers. Efficient data 
transfer mechanisms are provided for transferring between the 
two memories. The hybrid-core memory interconnect (HCMI) 
is responsible for signals between the host processor and the 
coprocessor, such as the start signal sent by the host processor 
and the finish signal sent by the coprocessor. 

The pair-HMMs forward algorithm is implemented on the 
coprocessor. The function of each block is described below: 

Control Block: This block is used to control the progress 
of the pair-HMMs algorithm. It gets the start signal from the 
host processor, which indicates that the FPGAs can start their 
computational cycle; it gets the length of two sequences from 
Data FIFOs. 

Data FIFOs: These FIFOs are used to store data from the 
memory and output data to the PE array and Control Block 
according to the control signals from the Control Block. 

PE Array: This is used to compute the elements in the 
three matrixes M(i, j), I(i, j) and D(i, j). It is described in Section 
IV.B.2. 

Mid-data FIFOs: This block is used to store the 
intermediate data generated by the PE array. 

Result Block: This block consists of three floating-point 
adders and one register to calculate the result. 

B. Systolic array mapping 
1) Systolic arrays 
The potential parallelism of the pair-HMMs forward 

algorithm allows us to exploit systolic arrays to accelerate the 
performance on FPGAs. Systolic arrays were proposed by H. T. 
Kung and C. E. Leiserson [16] and have since been widely 
used in computing matrix multiplication, LU-decomposition 
and dynamic programming algorithms. A systolic array is an 
array of identical Processing Elements (PEs), each of which 
gets its inputs from the previous PE and passes its outputs to 
the next PE. All these PEs operate in parallel. This 
characteristic can be used to compute the elements on the same 
anti-diagonal in each matrix, which can be computed in 
parallel. 
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Figure 3. Mapping the pair-HMMs forward algorithm to a systolic array 

We map the pair-HMMs forward algorithm to a systolic 
array, as shown by Figure 3. Sequence X is shifted through the 
array and each PE stores one of the elements of X. Then the 
bases of Sequence Y shift through the PEs. In each cycle, a PE 
calculates one element of each matrix and passes the resulting 
values to the next element. As the PEs run in parallel, the PE 
array calculates the elements in the same anti-diagonal in each 
cycle. For example, in the fourth clock cycle, the PE array is 
mapped to calculate the elements marked with 4. 

UUlplll 

(a) Standard systolic array 

(b) Vanable length systolic array 

output 

(c) Variable length systolic array with FIFOs 
Figure 4. Systolic arrays 

Figure 4(a) shows one implementation of the PE array in 
case the number of PEs is equal to the read length. In this case, 
the total computation time is shown by Equation (4). 

T = 2 X Length(X) + Length(Y) - 1 (4) 

If the FPGA is able to host more PEs than the needed 
length of Sequence X, the total computation time would be 

T = 2 X PEnumber + Length(Y) - 1 (5) 

In this case, the computation time is not limited by the actual 
length of the sequence, but by the time needed for the systolic 
array to complete processing all its PEs. This is caused by the 
fact that Sequence X and Y need to travel through the entire PE 
array in order to produce the final result to the output, thereby 
causing unnecessary latency, in addition to a reduced 
utilization efficiency of the systolic array. To overcome this 
limitation, we insert exit points after each PE in the PE array, 
as shown in Figure 4(b) [17]. U sing this method, the bases of 
Sequence X are copied into the needed PEs and Sequence Y 
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only needs to travel through the PEs where the bases are stored. 
Thus, the total computation time is reduced according to 
Equation (4). 
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Figure 5. PE schematic for the pair-HMMs forward algorithm 

If the number of PEs is smaller than the length of Sequence 
X, we divide the read into sub-sequences. In each iteration, one 
of the sub-sequences is shifted into the systolic array and the 
results are stored in the FIFOs. In subsequent iterations, the 
results in the Mid-data FIFOs and the next sub-sequence are 
shifted into the systolic array. This PE array is shown in Figure 
4(c). The number of iterations is specified according to the 
length of Sequence X and the number of PEs in the systolic 
array. The actual systolic array implemented on the Convey 
FPGA is the one shown in Figure 4( c). 

2) PE schematic 
Figure 5 shows the PE schematic for the pair-HMMs 

forward algorithm. X_in and Y_in represent the base of the 
Sequence X and Y respectively. a_in, �_in, y_in, o_in, t_in, 

Cin and lLin, represent a, (3, y, 0, t, <; and TJ respectively. 



M _in, D _in and Un respectively represent M(i, j), D(i, j) and 
I(i, j), which are calculated by the previous PE. Y _lasUn 
indicates the last base of the Sequence Y is shifting into the PE 

As shown by Figure 5, there are 10 floating-point 
multipliers and 4 floating-point adders. In order to avoid the 
high area costs of floating point arithmetic units, we use the 
DSP DSP48E I components on the FPGAs to implement these 
arithmetic computations. 

C. Transfer overhead 
When the host processor has a pair of sequences to compute 

its overall alignment probability, the first step is that the host 
processor sends a start signal to the coprocessor and the 
coprocessor start to execute. Then the Control Block sends 
request to the memory to transfer data and store data in FIFOs 
on FPGAs. When the data transfer finishes, the Control Block 
sends signal to the PE array and FIFOs to start to compute. 
When the computation finishes, the Control Block writes 
results back to memory. 

I Host process I I Memory I I Coprocessor I 
start signal 

memory request 

data 

compute 

memory request D data 
memory request 

store result 
data D memory request 

store result 

compute 

finish signal store result [) compute 

Figure 6. The flow chart of the execution for the pair-HMMs forward 
algorithm. 

