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Abstract. We present a novel approach to tradeoff accuracy against
the degree of parallelization for the Canny edge detector, a well-known
image-processing algorithm. At the heart of our method is a single top-
level image-slicing loop incorporated into the sequential algorithm to
process image segments concurrently, a parallelization technique allow-
ing for breaks in the computational continuity in order to achieve high
performance levels. By using the fidelity slider, a new approximate com-
puting concept that we introduce, the user can exercise full control over
the desired balance between accuracy of the output and parallel per-
formance. The practical value and strong scalability of the presented
method is demonstrated by extensive benchmarks performed on three
evaluation platforms, showing speedups of up to 7x for an accuracy of
100% and up to 19x for an accuracy of 99% over the sequential version,
as recorded on an Intel Xeon platform with 14 cores and 28 hardware
threads.

1 Introduction

Three decades on since publication of the highly influential paper by John F.
Canny [4], his edge detector algorithm (referred to as CED further on in the
text) remains a standard and a basis of many efficient solutions in the fields of
pattern recognition, computer vision, and a number of others. The algorithm is
also known as computationally challenging due to its high latency that prevents a
direct implementation from being employed in real-time applications [15]. And,
while there exist numerous multi-core implementations of the algorithm, the
issue of combining both high performance and quality of the edge detection in
a single solution remains relevant as ever.

Among the previously published works on parallelization of the CED, [5]
is, to our knowledge, the only one that could be meaningfully compared with
our in terms of the recorded optimization levels. It reports a speedup of 11
times over sequential achieved on a 16-core CPU for a 2048x2048 pixels test
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image, but lacks, in our view, sufficient scalability analysis of the presented
solution. All other previous efforts in parallelization of the CED have been carried
out using a hardware acceleration platform of some sort, typically NVIDIA’s
GPU/CUDA [3, 5, 10, 14, 15]; furthermore, none of the works offered any user-
defined scheme of tradeoff between the performance and quality of the traced
output.

In contrast, the parallelization approach that we propose in this paper is
not based on any particular hardware acceleration architecture, and thus can be
implemented on a commodity multi-core platform equipped with an OpenMP-
enabled GCC compiler. Similarly to the approach used in [5], in our paralleliza-
tion of Canny edge we employ domain decomposition [11], a widely used data
parallelization strategy that divides an image into equally-sized segments (with
segments being in our case contiguous blocks of image pixel rows, or slices, as
we call them), and processes them concurrently. However, unlike all previous ap-
proaches where the standard practice would dictate parallelizing the algorithm’s
sequential code on the laborious loop-by-loop basis, our method relies solely on
incorporating a single image-slicing loop atop every other loop already existing
in the code. This novel technique, besides being highly portable, requires mini-
mal modification of the existing code and thus can be easily applied in a template
manner to a wide range of image processing algorithms and applications.

Due to the enforced nature of the slicing loop-based parallelization, however,
it is possible for our method to induce certain violation of the computational
continuity of the sequential code, resulting in an output that is different from the
sequential one. This issue is addressed in our method by introducing principles
of approximate computing into the solution, such as the fully original fidelity
slider, a mechanism that allows the user to maintain the desired level of edge
detection quality in the parallel output by trading off a controlled amount of the
achieved parallel performance.

Because of its universal character, our method of incorporating an image-
slicing loop combined with the approximate computing-based tradeoff of accu-
racy against performance can be successfully applied to a wide range of im-
age processing algorithms, particularly those not easily amenable to efficient
parallelization due to their inherent constraints of computational continuity
and internal data dependencies. As we estimate, such algorithms may vary
from computer vision methods, such as Sobel’s and Prewitt’s edge detector
method [7], anisotropic diffusion [13] and mean-shift filter [6], to more general
data-processing ones, such as discrete wavelet transform [12], and many others.

To our knowledge, given the described above unique characteristics of our
method, there are no existing analogues to compare it with.

The two major contributions of this paper are:

1. a novel efficient data parallelization technique based on introduction of a
single top-level image-slicing loop into the application;

2. the fidelity slider as a new approximate computing concept to balance per-
formance and precision in the parallelized application, such as the CED.
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The rest of the paper is organized as follows. Section 2 describes the method
we used to parallelize the CED. The achieved experimental results are shown
and discussed in Section 3, followed by Section 4 that concludes this paper.

