
Evaluation of Energy Savings on a VLIW Processor

through Dynamic Issue-width Adaptation

Juan S. P. Giraldo¹, Anderson L. Sartor¹, Luigi Carro¹, Stephan Wong² and Antonio C. S. Beck¹

¹ Institute of Informatics, Federal University of Rio Grande do Sul (UFRGS), Brazil

juan.giraldo@ufrgs.br, {alsartor, carro, caco}@inf.ufrgs.br

² Computer Engineering Laboratory, Faculty of EEMCS, Delft University of Technology, The Netherlands

j.s.s.m.wong@tudelft.nl

Abstract—The development of energy efficient hardware has

been a trend in microprocessor design for the last two decades.

VLIW processors are a representative example, since they have a

simpler design and competitive performance, because their ILP

exploitation is done statically by the compiler. In this paper, we

study the energy savings that could be obtained by adapting such

microarchitecture according to the current program phase. Our

contribution is twofold. First, by executing a set of benchmarks on

the ρ-vex configurable softcore VLIW processor, and by

modifying the number of issues, we show the potentials of energy

reduction. Then, with this information in hand, we developed an

oracle experiment to dynamically vary the issue width of the

processor according to the phase behavior, considering two

different phase granularites. The potential energy savings using

this policy could be as high as 81.5% when compared with the

static version, executing the MiBench set.

Keywords—VLIW; adaptive processor; energy consumption

I. INTRODUCTION

The microprocessor industry witnessed the birth of a new
design paradigm in the last decades. The prevalence of mobile
devices and the increasing implementation problems that arise
with higher operating frequencies and aggressive out-of-order
processors put energy consumption in evidence. The growing
performance that electronics market demands from new
computer systems generates an important trade-off: the
consumer needs the highest performance with the least possible
energy consumption [1].

VLIW design is a microarchitecture solution for such
requirements, since complexity is moved from hardware to
software. A superscalar processor exploits ILP (Instruction
Level Parallelism) through expensive dynamic scheduling
hardware, whereas in VLIW processors a compiler does most of
this work, statically. It results in a simpler hardware design that
still takes advantage of multiple execution units without
incurring high resources overhead.

On the other hand, one of the main issues when it comes to
designing a VLIW processor from scratch is about project
decisions, such as choosing the right number of issues and the
register file size. The number of issues influences the level of
availability of execution units, which determines the ILP
available for the compiler, and the register file size determines
the number of registers that the compiler will be able to manage.
By choosing high values for these parameters, performance will

likely be increased. However, it will also have the drawback of
increasing the area and power dissipation.

Moreover, the resource demands vary according to the
application and workload. However, not only different
applications will present distinct needs for resources: even the
needs of a single application may vary throughout time. For
instance, some parts of the program may exploit more ILP by
computing several arithmetic operations, while others may
present less ILP for being memory bound. These intervals with
similar behavior are defined as phases [2]. Therefore, for a given
application, several phases, with different hardware needs, may
be present, which will impact the performance and energy
consumption of the system.

Let us consider a scenario where the resources are set to
comprise the phase with the highest ILP in the application, in
order to achieve the best performance. In this case, when
processor executes a phase with low ILP, the idle resources will
continue to dissipate power, increasing the energy consumption
of the system. On the other hand, if the resources are set to the
lowest possible ILP, the performance will be highly affected.
Therefore, the optimal scenario is to combine both performance
and low energy consumption by having all the resources
available for high ILP phases and turn off the idle hardware
when a phase with low ILP starts executing.

Therefore, this work has two main purposes:

 Describe quantitatively the impact of the aforementioned
architectural design choices for energy consumption,
performance, and area.

 Analyze the potential energy savings that could be
obtained by dynamically adapting the VLIW
microarchitecture according to the program phase, using
two different granularities: coarse (granularity of 5% of
the total number of executed instructions) and fine
(granularity of basic blocks).

