
9

A Runtime FPGA Placement and Routing Using Low-Complexity
Graph Traversal

RICARDO FERREIRA, LUCIANA ROCHA, ANDRÉ G. SANTOS, and JOSÉ A. M. NACIF,
Universidade Federal de Viçosa
STEPHAN WONG, TU Delft
LUIGI CARRO, Universidade Federal do Rio Grande do Sul

Dynamic Partial Reconfiguration (DPaR) enables efficient allocation of logic resources by adding new func-
tionalities or by sharing and/or multiplexing resources over time. Placement and routing (P&R) is one of
the most time-consuming steps in the DPaR flow. P&R are two independent NP-complete problems, and,
even for medium size circuits, traditional P&R algorithms are not capable of placing and routing hard-
ware modules at runtime. We propose a novel runtime P&R algorithm for Field-Programmable Gate Array
(FPGA)-based designs. Our algorithm models the FPGA as an implicit graph with a direct correspondence to
the target FPGA. The P&R is performed as a graph mapping problem by exploring the node locality during
a depth-first traversal. We perform the P&R using a greedy heuristic that executes in polynomial time.
Unlike state-of-the-art algorithms, our approach does not try similar solutions, thus allowing the P&R to
execute in milliseconds. Our algorithm is also suitable for P&R in fragmented regions. We generate results
for a manufacturer-independent virtual FPGA. Compared with the most popular P&R tool running the same
benchmark suite, our algorithm is up to three orders of magnitude faster.

Categories and Subject Descriptors: B.7.2 [Integrated Circuits]: Design Aids—Placement and routing

General Terms: Design, Algorithms, Performance

Additional Key Words and Phrases: FPGA, Place and route, Run-time reconfiguration, Graph traversal

ACM Reference Format:
Ricardo Ferreira, Luciana Rocha, André G. Santos, José A. M. Nacif, Stephan Wong, and Luigi Carro. 2015. A
run-time FPGA placement and routing using low complexity graph traversal. ACM Trans. Reconfig. Technol.
Syst. 8, 2, Article 9 (March 2015), 16 pages.
DOI: http://dx.doi.org/10.1145/2660775

1. INTRODUCTION

Modern Field-Programmable Gate Arrays (FPGAs) provide support to perform on-the-
fly reconfiguration while other untouched hardware areas continue execution. This
feature, known as Dynamic Partial Reconfiguration (DPaR), allows efficient allocation
of the FPGA resources by wisely scheduling hardware modules over time according to
the application needs. DPaR benefits include higher occupancy and power efficiency.

This work was supported by TU Delft, Netherlands and the Brazilian Institutions: Science without Borders/
CNPq, CAPES, FAPEMIG, UFV, UFRGS, Funarpos/FUNARBE, and Gapso.
Authors’ addresses: R. Ferreira (corresponding author), L. Rocha, A. G. Santos, and J. A. M. Nacif, Universi-
dade Federal de Viçosa, Viçosa, CEP 36570.000, Brazil; email: ricardo@ufv.br; S. Wong, EEMCS, Computer
Engineering P.O. Box 5031, 2600 GA Delft, The Netherlands; email: j.s.s.m.wong@tudelft.nl; L. Carro, Insti-
tuto de Informática, Universidade Federal do Rio Grande do Sul, Av. Bento Goncalves, 9500, CEP 91501-970
Po Box: 15064, Porto Alegre, Brazil; email: carro@inf.ufrgs.br.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies show this notice on the first page or initial screen of a display along with the full citation. Copyrights for
components of this work owned by others than ACM must be honored. Abstracting with credit is permitted.
To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any component of this
work in other works requires prior specific permission and/or a fee. Permissions may be requested from
Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212)
869-0481, or permissions@acm.org.
c© 2015 ACM 1936-7406/2015/03-ART9 $15.00
DOI: http://dx.doi.org/10.1145/2660775

ACM Transactions on Reconfigurable Technology and Systems, Vol. 8, No. 2, Article 9, Publication date: March 2015.

http://dx.doi.org/10.1145/2660775
http://dx.doi.org/10.1145/2660775

9:2 R. Ferreira et al.

In order to implement DPaR, a series of challenges should be addressed. These
problems are being solved by different techniques [Papadimitriou et al. 2011; Gericota
et al. 2003; Handa and Vemuri 2004; Sidiropoulos et al. 2012]. In this article, we focus on
the hardware module Placement and Routing (P&R) problem. When P&R dynamically
maps a new hardware module, a nonused region should be identified in the target
architecture. This region should also provide both sufficient hardware resources and
minimize the impact to upcoming DPaR procedures.

The P&R is a highly computationally intense task that is traditionally performed
offline. The P&R of modern complex FPGAs commonly takes several hours to be per-
formed. The most used approaches [Ludwin and Betz 2011] to address P&R include re-
cursive partitioning, analytical placements, genetic algorithms, and simulated anneal-
ing. These approaches are not suitable for a runtime P&R algorithm because they are
very slow. Recently, a Just-in-Time (JIT) framework [Sidiropoulos et al. 2012; Hübner
et al. 2011] to support DPaR was introduced. This strategy reduces the fragmenta-
tion for hardware resources (preallocated FPGA area, etc.) in partial reconfiguration
context. The configuration bitstream for a virtual FPGA is computed at runtime by
performing technology packing and P&R. However, the P&R still takes a few seconds
to complete, hence runtime P&R remained impractical.

In this article, we propose a novel P&R based on a graph mapping model that per-
forms nearly three orders of magnitude faster in comparison to the state-of-the-art
of P&R algorithms [Luu et al. 2011]. The main contributions of this article are (1) a
novel polynomial P&R greedy heuristic based on graph mapping, (2) a local routing
for FPGA by exploring the graph locality and by prioritizing the critical path, (3) an
adaptable P&R for fragmented regions, and (4) a runtime P&R suitable for dynamic
partial reconfiguration frameworks.

The remainder of this article is outlined as follows. Section 2 presents a novel im-
plicit graph model used for the FPGA representation. Section 3 describes our mapping
approach and how we explore the graph model to produce the P&R. In Section 4, we
evaluate our P&R algorithm compared to the VPR tool [Luu et al. 2011]. Section 5
presents related work. Finally, we conclude in Section 6.