2 Parallelization of Canny edge

2.1 Canny edge detection algorithm

The Canny edge detection algorithm, developed by John F. Canny [4], is a well-
known image processing algorithm used in many fields ranging from pattern
recognition to computer vision. Description of this algorithm can be found in
many introductory texts on image processing. Here, we only list the main stages
of the algorithm:

1. noise reduction by filtering with a Gaussian-smoothing filter;
2. computing the gradients of an image to highlight regions with high spatial

derivatives;
3. relating the edge gradients to directions that can be traced;
4. tracing valid edges using hysteresis thresholding to eliminate breaking up of

edge contours.

The baseline sequential version that we used for parallelization, was the CED
implementation by Heath et al. [1, 8]. The function and variable names used
throughout the text of this section, as well as included in the Figure 2 and Table
1, refer to the source code of that implementation.

2.2 Introduction of the image-slicing loop

/* iterate over image slices */
for (row_ix=0; row_ix<rows; row_ix+=rows_slice) {
#pragma omp task shared(edge_file) if (do_async_tasking)

{
/* call the main filter function to process
* the image slice as a concurrent task */

canny_par(row_ix, rows_slice, cols, image, ...);
}

}

Fig. 1. The source code fragment implementing the main image-slicing loop (simpli-
fied).

The domain decomposition-based strategy we employed to parallelize the
sequential version enforces coarse-grained data parallelization onto the applica-
tion through incorporating a top-level image-slicing loop into its code. In the
case of the CED implementation, the slices are equally-sized, contiguous blocks
of pixel rows that are processed concurrently by asynchronous tasks spawned by
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Table 1. Runtime breakdown by functions in the CED, percents
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(magnitude
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76.7 8.2 4.4 4.4 3.8 2.3

a dedicated OpenMP-driven loop (Figure 1). The loop has been parallelized with
a single #pragma omp task OpenMP directive, which we chose over the more
commonly used #pragma omp for due to its ability to parallelize non-canonical
loops. To host the image-slicing loop, a separate function was added at the top
of the program’s logic; the (formerly) main function is called from within the
loop to process a single slice, instead of the whole image, as before.

Figure 1 shows the (simplified) fragment of the source code implementing
the image-slicing loop, with the #pragma omp task OpenMP directive launching
concurrent slice-processing tasks.

Right choice of the slice size, denoted as the rows slice variable in the source
code fragment, is crucial for reaching the best parallel performance in our so-
lution. It is controlled via a parameter in the application’s command line that
defines number of pixel rows in each slice. If the parameter is not specified, the
optimal slice size will be calculated automatically by the application as simply
the quotient of the image’s vertical dimension divided by the current number of
active threads. When the active thread count is equal to the maximal number
of hardware threads supported by the system, the slice size calculated this way
is nearly guaranteed to lead to the highest parallel performance for the host
platform, since it effectuates an ideal workload balance between slice-processing
tasks, with OpenMP efficiently distributing the tasks among active threads.

With the exception of the Gaussian-smoothing loops that we parallelized
mostly for various testing and illustration reasons (see the Earth, Gaussian
smoothing loops only curve in Figure 3 showing modest overall speedup of 2.4
times over sequential achieved from a standalone parallelization of this loop), no
other native loops in the application were explicitly parallelized. As the applica-
tion profile data, as well as our analysis of the source code indicated, optimization
benefits of such effort would have been minimal (see Table 1, which shows run-
time breakdown by functions in the CED, as recorded during profiling of the
sequential version).

2.3 Image-slicing challenges and solutions

Due to the breaks in the computational continuity of the CED algorithm caused
by the introduced image-slicing loop, the following issues have been observed in
the edge-traced images rendered by the parallel version:

1. horizontal visual breaks appearing in the image, i.e. blank single-pixel rows
between slices, as a result of broken continuity in the Gaussian-smoothing
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stage of the algorithm due to the smoothing filter now operating on separate
image slices, instead of the whole image, as it was done by the sequential
algorithm;

2. areas in the image rendered differently from the reference output due to the
image histogram array no longer computed globally for the entire image, but
computed piece-wise within each slice;

3. differently traced edges as a result of violating the logic of the recursive
edge-tracing procedure used by the original code that allowed, in principle,
for indefinitely long, contiguous edges traced from one arbitrary pixel in the
image to another arbitrary one.

slice 1 (an OpenMP task)

slice 2

slice 3

slice 4

Edge tracing

Fig. 2. OpenMP-based parallelization scheme, drawn as a simplified case of four asyn-
chronous slice-processing tasks entering histogram synchronization before the edge-
tracing stage.