The rest of this paper is organized as follows. Section II
describes work related to VLIW microprocessors and adaptable
systems. Section III shows the potential of optimization by
analyzing the impact of design choices on performance and
energy consumption. Section IV discusses two approaches for
evaluating the phases of an application. Section V describes the
oracle experiment performed to evaluate the energy savings

978-1-4673-8276-2/15/$31.00 c©2015 IEEE

11

potential of choosing the most appropriate issue-width for a
given phase of the program. Finally, Section VI summarizes our
conclusions.

II. RELATED WORK

A. VLIW Processors

As already discussed, VLIW architectures are an alternative
to superscalar designs, which exploits ILP through compiler
technology instead of using hardware resources. The compiler is
responsible for building long instruction words, which are
composed of various independent operations that will execute at
the same time. The main function of a VLIW hardware is to split
each word and distribute the operations among the functional
units (FUs) at run-time.

A great part of the commercially available VLIW processors
utilizes a fixed issue width, such as TMS320C611 from Texas
Instruments, S231 from STMicroelectronics or TriMedia series
from NXP. Some efforts for reconfiguring VLIW systems can
be found in [3], and for superscalar systems in [4] and [5]. Their
focus is on performance improvements for multicore systems
through core fusion and selective use of the processors involved.
This means that the adaptability of the processor is carried out
by merging simpler cores into a more complex one and by
disabling the processing units that are not necessary, depending
on the application at hand. In these papers, only performance is
considered. By contrast, the current research is mainly focused
on analyzing the influence that such adaptive architectures have
over energy consumption and other metrics.

B. Phase behavior of programs

One of the main ideas that this work leverages is the concept
of dynamic behavior of programs. A great part of the
applications have different behavior on even the largest of
scales. For example, along the execution time, the program
could be completely memory bound; it can repeatedly stall on
branch mispredicts; or it could mostly be executing arithmetic
instructions. A phase can be defined as a set of intervals within
a program’s execution that have similar behavior, regardless of
temporal adjacency [2]. In this way, a phase can reoccur multiple
times through the program’s execution.

In [6], it was developed an analysis of all SPEC 95 programs
to evaluate the dynamic behavior of a number of variables, such
as branch prediction, instructions per cycle (IPC), RUU
(Register Update Unit) occupancy, cache behavior etc. It used
basic blocks as a basic unit for further measurement analyzes.
The results showed that programs exhibit phases, which means
that the variables mentioned above are stable within specific
time intervals due to the cyclic behavior of the running
application. Other approaches, like [7], use subroutines to
classify the phase behaviors. It uses a hardware call stack to
measure the time that each part of the code is using the CPU,
taking into account nesting. If the time that is spent in one sub-
routine is greater than a preset value, it is counted as a new phase
and the associated information is saved in memory.

Several works have already explored coarser grains for phase
behavior analysis [8] [9], which means that each phase is
composed of millions of instructions. The metrics that are
extracted from each one of the phases, such as IPC or branch

miss-prediction, are averaged along a big quantity of cycles.
These efforts have been motivated by finding ways to optimize
the global behavior of programs via software. However, a
system based on such a coarse-grained phase behavior could be
losing important information about the particularities of the code
that only would arise when a finer granularity is used. The
drawback of fine-grained approaches is that the overhead must
be effectively managed to avoid performance drops or increment
of the energy consumption.

C. Clock and power gating

Clock and power gating are techniques to reduce power
dissipation of the system, and, consequently, energy
consumption. The former is applied by disabling the clock
system of specific components of the system, therefore, saving
dynamic power; the latter, turns the component completely off,
saving both static and dynamic power. Due to its simplicity,
clock gating may be applied cycle-by-cycle, but it may create an
overhead on the critical path of the system depending on the
design [10] [11]. It is usually applied by CAD tools, but the gains
of applying it to larger modules are much higher [12], as
presented on [13] [14].

On the other hand, power gating has timing and energy costs
for turning the module on or off. The cost for reaching the break-
even point (i.e., the point in which the energy spent to turn the
module on is compensated by the energy savings of using that
technique) is of 10 cycles, for typical technology parameters
[15]. In addition, there are techniques that exploit both clock and
power gating, applying each of these techniques when they are
more suitable [10].