2. A FPGA GRAPH MODEL

A logic circuit has a direct correspondence to a graph, where the edges represent the
wires and the nodes represent the logic functions or FPGA LUTs (after the technology
mapping stage). An FPGA could also be modeled as a graph, and the P&R as a graph
mapping problem from a source graph (circuit) to a target graph (FPGA). In this section,
a novel implicit FPGA graph model is proposed.

Although several FPGA graph models have been proposed, our implicit model intro-
duces new concepts. First, traditional graph structures use an adjacency/incidence list
or matrix to store the graph. For the implicit model, it is not required to store which
LUTi, j is connected to switchi, j , since the connection is implicitly based on the index
numbers. Second, the model is as close as possible to the FPGA components (LUTs,
wires, and switch boxes). Since there are several commercial FPGA families, the pro-
posed graph is based on a virtual FPGA as presented in Sidiropoulos et al. [2012] and
Hübner et al. [2011]. Moreover, the virtual FPGA has several advantages: It is inde-
pendent of the underlying hardware, it can be directly implemented on a traditional
off-the-shelf FPGA device, and it allows partial configuration as shown in Sidiropoulos
et al. [2012, 2013], even if the target device does not include partial reconfiguration
infrastructure. Finally, since the algorithm is designed for a runtime implementation,
the routing cost and availability is efficiently verified by extending the concept of local
connections.

The FPGA graph supports three node types: LUTs, wire segments, and switch boxes,
which are detailed in the following subsections.

ACM Transactions on Reconfigurable Technology and Systems, Vol. 8, No. 2, Article 9, Publication date: March 2015.

A Runtime FPGA Placement and Routing Using Low-Complexity Graph Traversal 9:3

Fig. 1. (a) FPGA LUT and switches; (b) LUT output graph; and (c) local LUT connection.

2.1. LUT and Wire Nodes

Let us consider a homogeneous FPGA architecture with one four-input LUT per logic
block and W channel tracks. Each LUT input is fully connected to all adjacent routing
tracks, as depicted in Figure 1(a). The directions west, north, east, and south are
labeled as 0, 1, 2, and 3, respectively. Each LUT will be represented as a LU Ti, j
node, where i, j represent the row and column within an FPGA, respectively. The LUT
node includes four multiplexers (one for each input). Figure 1(a) depicts an example
with four bidirectional channel tracks similar to the FPGA described in Hübner et al.
[2011], where the LUT output is connected to the south bidirectional tracks from right
to left. Each wire track multiplexer will be represented as a wire track node (T), and
it will be labeled by i, j, and the wire track number. Figure 1(b) depicts four T nodes:
Ti, j,3, Ti, j,2, Ti, j,1, Ti, j,0. The edges are not stored by the implicit graph.

2.2. Switch Box and the Set of Switch Nodes

Each switch box will be replaced by a set of Switch Nodes (SW), one for each output
wire. The switch box is the key component in the FPGA design and routability. It is well
known that the switch box needs a large number of configuration bits in comparison
to track and LUT nodes. The proposed implementation is based on the Wilton switch
[Wilton 1997]. All connections, through the wire tracks, should traverse at least one
SW node. The in/out number for a switch box depends on the track channel width. Since
each SW node implements a single switch output, there is a direct correspondence to
a physical multiplexer. Each multiplexer receives four inputs tracks, one from each
SW direction (west, north, . . .). If there are C channel tracks, then one entire switch
box will be represented by a set of 4C SW nodes. The label i, j, d, c identifies the SW
node, where c is the wire track number and d is the direction (west, north, . . .). Figure
1(b) depicts two SW nodes that are connected to the node Ti, j,1 and the LUTi, j input 3.
The SWi, j,2,1 is from the east side of switch box i, j, and SWi, j,0,1 is from the west part
of the switch box i, j + 1. The wire track k = 1 for the switch SWi, j+1 in Figure 1(b)
is implemented as a multiplexer with the following input tracks following the Wilton
pattern [Wilton 1997]: ti, j+1,0,k, ti, j+1,1, w−k

w
, ti, j+1,2,k, and ti, j+1,3, k−1

w
. The SW nodes are also

described by index numbers in the implicit representation.

3. GRAPH-BASED PLACEMENT AND ROUTING ALGORITHM

The proposed P&R algorithm is based on the Depth-First (DF) traversal. As already
mentioned, the P&R is implemented by a graph mapping from the k-input LUT graph
to the FPGA graph described in Section 2. At compile time, the synthesis tool is respon-
sible for generating the input graph, which is represented by a k-input LUT graph. The
graph is stored as an edge list in DF order. During the DF traversal, the descendant

ACM Transactions on Reconfigurable Technology and Systems, Vol. 8, No. 2, Article 9, Publication date: March 2015.

9:4 R. Ferreira et al.

Fig. 2. (a) Input Graph; (b) FPGA; (c) first path; (d) partial P&R; (e) nonadjacent LUTs; (f) longest connec-
tions; and (g) Final cost.

vertices have been ordered by the depth the traversal can reach. Figure 2(a) depicts
a simple graph, where vertex 1 has three descendants: 2, 13, and 20. The deepest the
traversal can go is through vertex 2, hence it will be the first to be visited. The goal is
to prioritize the critical path during the mapping.

For ease of explanation, Figure 2(b) depicts a simplified view of the FPGA graph,
where T and SW nodes are not detailed, and they will be represented by wiring seg-
ments. The term vertex will be used for the k-input LUT graph and the term node for
the FPGA graph. The Depth-First Placement and Routing (DFPR) algorithm maps a
LUT vertex onto a LUT node and an input/output vertex onto an in/out node. The SW
and T nodes are used for routing the edges. An edge from the k-input LUT graph is
mapped in one or more SW and T nodes onto the target FPGA graph. The P&R aims
to minimize the number of SW and T nodes by using a greedy approach.

The DFPR pseudocode is presented in Algorithm 1. Consider the DF traversal de-
picted in Figure 2, where the vertex numbers follow a DF order driven by the critical
path. First, the edges in the path from 1 to 5 are visited and mapped as depicted in
Figure 2(c). The LUTs are labeled by the row and column indexes. It is important to
note that the FPGA graph is also traversed in DF order. Since all LUTs were free, the
critical path was mapped in an optimal way by using local adjacent nodes. It is also
important to remark that, in addition to the placement, all edges had also been routed
with optimal cost.