To address the above-mentioned issues, we implemented the following addi-
tions to our solution.

The parallel code was adjusted such that the image slices included extra
overlapping pixel rows blending into the neighbors, in order to mask the visual
breaks that resulted from image-slicing. The thereby introduced vertical over-
lap size (expressed in pixel rows) is an integer parameter varying from 1 to τσ,
where τσ is derived from σ, the input parameter of the Canny edge algorithm
that defines the standard deviation of the Gaussian-smoothing filter. The ver-
tical overlap size corresponds to the integer windowsize variable found in the
sequential code of the filter, and is computed as follows:

τσ = 2 ∗ d2.5 ∗ σe (1)

For most typical use-cases where σ doesn’t exceed 2.0, the value of 10 pixels
calculated for τσ in accordance with Equation 1 results in a Gaussian-smoothed
output identical to that of the sequential version of the algorithm, while the
default of 4 pixels provides adequate masking effect. This adjustment fully fixed
issue (1), and partially addressed issue (3), with a performance penalty depend-
ing on the overlap size and number of slices.

To produce the precise – in respect to the sequential version that is – output,
a modification in the parallel code was necessary that would allow using a single
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histogram of the entire image for all concurrent slice tasks. To implement this,
a histogram synchronization scheme was developed, where slice tasks performed
most of the work independently, and only synchronized with each other briefly
(see ”histogram sync” block in Figure 2), to compute and share among them-
selves the single global histogram, before proceeding with edge-tracing within
their individual image slices, again concurrently. The scheme (Figure 2) allowed
to retain most of the parallel performance, and partially solved issue (2) of di-
vergence with the reference output. The complete solution for issue (2) and (3)
could only be found as a part of the fidelity slider design (Section 2.5).

2.4 The fidelity slider: balancing performance and accuracy

In order to fully address issue (2) and (3), a new feature which we call fidelity
slider has been introduced into the solution. By means of adding elements of ap-
proximate computing in a controlled fashion, it allowed to address the principal
challenges of the CED parallelization in a more fundamental way.

The first step in implementing the slider is to introduce measurement of
the actual binary difference between the parallel version’s output and that of
the sequential one. For this purpose, we implemented a simple metric expressed
as a total sum of average pixel difference between two images (Equation 2),
which proved a suitable divergence measure for the purposes of our application,
reflecting well the degree of the observable visual difference, as well as more
subtle deviations in rendered edges (see Figure 6, explained in more detail in
Section 3.4.)

The rendering error RE used to calculate the accuracy of the parallel output
is computed as the image distance metric described above, that is the average
pixel difference between the parallel-produced image p and the sequential image
s (both grayscale, the only type of images the CED works with), and is defined
as

RE(p, s) =

∑N
i=1

∑M
j=1

|LPij−LSij|
255.0

N ∗M
(2)

where LPij and LSij are pixel intensity values, and N and M are the im-
ages vertical and horizontal dimensions in pixels. The corresponding accuracy
percentage value is calculated as

AC = 100 * (1.0 - RE )

2.5 The design of the fidelity slider

The fidelity slider is constructed as a composite parameter driving the strength of
the following three factors, each moderating its own component of the aggregate
divergence from the reference image induced by the computational discontinuity
issues (1), (2) and (3):



Balancing High-Performance Parallelization 7

1. the vertical slice overlap size in pixel rows, from 1 to τσ. This is the fac-
tor introduced to inhibit issue (1). It moderates the related component of
the rendering error RE in a manner such that adding a pixel row to the
slice overlap along incrementing the factor results in a steadily decreasing
component of the rendering error;

2. the degree of the cross-slice histogram synchronization, expressed as the
number of slice tasks synchronized before the algorithm’s edge-tracing phase
takes place, progressing from two to all slices synchronized. This is the factor
introduced to inhibit issue (2). Advancing the slider value from 1% to 100%
results in more and more slices using the globally synchronized histogram
(as opposed to their locally computed one) and, correspondingly, decreasing
component of the rendering error;

3. number of slices rendered in non-concurrent fashion during the last edge-
tracing stage, progressing from two to all slices. This is the factor introduced
to inhibit issue (3). This last-stage rendering is performed by the leading slice
task, which is reflected in Figure 2 by the slice on the top (drawn visibly
larger than the rest). Advancing the slider value from 1% to 100% results in
more and more slices jointly edge-traced as a single contiguous fragment of
the input image and, correspondingly, decreasing component of the rendering
error.