D. Proposed approach

This work will evaluate the impact of both fine and coarse-
grained approaches on performance and energy consumption of
VLIW processors, by considering that certain parts of the
hardware are turned off through clock/power gating. We modify
different design variables of the VLIW processor and evaluate
their impact on system metrics like IPC, energy and area.

III. POTENTIAL OF OPTIMIZATION

In this section, different VLIW configurations will be
considered in order to assess the potential optimization that can
be achieved.

A. Methodology

The processor that was selected for this analysis was the ρ-
VEX, which is a configurable processor implemented in VHDL
[16]. The processor architecture is based on the VEX instruction
set architecture.

The ρ-VEX core has a five-stage pipeline, and it can be
configured at design time to have different number of issue slots
(e.g., 2, 4, or 8). Each operation is encoded as a syllable and the
number of syllables per instruction word is defined by the
number of issue slots. The pipeline’s fetch stage is responsible
for retrieving the instruction word from memory and distributing
one syllable for each issue slot. The other pipeline stages are not
shared by the issue slots, which are: decode, execution 0,
execution 1, and write-back. The execution 1 stage performs
access to the data memory or executes instructions that need
more than one cycle to be computed (e.g., multiply instruction).

12

Each issue slot may contain different functional units from the
following set: Arithmetic Logic Unit (ALU) (always present),
multiplier, memory, and branch units. In addition, other
parameters can be changed such as the register file and memory
size.

The ρ-VEX design organization used in this work was the
following: issue-width from one to eight, register file of 64
registers, ALUs in all issue slots, one memory and one branch
unit (due to ρ-VEX’s design restrictions), and a number of
multipliers that vary from one to four according to the issue-
width. This configuration is similar to other VLIW processors
(e.g., Intel Itanium [17]).

The synthesis to obtain the power dissipation and area was
carried out using an 180nm library from X-FAB [18] and
Encounter RTL Compiler from Cadence Tools [19]. The module
synthesized was the ρ-VEX core, without any peripheral or
memory attached. The programs used to evaluate performance
were compiled with the VEX compiler from HP labs, and the
total number of execution cycles was measured via hardware
counters.

B. Results

Fig. 1 depicts the area between different issue-widths,
varying from 1- to 8-issue. The 8-issue has 10.5 times more area
than the simplest configuration (1-issue), and 2.3 times more
than the 4-issue, due to the instantiation of more functional units
and more read/write ports in the register file. This increase in
area also leads to an increase in the core’s power dissipation,
which is presented in Fig. 2. The 8-issue dissipates 2.1 times
more power than the 4-issue and 6.86 times more power than the
single-issue.

In Fig. 3, the performance for five applications is compared
as we change the issue-width of the processor, and the speedup
is calculated taking the 4-issue configuration as the baseline. The
following applications were considered: ADPCM, CJPEG,
DFT, Matrix multiplication and Itver2. The 8-issue is always
faster than the 4-issue for these benchmarks, varying from 0.5%
(ADPCM) to 23% (CJPEG), with an average speedup of 10%.
On the other hand, the 2-issue is always slower (values below
one), ranging from 22% (DFT) to 65% (Itver2) of slowdown,
with an average slowdown of 44%.

The difference in performance between the 4-issue and 2-
issue processors is more remarkable than between the 4- and 8-

issue versions, because of the limited parallelism that the
compiler can exploit from the source code. Since the
requirement for parallelizing a set of operations is that all
operations must be executed simultaneously without any data
dependencies between them, increasing the issue-width requires
a larger group of independent operations. For instance, a 2-issue
processor only needs to find 1 relationship in which the data
from the two instructions (2-issue) are not dependent from each
other, while a 4-issue processor needs to find 6 independent
relationships (instruction 1 must be independent from 2,
instruction 1 from 3, instruction 1 from 4, instruction 2 from 3,
instruction 2 from 4, and instruction 3 from 4). Using the same
reasoning, an 8-issue processor needs to find 28 independent
relationships to use all the available slots. As can be seen this
increase is not linear in relation with the issue-width and
therefore it is more difficult to exploit ILP effectively for larger
values.