The next edge is 6 → 4, since the vertex 4 is placed at LUT0,2, then DFPR maps the
vertex 6 into an adjacent I/O. Next, the edges 7 → 3 and 8 → 3 are also mapped with
optimal cost. Figure 2(d) presents a snapshot in which the DFPR maps the edge 9 → 2
by placing the vertex 9 at LUT1,2, adjacent to node LUT1,1 where vertex 2 was placed.

The edge 13 → 1 is also placed and routed with minimal cost. However, vertex 14
could not be placed in an adjacent position next to vertex 13, as depicted in Figure 2(e),
since vertex 13 is placed at the bottom-right corner, and there is no free node among its
eight neighbors. Therefore, a nonadjacent LUT is used. As introduced in the following
section, the LUT2,0 could be considered adjacent to the LUT2,2, even when the routing
has a cost of two switch boxes.

ACM Transactions on Reconfigurable Technology and Systems, Vol. 8, No. 2, Article 9, Publication date: March 2015.

A Runtime FPGA Placement and Routing Using Low-Complexity Graph Traversal 9:5

ALGORITHM 1: Depth-First Placement and Routing (DFPR) Algorithm
Input: Edges = an edge list in depth-first order driven by the critical path
Output: Mapped FPGA graph
for each edge e : b → a in Edges do

// Place and Routing First Fanout Edge ;
if b is not Placed and there is a free LUT L ∈ Adj(a) then

Place b in L, and route L → Lut(a);
else if b is not Placed then

Place and Route b in the nearest free neighbour of a by doing breath-first search
else

Insert a in Fanout List of b
end

end
// Routing remaining edges ;
for each node x in Fanout List do

Multicast Routing of all x’s Fanout
end

Figure 2(f) depicts the final mapping, where the longest connections are highlighted.
Most edges are mapped with an optimal cost. Figure 2(g) depicts the original graph
with cost labels. The bold lines are used to show the connections for which the cost is
greater than 1. Normal lines have cost 1. Finally, for this example, the average cost per
edge is 1.56 switch boxes per connection or mapped edge, which is a promising result
for a greedy algorithm to solve an NP-complete problem based on a simple and single
graph traversal. The optimal solution has an average cost per edge equal to 1.39.

The time complexity is polynomial because each edge is visited only once. Previous
work on CGRA has already used a graph mapping approach based on DP traversal
[Ferreira et al. 2007]. However, a circuit at LUT level has vertices with high
fanout/fanin degrees. Moreover, the routing infrastructure, as well as the lower FPGA
granularity at bit level, results in more complex mapping and modeling in comparison
to CGRAs. The following sections describe the concept of adjacent and nonadjacent
nodes and the multicast routing of the remaining edges.

3.1. Adjacent LUT Nodes

The DFPR algorithm is based on DF traversal in both graphs. Therefore, in an optimal
scenario, two adjacent vertices b → a should be mapped in two adjacent LUT nodes
LUTb → LUTa. However, this assumption is not valid for all vertices since there are
physical P&R constraints in the FPGA graph. Therefore, the vertex b could be placed far
away from the vertex a because there are no available LUTs in vertex a’s neighborhood.

Initially, let us consider an edge b → a. At least one track and one SW should be
traversed in the FPGA graph, as depicted in Figure 1(c). This mapping example is
the best local situation for an edge. However, it could be impossible even for adjacent
row and/or column LUT. Therefore, we expand the concept of FPGA adjacent nodes.
Figure 3(a) depicts the cost to connect b → a if b is placed on the top of a. The cost
depends on both the position of b and the input border of a. The output will traverse 2,
1, 3, and 2 SWs to connect to the a inputs: west, north, east, and south, respectively.

Figure 3(b) depicts the cost if b is placed on the left of a, and Figure 3(c) depicts both
the left and the top possibilities and costs. Instead of depicting the cost at the target
node a inputs, we present the costs at the source node borders.

Assume that only the top and the left LUTs are free. The lowest cost option is to
place b at the top LUT and to connect it by using the north input of a. If the north input

ACM Transactions on Reconfigurable Technology and Systems, Vol. 8, No. 2, Article 9, Publication date: March 2015.

9:6 R. Ferreira et al.

Fig. 3. (a) Top LUT routing cost; (b) left LUT; (c) top or left LUT; and (d) 8-neighborhood.

is unavailable, there are four options with cost 2: top → west, top → south, left → west,
and left → south. If both west and south inputs are unavailable, the routing cost 3 will
be checked, and there are two options: the top or the left LUT. Therefore, we propose
to extend the concept of adjacent node to routing costs greater than 1. Figure 3(d)
depicts the routing costs for an 8-neighborhood. If the routing cost 3 is considered,
most nodes in Figure 2(f) are placed and routed as adjacent nodes, even the edges
14 → 13, 17 → 13, and 20 → 1, and only the I/O nodes 21 and 8 have a routing cost
greater than 3. Although the example depicted in Figure 2 is simple, the target FPGA
has the minimum square size, and all I/Os and LUTs are occupied.

3.2. Nonadjacent LUT Nodes

The example in Figure 2 is composed only by nine vertices and 12 input vertices, but
Figure 2(f) depicts two cases where nonadjacent nodes should be routed. Let us consider
now the input vertices. Some input vertices could be handled as adjacent nodes, such
as vertices 5 and 6. However, edge 21 → 20 should be routed to a nonadjacent node
since there is no place for the source vertex in the target node neighborhood. When
the depth-limited depth-first search in adjacent nodes fails, we find the closest node by
using an unlimited breadth-first search around Li, j in the FPGA graph. Subsequently,
the source vertex is placed, and the routing algorithm is performed. Another situation
occurs when the source node is already placed but it has multicast edges such as
input vertices 6, 7, and 8 in Figure 2. Since these vertices have been already placed as
adjacent nodes of 4 and 3, when the edge 6 → 20 is visited, per the second time, the
multicast routing algorithm handles this connection.