Further algorithmic details of the three introduced factors and the related to
them moderation process can be found in [9].

3 Results

3.1 The test and development platforms

In the course of benchmarking our CED implementation, we used the following
three platforms. First, an IBM server equipped with two 4.2 GHz POWER8
CPUs both featuring six cores each supporting up to eight threads per core,
running Ubuntu kernel v3.16, hereafter called “POWER8”. Second, an HPC
server with two 2.6 GHz Xeon E5-2697 CPUs, each having 14 cores supporting
two threads per core, running Ubuntu kernel v3.13, hereafter called “Xeon E5-
2697”. And third, a Dell desktop with a 3.2 GHz Xeon E5-1650 CPU, having
six cores supporting two threads per core, running Windows 7, hereafter called
“Xeon E5-1650”. In all our experiments on the dual-socket machines, only a
single socket was used. The development platform on the three systems was
GCC compiler v4.8.2, v4.9.1, and v4.8.2, respectively, with OpenMP v4.0 as the
parallelization environment.

3.2 The test image set and benchmarking routine

During the benchmarking stage, we used a wide variety of test images, rang-
ing from 0.3 MB, 650x488 pixels size (ThunderCloud in Figure 3), to 149 MB,
13985x11188 pixels (Wrigley), the size that, to all our knowledge, significantly
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Fig. 3. Benchmark results for parallelized Canny edge, as registered for four test images
at the fidelity level of 1% (unless otherwise noted) with file output disabled. Test
platform: Xeon E5-2697 with 14 cores and 28 hardware threads.

exceeds any previously reported one for an edge-traced image. The visual con-
tents of the test images varied greatly as well, from natural (Earth, Thunder-
Cloud) to mostly geometric (House, Wrigley) and entirely synthetic/computer-
generated.

For benchmarking of the presented here CED solution, we used a custom
benchmarking sub-system incorporated in the application’s code. Based on prin-
ciples of statistic sampling, this sub-system can execute long batches of test runs,
objectively measuring the resulting speedup, and performance in general, against
a user-selected range of threads, image-slicing-related parameters and ranges of
application-specific numeric options in arbitrary combinations. Each test run,
in turn, is typically comprised of 6 or 12 individual application executions, to
produce statistically correct performance average. In the course of benchmarking
our CED solution, we have performed some 900+ test batches to edge-trace a
set of twenty images in total, of which a selected, most representative subset of
four images was chosen for the illustration purposes of this paper, rendered as
speedup and accuracy curves in Figures 3 and 5.

The source images and the full compilation of produced benchmarks, as well
as the code and other supplemental material used in this paper are available on
the OSF site [2].

3.3 Recorded speedups

Figure 3, displaying the range of speedups recorded when edge-tracing the rep-
resentative sub-set of four test images on the Xeon E5-2697, demonstrates that
our parallelization method performs the best when processing large-sized images
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(Earth, Wrigley), as compared to medium- and small-sized ones (House, Thun-
derCloud). Extensive benchmarking performed on the full test image set has
confirmed that the performance of our method is generally proportional to the
image’s dimensions, although with a varying from platform to platform degree.
On the other hand – as it was expected – the performance and method’s scalabil-
ity is affected negatively by the increased strength of the imposed by the fidelity
slider accuracy factors, mainly by the histogram synchronization at 100%. This is
illustrated by the curve marked Earth, fidelity 30% (default) in this Figure (the
fidelity level that enforces maximum synchronization of the histogram slices),
with the maximum speedup of 13.67 times over sequential, compared to 18.39
times for the same image at fidelity 1%, which imposes no synchronization.