Fig. 4 presents the Energy-Delay Product (EDP) ratio,
having the 4-issue as the baseline, for the same set of
applications. With the EDP is possible to evaluate the trade-off
between energy consumption and performance. The best EDP is
obtained when executing the application on the 2-issue in almost
all benchmarks (up to 71% lower), with the exception of the
Itver2 application, in which the 4-issue presents better EDP. The
8-issue has higher EDP (ratio below one) on all applications
when compared to the other configurations. Therefore, the goal
is to have the performance of the 8-issue with the energy
consumption of a simpler design, e.g., 2- or 4-issue. This can be
achieved by disabling parts of the hardware that are idle in a
given moment, consequently, reducing the energy consumption
and not affecting the performance.

IV. DYNAMIC ADAPTATION

The aforementioned results highlight the enormous potential
that an exploration of the design space could produce in terms
of energy savings if microarchitectural adaptation was available
at run-time. For instance, if one part of a program does not use
certain issue slots, it is not necessary that they remain active
during this portion of time. Instead, they could be disabled
through a variety of techniques (clock gating, power gating, etc.)
to avoid unnecessary energy consumption. In order to evaluate
the potential gains from using these techniques, we will consider
that switching for enabling or disabling the hardware is done
with zero delay.

Fig. 1. Area comparison between different issue-widths

0

10,000

20,000

30,000

40,000

50,000

60,000

70,000

80,000

1 2 3 4 5 6 7 8

A
re

a
(#

 c
el

ls
)

Issue-width

Fig. 2. Power dissipation between different issue-widths

0

5,000

10,000

15,000

20,000

25,000

30,000

1 2 3 4 5 6 7 8

P
o
w

er
 d

is
si

p
at

io
n

 (
u

W
)

Issue-width

13

Taking this as our guideline, we use architectural simulation
to dynamically evaluate the IPC, which reflects the utilization of
the functional units along the execution time. If the processor is
using a high number of FUs at one specific moment, it will result
in high IPC values, as more instruction parallelism could be
explored. On the other hand, when it comes to a specific phase
of a program, where the IPC is significantly below the number
of available functional units, valuable energy in resources that
are not actually being used would be wasted. For example, if a
program is running on an 8-issue width processor and the IPC
for a phase is 1.5, it means that most of the FUs are idle during
great part of the execution.

A. Methodology

The HP’s VEX simulator [20] was modified to obtain the
IPC at run-time, extracting the number of issues used by each
instruction word. The VEX simulator works by translating an
already compiled target binary (in our case a binary generated
by the VEX compiler) to a C program. Using this generated C
program, the host’s C compiler is used to create an executable
compatible with the host instruction set architecture. Finally, the
application’s execution on the VEX architecture is simulated. In
addition, the simulator produces instrumentation code that is
used to count the execution cycles and other statistics about the
application. More details about the VEX simulator are available
in [21].

Moreover, the simulator was modified to calculate the
average IPC for specific intervals according to two implemented
methodologies, which differ in the way they handle the
instruction window sizes for phase measurement. They are
called coarse-grained and fine-grained approaches, and will be
discussed in the next sub-sections.

The programs used were extracted from Mibench, which is
a free, commercially representative embedded benchmark suite
[22]. They were compiled using VEX compiler for the 8-issue
configuration. It was selected a number of 10 applications, due
to the restriction on the availability of libraries from VEX
compiler. The selected programs were Basicmath, Bitcount,
Qsort, Djikstra, Sha, CRC, StringSearch, ADPCM, Susan, and
FFT.

B. Coarse-grained approach

This method aims to visualize the big picture of IPC
dynamics for program behavior. For that, the total execution
time of each application was divided into intervals with the same
number of cycles; and the average IPC value for each one of
these intervals was calculated. Since some applications are
larger than others, the same length of time interval for all
benchmarks would not reflect their particularities. Therefore, it
was established a granularity of 5% of total execution time for
each benchmark (e.g. if one program is composed of 1000
instruction words, the length of each time interval would be of
50 instructions).