3.3. Multicast Routing of Fanout Larger than One

The DFPR algorithm uses the concept of locality based on the first edge traversal. The
algorithm starts from the outputs to the inputs. If a vertex is composed of more than
one fanout, the vertex position is defined by the first visited edge. The remaining edges
are inserted in a fanout list, as depicted in DFPR pseudocode (see Algorithm 1). After
all edges have been visited, the multicast edges will be routed.

For multicast edges, we propose using a simple and greedy routing algorithm. Our
algorithm is based on Network-on-Chip (NoC) XY routing [Dehyadgari et al. 2005; Lin
et al. 1994]. The routing path starts from the source node, moving through switch boxes
until target node at row i and column j is reached. We adapted the algorithm to an
FPGA architecture considering switch box track channels and LUT side inputs.

Figure 4(a) depicts a simple source-to-target routing example. First, the algorithm
tries to route in the row direction. However, since the output track in the row direction
is already used, the algorithm routes in the column direction. The next two steps are
accomplished in the row direction, and, finally, the routing reaches the target at the
north input.

ACM Transactions on Reconfigurable Technology and Systems, Vol. 8, No. 2, Article 9, Publication date: March 2015.

A Runtime FPGA Placement and Routing Using Low-Complexity Graph Traversal 9:7

Fig. 4. (a) Row/Column routing; (b) multicast routing; and (c) one long wire.

Fig. 5. (a) Fanout one; (b) fanout two; and (c) multiple fanout.

Figure 4(b) depicts a multicast routing to three target destinations: T1, T2, and T3.
Multicast routing strategy reduces the overall switch cost by sharing routing resources.
When using the multicast strategy, the routing should observe track directions. For
example, the south track is connected from right to left. Therefore, since the T1 input
is in the south side, our algorithm uses one extra switch box to perform the routing.

The DFPR algorithm is based on DF order edge visit. When a source vertex is visited
more than two times, the algorithm does not route its edges on the fly. A list of target
vertices is created during the traversal for each multiple fanout source node. Finally,
when all edges have been visited, all multicast edge lists are processed. In most circuit
functions, control signals are connected to several destinations as a multicast signal.
The routing cost of these signals strongly contributes to the total routing cost.

3.4. Fanout Locality and First Edge

Figure 5(a) depicts an edge b → a during the placement process. Since a is already
visited and placed, the position of b will be adjacent to a if there is a free node. If
there is no available node, the algorithm uses a nonadjacent node. However, if node b
is composed by a double fanout, as depicted in Figure 5(b), the greedy approach used
by the DFPR algorithm does not ensure that c will be placed close to b, even if there
is an optimal position for b near a. The position of c is chosen based on the locality of
its fanout. For this example, c is placed close to d. The routing path from b to c will
traverse five switch boxes, and it uses six wire segments. Therefore, although the cost
of b → a is 1, the cost of b → c is 5. The DFPR algorithm focuses only on the first visited
edge. It is important to note that the first edge belongs to the original critical path.
Since most digital circuits include a large number of single fanout nodes, the heuristic
can significantly reduce the P&R execution time without increasing the critical path.

Now, we consider a simple example of the vertex with fanout 4, depicted in Figure 5(c).
Vertex b includes the following fanout vertices: a, c, e, and g. The first edge b → a is used
to place b, and g, e, and c are placed near their fanouts h, f, and d, respectively. Since
b is a multicast node, as explained in Section 3.3, the multicast routing is performed
after the final placement. A possible multicast routing is depicted in Figure 5(c), where

ACM Transactions on Reconfigurable Technology and Systems, Vol. 8, No. 2, Article 9, Publication date: March 2015.

9:8 R. Ferreira et al.

Fig. 6. (a) VPR and DFPR execution time in log scale; and (b) maximum number of tracks and long wires.

the mapped edges b → c, b → e, and b → g present a cost of 5, 6, and 5 switch boxes,
respectively. Assuming that b → g is not in the original critical path, since its cost
after the P&R is 5, this path could become the critical path. The total number of used
switch boxes and wiring segments is computed by considering that some resources are
shared by multicast connections. The four fanout mapped edges of b require 9 switch
boxes and 13 wiring segments in total.

4. EXPERIMENTAL RESULTS

The DFPR algorithm is compared to VPR [Luu et al. 2011] by using the combinational
MCNC benchmarks [MCNC 2010]. The target FPGA architecture has one 4-input
LUT per logic block. Each routing channel contains 50 segment tracks, all tracks are
fully connected to each adjacent LUT input, and all wires have one unit length (two
adjacent switch boxes). Moreover, the LUT output is always connected to the south
border, similar to the virtual FPGA proposed in [Sidiropoulos et al. 2012]. Our virtual
FPGA is composed of an array of NxN LUTs to map a circuit with N2 LUTs, which
corresponds to the minimum square. We present and analyze the DFPR execution
time, the maximum number of tracks, and the total wire length in Sections 4.1 and
4.2. Section 4.3 compares the greedy DF placement to three simulated annealing-
based placements [Luu et al. 2011]. Section 4.4 presents an edge distribution analysis
of the proposed DF placement. Finally, we evaluate the fragmentation in a partial
reconfigurable scenario in Section 4.5.

4.1. Execution Time

The experiments were performed on an Intel i3 370M, 2.4GHz, 3MB L2 cache ma-
chine. The execution time is measured by using GNU gprof tools. The VPR is executed
in three different modes: VfastToff, VfastTon, and VbbTon. VfastToff and VfastTon use
the fast-mode based on user guide recommendations [Luu et al. 2011] by setting the
parameter: fast on. VfastToff uses an additional parameter timinganalysis off to switch
off the timing optimization, and VfastTon switches it on. We also propose another fast
mode VbbTon with the following parameters: innernum 1 placealgorithm boundingbox
timinganalysis on. In addition, we fix the channel length by using routechainwidth 50.
Figure 6(a) depicts the execution time for considering a set of 15 MCNC benchmarks
[MCNC 2010] ordered by the LUT size (depicted in the bottom line). The DFPR algo-
rithm is on average 1950× faster than VPR in VbbTon mode. VfastToff is the faster
VPR mode for the small benchmarks; however, VfastTon and VbbTon performs better
for the four largest benchmarks. Moreover, the VfastTon routing fails for spla. The
DFPR is a greedy heuristic, and each LUT edge is only visited once in comparison to
Simulated Annealing (SA)-based approaches that perform several tries. Therefore, our
heuristic reduces the execution time by 2–3 orders of magnitude. For the evaluated

ACM Transactions on Reconfigurable Technology and Systems, Vol. 8, No. 2, Article 9, Publication date: March 2015.