The maximal parallel execution speedup recorded for this application was
18.66 times over the sequential version, when processing the biggest test image
on the Xeon E5-2697, with file output disabled and fidelity set at 1% (Wrigley in
Figure 3). On the other two evaluation platforms, benchmarking has recorded the
highest speedups of 13.33 times over sequential, for the POWER8 (test image:
seven MB House.pgm, 3072x2034 pixels), and 7.74 times, for the Xeon E5-1650
(test image: 61 MB Earth.pgm, 8000x8000 pixels).
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Fig. 4. Maximal parallel performance in MBs per second for the three test platforms
at three accuracy levels. Test image: Earth, 8000x8000 pixels, 61 MB. The figures atop
of every bar are the shortest runtime in seconds registered for the platform at each of
the three accuracy levels.

For the majority of the images we tested, rendering at the 1% fidelity resulted
in the accuracy of 98%-99% of the edge-traced output. The chart in Figure 4
displays the highest absolute parallel performance in MBs per second registered
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for each of the three test platforms at three key accuracy levels (99%, 99.3%
and 100%), when rendering the main test image, with the shortest runtime in
seconds atop of every bar. Although the Xeon E5-2697 appears a clear winner
in the picture, the POWER8 comes out substantially better in the performance-
per-core metric.

3.4 Fidelity slider benchmarks
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Fig. 5. Impact of the output accuracy on the parallel speedup, as recorded on the Xeon
E5-2697 for four test images.

In Figure 5, the benchmark produced results for the four test images are
displayed against the vertical speedup axis, with the accuracy value progressing
from 99% to 100% along the horizontal one. The speedup is the highest (18.01
times over sequential for our main test image, 61 MB Earth.pgm of 8000x8000
pixel size) at the leftmost position of 99 percent accuracy.

To help in getting an idea of the degree of the edge detection divergence that
can be expected at the lowest fidelity value of 1%, Figure 6 presents a fragment
from another our test image, detail-rich Wrigley, with the original picture shown
on the left and the output of the sequential version in the middle. The right side
of this Figure (produced by an image-processing program in the layer difference
mode) visualizes the edges traced spuriously by the parallel version; most of
them, as can be observed, are concentrated along a horizontal row at about 1/3
height of the picture where a slice break happened. When comparing the two
rendered outputs visually (without the help of such image-processing program
that is), the difference of this scale is rather difficult to discover, unless one is
hinted where to look first. The measured accuracy for this rendering was 98.01%.
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Fig. 6. A fragment from the Wrigley image (original picture on the left) with the
sequential program’s traced edge output (middle) and spurious edges rendered by the
parallelized version at the lowest fidelity value of 1% (right).

At the rightmost slider position of 100%, where the performance is the lowest
(7.32 times over sequential for Earth), the image difference is zero. In Figure 3,
the range of speedups recorded for the default slider value 30% – chosen in our
CED implementation for the best combination of speed and quality – can be
seen, represented by the curve marked Earth, fidelity 30% (default).

4 Conclusions

The relevance and continued viability of the Canny edge detector as a robust
computer vision algorithm remain undisputed, and there is no shortage of im-
plementations of this venerable algorithm. What seems to be lacking among
these implementations, however, is a consistent approach that would address
the performance and edge detection quality in an equal and flexible manner,
and that would not require using a proprietary acceleration platform to achieve
its performance levels.

The two major contributions of this paper were:

1. a novel efficient data parallelization technique based on introduction of a
single top-level image-slicing loop into the application;

2. the fidelity slider as a new approximate computing concept to balance per-
formance and precision in the parallelized application, such as the CED.

In this paper, we demonstrated that a successful application of coarse-grained
parallelization and innovative principles of approximate computing through in-
corporating an image-slicing loop into the CED algorithm allows to achieve
highly scalable optimization without using any dedicated hardware acceleration
equipment. On all three test platforms we used, benchmarking has registered
strong multi-core performance, with highest speedups varying from 7.74 times
over sequential, as recorded on the lowest platform (a 6-core, 12 hardware threads
Intel Dell desktop), to 18.66 times, on the highest (a 14-core, 28-hardware thread
Intel HPC Xeon server). The desired balance between the performance and qual-
ity of the output is maintained via the specially-introduced fidelity slider, yield-
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ing speedups varying from 18.66x at the accuracy level of 99 percent, down to
7.32x at the accuracy level of 100 percent, as recorded for the fastest benchmark.
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