The dotted line in Fig. 5a, Fig. 5c, and Fig. 5e (the gray
background will be explained in the next section) shows the
results obtained with this methodology. Three different
benchmarks are shown: Basicmath, StringSearch, and sha,
which illustrate different and representative behaviors.
Basicmath shows an evident phase behavior, being primarily
composed of two stable phases. StringSearch is stable and does
not present changes on the IPC that suggests any transition
phase. Finally, sha has an IPC that changes drastically between
intervals.

C. Fine-grained approach

This approach uses the basic block as the basic grain unit, so
the IPC measurement is applied for each one of them. The Fig.
5b, Fig. 5d, and Fig. 5f show the results using this granularity.
The three benchmarks shown (Basicmath, StringSearch, and
sha) demonstrate three different behaviors: presence of phases,
stable behavior, and erratic behavior. However, the fine-grained
approach highlights the differences of IPC between adjacent
basic blocks which allows us to observe IPC changes with a
higher level of detail than the coarse-grained approach.

D. Coarse vs. fine-grained approaches

As can be observed from the data obtained with coarse- and
fine-grained approaches, each application exhibits completely
different behaviors, in terms of average IPC, number of phases
and even the presence or absence of them. For example, a
program like sha shows a wide range of variation between
values whereas StringSearch presents a stable behavior that is
not affected by time on a large scale.

Fig. 3. Speedup compared to the 4-issue VLIW

0

0.2

0.4

0.6

0.8

1

1.2

1.4

ADPCM CJPEG DFT Matrix Itver2

S
p

ee
d

u
p

2-issue 4-issue (Baseline) 8-issue

Fig. 4. EDP ratio for different applications

0.00

0.20

0.40

0.60

0.80

1.00

1.20

1.40

1.60

1.80

ADPCM CJPEG DFT Matrix Itver2

E
D

P
 r

at
io

2-issue 4-issue (Baseline) 8-issue

14

The first approach aims to give an outlook of the dynamics
of the program by averaging IPC along a big number of
instructions, while the second produces higher precision in terms
of IPC since the window sizes are smaller. So, for example,
StringSearch presents different behavior comparing both
techniques. Using the fine-grained approach, in the last part of
the execution time, the number of execution units would be
adjusted to 3- or 4-issue, whereas with coarse-grained approach,
this variation of IPC measurement would not be detected and
only be set to an averaged value.

In an adaptive processor, the measurement of IPC through
the coarse-grained approach has the advantage of requiring a
simpler implementation. The system could measure IPC only in
some intervals through sampling of the execution time. The
hardware structures that are needed for this task are simple

hardware counters and storage to save the last IPC
measurements.

On the other hand, the fine-grained approach demands more
resources but it could allow better granularity optimization. In a
hardware implementation, it is necessary a memory structure to
save the last basic blocks visited. This means that after each new
basic block is processed, its IPC must be saved. The most
important advantage of this approach is that when the processor
is fetching an already processed basic block, its IPC will be
known in advance. This kind of information is imperative if we
want to allocate the right quantity of hardware resources for a
given part of the code.

a) Basicmath coarse-grained b) Basicmath fine-grained

c) StringSearch coarse-grained d) StringSearch fine-grained

e) sha coarse-grained f) sha fine-grained

Fig. 5. Average IPC during the execution

0

1

2

3

4

5

6

7

8

4
2

0

8
4

0

1
2

6
0

1
6

8
0

2
1

0
0

2
5

2
0

2
9

4
0

3
3

6
0

3
7

8
0

4
2

0
0

4
6

2
0

5
0

4
0

5
4

6
0

5
8

8
0

6
3

0
0

6
7

2
0

7
1

4
0

7
5

6
0

7
9

8
0

8
4

0
0

A
v
er

ag
e

IP
C

Time (cycles)