A Runtime FPGA Placement and Routing Using Low-Complexity Graph Traversal 9:9

Table I. Placement Comparison to Baseline VCR Placement: Execution Time, Wiring,
and Critical Path

VCR baseline
Placement Executing Time (Speedup) Critical Path (%) Wire Length (%)
DF 10218× 26.4 % 43.8%
VbbTon 14.4× 27.0 % 0.1%
V f astTon 8.4× 1.8 % 4.8 %

benchmarks, the VPR performs from 105 up to 106 swap operations. The impact of
swap operations, the wire length, and the critical path are analyzed in the following
sections.

4.2. Maximum Track Number

We use 50 tracks in our experiment as proof of concept to evaluate the maximal track
usage in a scenario with enough routing resources for both the VPR and DFPR routing.
Although the DFPR could generate a routable solution, the maximal track occupation
increases as a function of circuit size, as depicted in Figure 6(b). In commercial FPGAs,
long wires are used to speed up connections to avoid channel congestion and large
width tracks. Long wires are similar to single wires, except that each one spans two or
more Switch Boxes (SW), imposing lower routing delays.

Figure 6(b) depicts the maximal track usage in presence of long wires that span
5 SW by considering the use of 1, 2, or 3 long wire tracks per channel. Figure 4(c)
depicts an example of adding one long wire. There are three regions. The first region
shows the small size benchmarks, which have less than 500 LUTs (Fir → Alu4); the
DFPR algorithm requires on average 17% more tracks than VPR VbbTon. The worst
case requires 15 tracks, which is small compared to 50 available tracks. The middle
region in Figure 6(b) depicts the medium-sized benchmarks from 500 up to 1,000 LUTs
or 2,000–4,000 equivalent gates, where the DFPR algorithm uses on average 23.4%
more tracks, where the maximum usage is 23 tracks for ex1010 benchmark. By adding
one long wire, the DFPR presents a track usage equivalent to VPR. Finally, for the
last two and large benchmarks (3,000 LUTs), the DFPR uses 76% more tracks than
VPR. However by adding three long wires, the DFPR usage gets close to VPR usage.
Therefore, using long wires is an effective technique to reduce the amount of routing
resources with no P&R execution time degradation.

In addition to the track usage, our proposed DFPR P&R requires on average 3.27×
more wiring segments than VbbTon. It is well known that the final routing quality
depends on the placement choices. Therefore, in the following section, we analyze
separately our greedy placement algorithm and its required resources.

4.3. Placement Evaluation

This section evaluates the tradeoff between execution time and placement quality.
Our single-try DF placement is compared to three VPR SA placements [Luu et al.
2011]: VbbTon, V f astTon, and VCR. The placements VbbTon and V f astTon are described in
Section 4.1. In order to measure only the placement execution time, the placeonly
VPR option is set. In addition, following the VPR reference manual [Luu et al. 2011],
execution time/quality tradeoff could be explored by changing the innernum option.
Therefore, we added the VCR placement that optimizes the quality by using the default
parameter: -innernum 10. Figure 7(a) depicts the placement execution time in log scale,
and Table I summarizes the results. VCR reaches the best results and therefore it is
used as the baseline comparison. However, the VCR disadvantage is the long execution
time. Our DF placement is on average 10,218× faster than VCR, whereas the VbbTon
and V f astTon are on average 14.4× and 8.4× faster than VCR, respectively.

ACM Transactions on Reconfigurable Technology and Systems, Vol. 8, No. 2, Article 9, Publication date: March 2015.

9:10 R. Ferreira et al.

Fig. 7. (a) Placement execution time; (b) normalized critical path; and (c) normalized wire length.

Fig. 8. (a) Normalized VPR routing execution time; (b) VPR “try_swap” function calls; and (c) VPR “try_swap”
execution time.

To evaluate the critical path and the wire length, we propose to apply the same
routing algorithm for all placements, including our DF algorithm. The VPR routing is
set to the default parameters and 50 tracks. Regarding the critical path, the V f astTon
reaches a near-optimal solution in comparison to VCR, and it is on average only 1.8%
worse than VCR. Figure 7(b) depicts the normalized critical path in comparison to the
baseline VCR. A value greater than one denotes a critical path increase. On average,
the DF and VbbTon are equivalent, and both slow down the critical path by a factor
of 27%. However, the DF execution time is on average 710× and 1,218× faster than
VbbTon and V f astTon, respectively.

Regarding the wire length, Figure 7(c) depicts the normalized wire length in compar-
ison to VCR. VbbTon and VCR have almost the same wire length usage, whereas V f astTon
is about 4.8% worse with respect to the wire length. Our DF placement increases the
wire length on average in 43.8%, since it is a single-try greedy heuristic that prioritizes
the critical path placement. In order to provide better results, the VPR placements try
multiple positions, increasing the execution time by at least 710×.

Figure 8(a) depicts the normalized execution time for the VPR routing algorithm for
all placements. For the pdc and spla benchmarks, as detailed in the next section, the
VPR routing requires more computational efforts for our DF placement since it only
explores the locality of single fanout nodes.

Figure 8(b) and (c) depicts the number of calls and the execution time of VPR
“try_swap” function in comparison to DF algorithm. The “t ry_swap” is the most

ACM Transactions on Reconfigurable Technology and Systems, Vol. 8, No. 2, Article 9, Publication date: March 2015.

A Runtime FPGA Placement and Routing Using Low-Complexity Graph Traversal 9:11

Fig. 9. Original fanout nodes and mapped edge distribution for DF and VCR placements.

time-consuming function in SA placements, as observed in Sidiropoulos et al. [2013].
We measure the “try_swap” for the VbbTon, which is the fastest SA placement. This
function is called 115,097 times for 9symml and 5,243,379 times for pdc, in comparison
to our DF placement that tries just one position per node.