If we have several pairs of sequences to deal with, the steps 
described above are not an efficient solution as the data transfer 
is very time consuming and it makes the execution time very 
large. We propose a flow chart of the execution of the forward 
algorithm, as shown by Figure 6. For the first pair of sequences, 
the coprocessor waits for the data transfer from memory. As 
the coprocessor is computing the result of the first pair of 
sequences, it continues to load data from memory to be stored 
in the Data FIFOs. The size of Data FIFOs decides the size of 
the preload data. Based on profile of the FPGA implementation 
we determined that the most efficient is that the Data FIFOs 
holds 4 pairs. When the coprocessor finishes the computation 
of the first pair, it does not need to wait for data transfer of the 
following pairs of sequences and starts to compute immediately. 
In this way, data transfer and computation work in parallel, 
reducing the total execution time by hiding the data transfer 
overhead. 
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V. EXPERIMENTAL RESULTS 

A. Experimental setup 
All tests were run on the Convey HC-2EX platform. The 

platform has two Intel Xeon E5-263 processors (four cores 
each, HyperThreading disabled) running at 3.3 GHz with 64 
GB of DDR3 memory and four Xilinx Virtex-6 LX760 FPGA 
co-processors each with 64 GB of SG-DIMM of memory. 

Each FPGA is programmed with a pair-HMMs forward 
algorithm module. All modules on each FPGA run in parallel. 
Each FPGA contains the same number of PEs, which is limited 
by the available resources on the FPGA chip. The PE array 
working frequency is 75MHz. 

The pair-HMMs forward algorithm module is implemented 
using single-precision floating-point variables as it is the case 
in software packages use pair-HMMs. In general, this is 
adequate for most sequence analysis tools. If numerical 
underflow occurs using single precision floats, this will be 
signaled and recalculated by the pair-HMMs forward algorithm 
in double precision in the software. 

We use the datasets downloaded from [18] to evaluate the 
performance. The dataset represents pair-HMMs inputs 
generated by HaplotypeCaller from GA TK version 2.7, while 
calling the 1000 Genomes Pro ject sample NA12878 which is 
publicly available in the 1000G FTP. 

B. Speedup 
First, we run the software-only implementation 

programmed in C++ with default parameters (according to the 
pseudo code shown by Algorithm 1) to measure the baseline 
performance. We also run 5 different FPGA implementations 
of the algorithm with various number of exit points: 1, 2, 3, 4 
and all possible exit points. The actual locations of the exit 
points in each of these designs are listed in Table l. Note that 
the increase in the number of exit points uses a larger portion 
of the FPGA, which results in a corresponding drop in the 
number of synthesizable PEs. With only one exit point, 96 PEs 
can be synthesized, while using all exit points reduces this 
number to 91 PEs. 

Table 1. Location of exit points in the different FPGA designs 

# exit points Location of exit points # synthesizable PEs 

96 96 PEs 

2 46,93 93 PEs 

3 31,62,93 93 PEs 

4 25,50,75,93 93 PEs 

91 All 91 PEs 

Figure 7 shows the maximum speedup attainable from the 5 
different implementations with different number of exit points 
as compared with the software-only implementation. The 
implementation with 91 PEs and 91 exit points achieves the 
highest amount of speedup of 67x. The implementation with 
only one exit point results in the least amount of performance 
achieving a speedup of 62x. It is interesting to note that, the 
speedup correlates better with the number of exit points rather 
than the number of PEs, thereby increasing the performance 



with the increasing number of exit points. This can be 
explained by the fact that PEs are relatively large in size and 
therefore limited in number, which means that reducing the 
number of PEs by a limited amount can free enough resources 
to connect all PEs to an exit point. 

This also indicates that the performance depends on the 
length of the sequences in the input dataset, which causes the 
performance to change with a changing data set. 

80 
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40 
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10 

1 exit point 2 exit points 3 exit points 4 exit points 91 exit points 
96PEs 93PEs 93PEs 93PEs 91 PEs 

Figure 7. Speedup of the different number of exit points implementation 

Table 2 lists the hardware resource utilization of the various 
designs used in the analysis. The table shows that the 
implementations are mainly limited by the number of used 
DSPs (used for single-precision floating-point calculations) and 
the occupied slices. The table also shows that registers are 
under utilized in all designs. 

Table 2. Hardware resource utilization of different designs 

# exit # PEs %LliTs %Registers %DSPs %Occupied 
points slices 

96 92% 24% 100% 98% 

2 to 4 93 90% 23% 97% 98% 

91 91 89% 23% 95% 98% 

VI. CONCLl!SIONS AND Fl!Tl!RE WORK 

In this paper, we propose a novel systolic array design to 
accelerate the pair-HMMs forward algorithm on FPGAs. A 
number of architectural features have been implemented to 
improve the performance of the design, such as early exit 
points to increase the utilization of the array for small sequence 
sizes, as well as on-chip buffering to enable the processing of 
long sequences effectively. We implemented the design on the 
Convey supercomputing platform. Experimental results show 
that the improved pair-HMMs algorithm achieves a speedup of 
67x, compared to software-only execution. The main limitation 
in the FPGA implementation is related to the complex floating 
point calculations needed by the pair-HMMs forward algorithm. 
This limits the design frequency to 75MHz. 
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Tn the future, we plan to accelerate the pair-HMMs forward 
algorithm on a GPU platform to investigate its capabilities to 
efficiently process floating-point operations in parallel. 
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