Restricted Wide IPC CG

0

1

2

3

4

5

6

7

8

1
0

7

4
3

4

7
0

9

9
8

4

1
2

5
9

1
5

3
4

1
8

0
9

2
0

8
4

2
4

1
6

2
8

4
1

3
2

6
6

3
6

9
1

4
1

1
6

4
5

4
1

4
9

6
6

5
3

9
1

5
8

1
6

6
2

4
1

6
6

6
6

7
0

9
1

7
5

1
6

7
9

4
1

8
3

6
6

A
v
er

ag
e

IP
C

Time (cycles)

Restricted Wide IPC FG

0

1

2

3

4

5

6

7

8

2
7

5
4

8
1

1
0

8

1
3

5

1
6

2

1
8

9

2
1

6

2
4

3

2
7

0

2
9

7

3
2

4

3
5

1

3
7

8

4
0

5

4
3

2

4
5

9

4
8

6

5
1

3

5
4

0

A
v
er

ag
e

IP
C

Time (cycles)

0

1

2

3

4

5

6

7

8

2
1

4
9

7
7

1
0

5

1
3

3

1
6

1

1
8

9

2
1

7

2
4

5

2
7

3

3
0

1

3
2

9

3
5

7

3
8

5

4
1

3

4
4

1

4
6

9

4
8

8

5
0

8

5
2

8

A
v
er

ag
e

IP
C

Time (cycles)

0

1

2

3

4

5

6

7

8

3
4

6
8

1
0

2

1
3

6

1
7

0

2
0

4

2
3

8

2
7

2

3
0

6

3
4

0

3
7

4

4
0

8

4
4

2

4
7

6

5
1

0

5
4

4

5
7

8

6
1

2

6
4

6

6
8

0

A
v
er

ag
e

IP
C

Time (cycles)

0

1

2

3

4

5

6

7

8

3

2
3

5
2

1
0

3

1
5

4

2
0

5

2
5

6

3
0

7

3
4

8

3
8

7

4
2

4

4
6

3

5
0

0

5
3

9

5
7

8

6
1

5

6
5

4

6
9

3

A
v
er

ag
e

IP
C

Time (cycles)

15

V. ORACLE HEURISTICS FOR DYNAMIC ISSUE-WIDTH

SELECTION

It was developed an oracle experiment for choosing the best
issue-width in a given moment of the application’s execution,
considering performance and energy consumption. It is based on
the assumption that at any time the processor could change the
computer organization from one specific issue-width to another
to accomplish a global optimization policy.

Hence, the purpose of this framework is to measure the
energy savings when the microarchitecture of the system is
modified at run-time from one configuration to another. We used
the data of IPC measurements that were obtained with both
coarse and fine-grained approaches. For each interval, the oracle
chooses the issue-width that minimizes the energy consumption
without incurring big performance losses. For that, it is selected
the nearest integer to the current IPC. For instance, if the IPC for
an interval is 2.7, it is chosen a 3-issue width processor for this
interval.

The data on power dissipation for each issue configuration
was presented in Fig. 2 and for each granularity (fine and
coarse), two scenarios are considered as follows. The first is
called restricted adaptation, in which the number of issue slots
can be modified between 2, 4, and 8. The second, called wide
adaptation, is able to adapt the issue width from 1 to 8 (1, 2,
3,…8). For example, if the IPC is calculated to be 5.4, the first
approach will choose an 8-issue processor whereas the second
one will use a 6-issue processor.

Fig. 6 depicts the energy savings that can be obtained by
applying the restricted and wide adaptations on both fine and
coarse-grained approaches when compared to the static 8-issue
processor. The energy consumption was estimated based on the
power dissipation of each core configuration and the time that
each of these configurations was active. The results derived from
this procedure show that the energy savings that could be
obtained via an adaptation of issues could be as high as 81.5%.
This means that one processor that could dynamically enable
and disable its available execution units would consume only a
fifth part of the total energy consumption of an 8-issue
processor.