In summary, the results suggest that VbbTon is the best SA placement regarding the
wire length and execution time tradeoffs, V f astTon is the best SA placement regarding
the critical path and execution time tradeoffs, and our proposed DF substantially re-
duces the execution time with acceptable quality for a single try runtime placement.
Finally, DF placement results are very promising, although there is still room for im-
provement in the placement quality tradeoffs. The following section discusses the first
steps to understand the differences between DF and SA placements by investigating
the mapped edges.

4.4. Mapped Edge Analysis

Since placement quality directly impacts routing cost, this section analyzes the wire
occupancy for the mapped edges as a function of the node fanout to better understand
the results of DF and VCR placements. Suppose fi to be a class of nodes or vertices for
which the fanout is i. Suppose e f irst = b → a to be the first visited edge of b. As already
mentioned, the DFPR performs a simultaneous traversal in both original and FPGA
graphs. The placement of b is defined when e f irst is visited during the DF traversal.
Moreover, b is placed as near as possible to a to optimize the cost of the edge e f irst. For
instance, suppose x has fanout 2: x → y, and x → z. If only y is placed near x, the
edge x → y could be mapped by using one switch, whereas the edge x → z uses five
switches. On average, the mapped edges of x uses three switches.

The DF placement prioritizes the f1 nodes. Figure 9 depicts a three-bar graph for
each benchmark. The first bar depicts the vertex distribution in the original graph as
a function of fi. For instance, the fir benchmark is composed by 68% of f1 vertex and
32% of f2 vertex. The second bar depicts the mapped occupation for f1 and f2 after the
DF placement followed by the VPR routing. The f1 nodes use 45% of the mapped wires,
and f2 nodes use 55%. The third bar depicts the fi mapped distribution for the VCR,
where the f1 class occupies 63% of the total wires, and the f2 uses 37%.

Although a digital circuit has on average a fanout 3, the distribution is not uniform.
The majority of nodes are f1 or f2. For example, the benchmarks apex7, 9symml,
and alu2 have f1 + f2 = 71%, 74%, and 81%, respectively. Figure 9 depicts the fi
in order with the following colors: f1 = white, f2 = black, f3 = white, f4 = gray,
f5−10 = white, f10+ = black. The class f5−10 represents f5, f6, . . . , f10, and the class
f10+ represents all fi such that i > 10. The total wire cost is in general dominated by
the high fanout vertices, even though they correspond to a small fraction in the original
graph. Considering the term1 benchmark, although the high fanout f10+ corresponds

ACM Transactions on Reconfigurable Technology and Systems, Vol. 8, No. 2, Article 9, Publication date: March 2015.

9:12 R. Ferreira et al.

Fig. 10. Average switch utilization as a function of fi classes for DF and VCR placements.

to 6.5% of the input vertices, the mapped edges will consume 51% of the total wires for
both our DF placement and the VCR placement.

It is possible to verify that the DF algorithm prioritizes f1 vertices. Considering the
spla benchmark, f1 represents 44.1% of all vertices, and it consumes only 5.8% of the
total wires of spla. However, f2 consumes a significant amount of wires resources for
large benchmarks. For instance, f2 represents 39.9% of all vertices and will consume
48.2% of the total wires. Therefore, f2 contributes significantly to DF wire length.
Although for the VCR placement, f2 is 27.8% of the total wires, f1 will consume 15.2%
of the total wires of spla. Since the DF placement is on average 10,000 faster than VCR
placement, novel approaches derived from DF could be proposed by exploring f2 and
f10+ edges/vertices to reduce the wire length and/or critical path at the cost of more
execution time based on the locality of these fanout classes.

In addition to the fi wire occupancy depicted in Figure 9, Figure 10 shows the average
number of switches per class. For instance, the f1 of term1 consumes on average 2.1
and 2.3 switches per mapped edge for the DF and the VCR placements, respectively.
For f2, the average is 3.9 and 2.7, which means 3.9

2 = 1.95 and 2.7
2 = 1.35 switches

per mapped edge. For the large benchmark pdc, DFPR optimizes the f1 and uses 2.3
switches on average in comparison to 3.8 used by the VCR. However, f2 is mapped on 21
switches on average by the DF placement. Since the e f irst is probably mapped by using
two switches, the second edge will consume on average 19 switches, which increases
the wire length. In addition, edges that were not in the critical path could contribute to
the final critical path. Despite that, as already mentioned, the DF placement achieves
very low execution time, around milliseconds, and local strategies could optimize the
resource utilization without increasing the execution time.

4.5. Fragmentation

Consider a function set W = A, B, . . . to be used during the execution of one reconfig-
urable application. If the bitstream for each function wi is generated at compile time,
the FPGA could have a poor resource utilization. Moreover, it could be impossible to
place all functions, even if there is enough routing and LUT resources. Figure 11(a)
depicts an example where function D cannot be placed due to fragmentation. Despite
the two empty areas (white parts) containing enough resources, it is not possible to
place D since it is generated as a single rectangular region.

To evaluate the potential of the DF algorithm on fragmented areas, consider two
scenarios as depicted in Figure 11(b). Use the black color for the area that has been
already allocated. In the first scenario (top), we have two occupied disjoint areas,

ACM Transactions on Reconfigurable Technology and Systems, Vol. 8, No. 2, Article 9, Publication date: March 2015.

A Runtime FPGA Placement and Routing Using Low-Complexity Graph Traversal 9:13

Fig. 11. (a) Fragmentation, (b) initial scenario, (c) Apex2, (d) Apex4, (e) Too_large, (f) Ex1010, (g) routing
and critical path.

Table II. Wiring and Critical Path for Fragmented Regions

Scenario 1 Scenario 2
Critical Critical

Bench Wires Path Ratio Wires Path Ratio
too_large 7846 3.08 1.04 7328 3.52 1.19
apex2 13328 1.67 1.43 15151 1.72 1.48
apex4 14002 1.62 1.42 17426 1.77 1.55
ex1010 13922 1.91 1.73 17713 1.86 1.69
average 1.41 1.47

whereas in the second scenario (bottom), most of the area has been already allocated.
There are three disjoint free areas in the second scenario. For both scenarios, four
MCNC benchmark circuits have been mapped with around 1,000 LUTs onto a target
FPGA array of 60×60 LUTs with channel width 50. Figure 11(c) depicts the area where
the function Apex2 is placed (in gray). Figures 11(d), 11(e), and 11(f) present the area
for Apex4, Too_large, and Ex1010.

The DF algorithm executes the placement in less than 2 milliseconds, even in frag-
mented areas. Since it is a graph-based approach, it is easily adaptable to fragmented
regions. The DF output is routed by using VPR to obtain the critical path. Figure 11(g)
depicts the VPR [Luu et al. 2011] screenshot for the Ex1010 benchmark routing and
critical path. Most of wiring segments are concentrated on the placement region. More-
over, wiring segments are also used to route through disjoint areas. Table II shows the
critical path and total wiring segments for both scenarios. The column Ratio depicts
critical path length increases compared with optimal critical path. The optimal critical
path is obtained by using VPR at timing driven mode, which is mapped on a square
contiguous area, as shown in Section 4.3. On average, the critical path increases 41%
and 47% for scenarios 1 and 2, respectively. On average, the routing resource measured
as wiring segments increases 57% and 79% for scenarios 1 and 2, respectively.

5. RELATED WORK

It is well known that FPGA P&R are NP-complete problems [Donath 1980], and these
problems are handled separately and solved sequentially one after the other. Due to
their complexity, several heuristics have been proposed in the past three decades.

The placement heuristics could be classified into three categories: SA, partitioning,
and analytical. The first and most popular approach is based on SA [Luu et al. 2011;
Betz and Rose 1997; Lin and Wawrzynek 2010; Ludwin and Betz 2011]. The SA-based
placement reaches a high-quality solution regarding the critical path and/or the total
wire length. Nevertheless, the SA approach has a long execution time. Several SA-based

ACM Transactions on Reconfigurable Technology and Systems, Vol. 8, No. 2, Article 9, Publication date: March 2015.

9:14 R. Ferreira et al.

placements [Ludwin and Betz 2011; Lin and Wawrzynek 2010; Wu and McElvain 2012;
Sidiropoulos et al. 2013] have been proposed, and most of them use the VPR framework
[Luu et al. 2011; Betz and Rose 1997] to perform a baseline comparison. In Lin and
Wawrzynek [2010], a dynamically adaptive stochastic tunneling algorithm to avoid the
freezing problem in the SA approach is proposed. However, only a marginal reduction of
18.3% in runtime is obtained over VPR. A parallel approach for SA has been proposed
in Ludwin and Betz [2011]. The algorithm evaluates multiple SA moves in parallel,
and the experimental results achieve an average speedup ranging from 2× up to 7×
in comparison to VPR. In Wu and McElvain [2012], a modified SA algorithm has
been presented by using low temperatures, which results in a speedup factor of 3×
in comparison to a traditional SA algorithm with random movements without critical
path and wire length degradation.

The second placement approach is based on partitioning techniques [Maidee et al.
2005]. First, the circuit is partitioned, and then the overlap regions are removed; finally,
the SA algorithm is used to perform the local placement. Although the execution time
is reduced, the quality of results is worse regarding the critical path and total wire
length.

The third category is analytical placement [Xu et al. 2011; Lin et al. 2013]. Today,
some commercial tools have replaced the SA based approach with analytical approaches
[Lin et al. 2013], which is a scalable technique to handle high-capacity devices. An
analytical approach based on a near-linear net model was proposed in Xu et al. [2011]
that is 5× faster than VPR fast mode. Moreover, this placement obtains a 9% reduction
in critical path delay. The routing is performed by using VPR router. The reported CPU
time is in the range of seconds for the MCNC benchmarks. Recently, an analytical
placement proposed in Lin et al. [2013] achieves a speedup factor of 7× compared to
VPR, with an average reduction of 7% in the critical path without total wire length
degradation.

The analytical and partitioning-based approaches perform two placements: a global
placement of large blocks followed by a detailed placement. The global placement could
generate overlapped regions that will be removed using a legalization step. Then, an
SA-based detailed placement is done. The DFPR algorithm differs from the previous
one, and it can be included in none of the three placement categories. Moreover, the SA
technique is not used, and the placement is performed in a single step.

Regarding the routing step, a new approach is presented in Gort and Anderson
[2011]. When combined with a low-cost architecture change, this new approach results
in a 34% reduction in router runtime, at the cost of a 3% area overhead. The routing
time is around 1 second for the MCNC benchmarks.

All previous works are offline approaches at compile time. Moreover, recent work tar-
gets scalable approaches for large circuits, since the P&R times of high-density FPGAs
(more than 100K LUTs) can easily reach a full day. Unfortunately, the SA approach
is not suitable for P&R of this magnitude, and the analytical/partitioned approaches
are used. The DFPR algorithm proposed here focuses on partial reconfiguration frame-
works, where it should dynamically replace only a part of a large circuit. However, even
for medium-sized circuits like MCNC Benchmark, the previous work execution time,
in seconds, is not suitable for runtime.

Regarding runtime P&R, a similar work [Sidiropoulos et al. 2012, 2013] proposes
a JIT P&R that is 7.34× faster than VPR. Moreover, the DFPR algorithm and the
JIT approach lead to significantly lower fragmentation of hardware resources at the
LUT level. However, whereas JIT P&R time is around seconds, the DFPR algorithm
executes in a few milliseconds, thanks to its data structure and simplicity, thus allowing
its usage in runtime applications.

ACM Transactions on Reconfigurable Technology and Systems, Vol. 8, No. 2, Article 9, Publication date: March 2015.

A Runtime FPGA Placement and Routing Using Low-Complexity Graph Traversal 9:15

6. CONCLUSIONS AND FUTURE WORK

A novel P&R approach is proposed in this article, one that has demonstrated that a low-
complexity P&R algorithm based on a graph traversal can achieve a huge reduction
in execution time in comparison to traditional SA-based approaches. The algorithm
is well-suited to be used at runtime in a partial reconfiguration framework, whereas
traditional P&R approaches are not suitable for runtime because they suffer from
high overheads. Furthermore, the P&R is modeled as a graph mapping problem. The
input graph is the circuit to be mapped, and the output graph is the FPGA. The
P&R algorithm performs a DF graph traversal over the input graph, resulting in
the final mapping. Unlike traditional offline algorithms, our approach does not try
similar solutions, allowing the P&R to execute in milliseconds. We presented results
that validate the proposed solution, reaching up to three orders of magnitude speedup
compared with the state-of-art VPR tool [Luu et al. 2011]. Beyond the algorithm, this
work distills several contributions for implementing P&R approaches: (1) To the best
of our knowledge, the DFPR algorithm is the first single-try placement approach that
produces routable solutions for the MCNC benchmarks. (2) Instead of using traditional
graph data structures, we propose an implicit representation based on index numbers.
(3) We developed a new placement algorithm based on first-edge locality. (4) We expand
the adjacent node zone. (5) We show a fanout distribution analysis and its impact on
the final routing cost.