Let us assess Fig. 5 again, now focusing on the gray
background: light gray is for when the restricted approach is
used, while dark gray is for when the wide on is employed. Note
that the restricted will always choose an issue-width equal or
larger than the wide adaptation for a given phase, because the
former can only choose between three distinct issue-widths, all
of which the wide approach is also able to choose. That is, for
phases that have an average IPC of 2, 4, or 8 (i.e., the values that
the restricted adaptation is able to choose), the wide adaptation
(that can choose from 1- to 8-issue) will choose the same issue-
width as the restricted, having the same energy savings for that
given phase. On the other hand, applications such as Basicmath
present up to 28.8% of difference between the wide and
restricted adaptations, because there is a large part of the
application in which the average IPC of the phase is 5.
Therefore, the wide adaptation would choose six issue slots,
while the restricted would choose eight issue slots, as depicted
in Fig. 5a. The reduction obtained with the wide-adaptation is
higher because the processor can better adapt to the behavior of
the application. On average, the wide adaptation is able to save
71% of energy and the restricted 63%.

By using a finer grain, the processor adapts itself faster to
changes in the application’s behavior. On the one hand, this may
decrease the energy consumption as the issue-width will be
changed faster when the application reaches a phase with low
ILP. On the other hand, it also may choose a higher issue-width
that would not be detected on the coarse granularity, resulting in
more energy consumption. Therefore, on average, both fine and
coarse-grained approaches achieve similar energy savings
because each granularity can consume less or more energy than
the other in specific moments of the application’s execution.

VI. CONCLUSIONS AND FUTURE WORK

We first focused on evaluating the consequences of
architectural decisions over metrics like area, energy, and
performance, showing the big impact that these choices could
produce into the design. The complexity of a processor, in terms
of number of available functional units, improve the measured
performance at the expense of increasing the demanded
resources and, consequently, increasing the power dissipation
and energy consumption. The performance comparison between
applications demonstrates that each program has different

a) Coarse-grained approach b) Fine-grained approach

Fig. 6. Energy savings

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

E
n

er
g
y
 s

av
in

g
s

Restricted Wide

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

E
n

er
g
y
 s

av
in

g
s

Restricted Wide

16

implicit ILP, meaning that some programs could benefit more
from a VLIW processor with a higher number of execution units.

Then, we investigated the effects of issue-width adaptation
during run-time on performance and energy. It was noted that
there are remarkable variations of ILP throughout time, which
evidences the presence of phases due to the cyclic behavior of
the code. The implemented oracle experiment showed that the
potential energy consumption reduction between a system with
adaptive issue-width and one with eight issue slots could be as
high as 81.5%. The results evidence the great benefits in terms
of energy savings that an adaptive architecture brings to a VLIW
design.

As future work, we will develop a dynamic phase detection
in order to allow the issue-width adaptation to be applied to any
application without previous knowledge of its behavior. In
addition, we will implement a mechanism to perform the trade-
off between performance and energy consumption in a given
program phase, according to the system and user needs.

REFERENCES

[1] A. C. S. Beck, C. A. L. Lisbôa, and L. Carro, Adaptable embedded
systems. Springer Science & Business Media, 2012.

[2] T. Sherwood, E. Perelman, G. Hamerly, S. Sair, and B. Calder,
“Discovering and exploiting program phases,” Micro, IEEE, vol. 23, no. 6, pp.
84–93, 2003.

[3] H. Zhong, S. A. Lieberman, and S. A. Mahlke, “Extending multicore
architectures to exploit hybrid parallelism in single-thread applications,” in
High Performance Computer Architecture, 2007. HPCA 2007. IEEE 13th
International Symposium on. IEEE, 2007, pp. 25–36.

[4] K. Sankaralingam, R. Nagarajan, H. Liu, C. Kim, J. Huh, D. Burger,
S. W. Keckler, and C. R. Moore, “Exploiting ilp, tlp, and dlp with the
polymorphous trips architecture,” in Computer Architecture, 2003.
Proceedings. 30th Annual International Symposium on. IEEE, 2003, pp. 422–
433.