This work demonstrates that a greedy P&R strategy significantly reduces the execu-
tion time compared to the state-of-the-art of P&R on homogeneous virtual FPGA with
a single LUT CLB. However, modern FPGA devices include heterogeneous resources
(multipliers and BRAM) as well as complex CLB with multiple LUTs and customized
interconnections. Future work will address new challenges to extend the proposed
graph traversal approach to these heterogeneous FPGA devices.

REFERENCES

V. Betz and J. Rose. 1997. VPR: A new packing, placement and routing tool for FPGA research. In Inter-
national Conference on Field Programmable Logic and Applications (FPL’97). Springer-Verlag, Berlin,
213–222.

M. Dehyadgari, M. Nickray, A. Afzali-Kusha, and Z. Navabi. 2005. Evaluation of pseudo adaptive XY routing
using an object oriented model for NOC. In International Conference on Microelectronics. IEEE, 204–208.

W. E. Donath. 1980. Complexity theory and design automation. In Design Automation Conference. ACM,
New York, NY, 412–419.

R. Ferreira, A. Garcia, T. Teixeira, and J. M. P. Cardoso. 2007. A polynomial placement algorithm for data
driven coarse-grained reconfigurable architectures. In ISVLSI. IEEE, 61–66.

M. G. Gericota, G. R. Alves, M. L. Silva, and J. M. Ferreira. 2003. Run-time management of logic resources
on reconfigurable systems. In Design, Automation and Test Conference (DATE’03). ACM/IEEE, 974–979.

M. Gort and J. H. Anderson. 2011. Reducing FPGA router run-time through algorithm and architecture. In
International Conference on Field Programmable Logic and Applications (FPL’11). IEEE, 336–342.

M. Handa and R. Vemuri. 2004. An efficient algorithm for finding empty space for online FPGA placement.
In Design Automation Conference (DAC’04). ACM/IEEE, 960–965.

M. Hübner, P. Figuli, R. Girardey, D. Soudris, K. Siozios, and J. Becker. 2011. A heterogeneous multicore
system on chip with run-time reconfigurable virtual FPGA architecture. In Workshops and PhD Forum
(IPDPSW). IEEE, 143–149.

M. Lin and J. Wawrzynek. 2010. Improving FPGA placement with dynamically adaptive stochastic tunneling.
IEEE Transactions on CAD of Integrated Circuits and Systems 29, 12 (2010), 1858–1869.

T. Lin, P. Banerjee, and Y. Chang. 2013. An efficient and effective analytical placer for FPGAs. In Design
Automation Conference (DAC’13). ACM/IEEE, Article 10, 6 pages.

X. Lin, P. K. McKinley, and L. M. Ni. 1994. Deadlock-free multicast wormhole routing in 2-D mesh multi-
computers. IEEE Transactioins on Parallel and Distributed Systems 5 (1994), 793–804.

ACM Transactions on Reconfigurable Technology and Systems, Vol. 8, No. 2, Article 9, Publication date: March 2015.

9:16 R. Ferreira et al.

A. Ludwin and V. Betz. 2011. Efficient and deterministic parallel placement for FPGAs. ACM Transactions
on Design Automation of Electronic Systems 16, 3, Article 22 (2011), 23 pages.

J. Luu, I. Kuon, P. Jamieson, T. Campbell, A. Ye, W. M. Fang, K. Kent, and J. Rose. 2011. VPR 5.0: FPGA
CAD and architecture exploration tools with single-driver routing, heterogeneity and process scaling.
ACM Transactions on Reconfigurable Technology and Systems 4, 4, Article 32 (Dec. 2011), 23 pages.

P. Maidee, C. Ababei, and K. Bazargan. 2005. Timing-driven partitioning-based placement for island style
FPGAs. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems 24, 3 (2005),
395–406.

MCNC. 2010. BLIF Benchmark Suit. Retrieved from http://cadlab.cs.ucla.edu/∼kirill/.
K. Papadimitriou, A. Dollas, and S. Hauck. 2011. Performance of partial reconfiguration in FPGA systems:

A survey and a cost model. ACM Transactions on Reconfigurable Technology and Systems (TRETS) 4, 4
(2011), 36.

H. Sidiropoulos, K. Siozios, P. Figuli, D. Soudris, and M. Hubner. 2012. On supporting efficient partial
reconfiguration with just-in-time compilation. In PhD Forum (IPDPSW), IEEE. IEEE, 328–335.

H. Sidiropoulos, K. Siozios, P. Figuli, D. Soudris, M. Hübner, and J. Becker. 2013. JITPR: A framework
for supporting fast application’s implementation onto FPGAs. ACM Transactions on Reconfigurable
Technology and Systems 6, 2, Article 7 (Aug. 2013), 12 pages.

Steven J. E. Wilton. 1997. Architectures and Algorithms for Field-Programmable Gate Arrays with Embedded
Memory. Ph.D. Dissertation. University of Toronto.

Q. Wu and K. S. McElvain. 2012. A fast discrete placement algorithm for FPGAs. In Proceedings of the
ACM/SIGDA International Symposium on Field Programmable Gate Arrays (FPGA’12). ACM, New
York, NY, 115–118.

M. Xu, G. Grewal, and S. Areibi. 2011. Starplace: A new analytic method for FPGA placement. Integration,
the VLSI Journal 44, 3 (2011), 192–204.

Received December 2013; revised July 2014; accepted July 2014

ACM Transactions on Reconfigurable Technology and Systems, Vol. 8, No. 2, Article 9, Publication date: March 2015.

http://cadlab.cs.ucla.edu/protect $elax sim $kirill/