[5] E. Ipek, M. Kirman, N. Kirman, and J. F. Martinez, “Core fusion:
accommodating software diversity in chip multiprocessors,” in ACM SIGARCH
Computer Architecture News, vol. 35, no. 2. ACM, 2007, pp. 186–197.

[6] T. Sherwood and B. Calder, “Time varying behavior of programs,”
UC San Diego, Tech. Rep., 1999.

[7] M. C. Huang, J. Renau, and J. Torrellas, “Positional adaptation of
processors: application to energy reduction,” in Computer Architecture, 2003.
Proceedings. 30th Annual International Symposium on. IEEE, 2003, pp. 157–
168.

[8] B. Calder, T. Sherwood, E. Perelman, and G. Hamerly, “Method and
apparatus for identifying similar regions of a program’s execution,” Sep. 21
2010, uS Patent 7,802,236.

[9] C.-H. Chang, P. Liu, and J.-J. Wu, “Sampling-based phase
classification and prediction for multi-threaded program execution on multi-
core architectures,” in Parallel Processing (ICPP), 2013 42nd International
Conference on. IEEE, 2013, pp. 349–358.

[10] L. Bolzani, A. Calimera, A. Macii, E. Macii, and M. Poncino,
“Enabling concurrent clock and power gating in an industrial design flow,” in
Proceedings of the Conference on Design, Automation and Test in Europe.
European Design and Automation Association, 2009, pp. 334–339.

[11] F. Emnett and M. Biegel, “Power reduction through rtl clock
gating,” SNUG, San Jose, 2000.

[12] S. Kaxiras and M. Martonosi, “Computer architecture techniques for
power-efficiency,” Synthesis Lectures on Computer Architecture, vol. 3, no. 1,
pp. 1–207, 2008.

[13] H. Li, S. Bhunia, Y. Chen, K. Roy, and T. Vijaykumar, “Dcg:
deterministic clock-gating for low-power microprocessor design,” Very Large
Scale Integration (VLSI) Systems, IEEE Transactions on, vol. 12, no. 3, pp.
245–254, 2004.

[14] N. Mohyuddin, K. Patel, and M. Pedram, “Deterministic clock
gating to eliminate wasteful activity due to wrong-path instructions in out-of-
order superscalar processors,” in Computer Design, 2009. ICCD 2009. IEEE
International Conference on. IEEE, 2009, pp. 166–172.

[15] Z. Hu, A. Buyuktosunoglu, V. Srinivasan, V. Zyuban, H. Jacobson,
and P. Bose, “Microarchitectural techniques for power gating of execution
units,” in Proceedings of the 2004 international symposium on Low power
electronics and design. ACM, 2004, pp. 32–37.

[16] S. Wong, T. Van As, and G. Brown, “ρ-vex: A reconfigurable and
extensible softcore vliw processor,” in ICECE Technology, 2008. FPT 2008.
International Conference on. IEEE, 2008, pp. 369–372.

[17] H. Sharangpani and K. Arora, “Itanium processor
microarchitecture,” Micro, IEEE, vol. 20, no. 5, pp. 24–43, 2000.

[18] 0.18 micron modular cmos technology. X-FAB. [Online].
Available: http://www.xfab.com/technology/cmos/018-um-xc018/

[19] Encounter rtl compiler. Cadence. [Online]. Available: http://-
www.cadence.com/products/ld/rtl_compiler

[20] Vex toolchain. Hewlett-Packard Laboratories. [Online]. Available:
http://www.hpl.hp.com/downloads/vex/

[21] J. A. Fisher, P. Faraboschi, and C. Young, Embedded computing: a
VLIW approach to architecture, compilers and tools. Elsevier, 2005.

[22] M. R. Guthaus, J. S. Ringenberg, D. Ernst, T. M. Austin, T. Mudge,
and R. B. Brown, “Mibench: A free, commercially representative embedded
benchmark suite,” in Workload Characterization, 2001. WWC-4. 2001 IEEE
International Workshop on. IEEE, 2001, pp. 3–14.

17

