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Abstract—Monte-Carlo Integration (MCI) is a numerical
technique for evaluating integrals which have no closed form
solution. Naive MCI randomly samples the integrand at
uniformly distributed points. This naive approach converges
very slowly. Stratified sampling can be used to concentrate
the samples on segments of the integration domain where
the integrand has the highest variance. Even with stratified
sampling, MCI converges very slowly for multidimensional
integrals. In this work, we implement an FPGA-accelerated
design for MISER, a widely used adaptive MCI algorithm
applying stratified sampling. We show how to eliminate the
recursion from MISER and partition the algorithm between
CPUs and FPGAs. The CPUs manage the control-heavy strat-
ification strategy, while the FPGA is responsible for sampling
the integrand. The integrand is compiled into a deep pipeline
on the FPGA, producing one function evaluation per clock
cycle. We demonstrate the FPGA-accelerated design by pricing
a path dependent financial derivative called an Asian option.
To make optimal use of the stratification, we implement a
Brownian bridge on the FPGA that produces one entire
bridge per clock cycle. The FPGA-accelerated design is up
to 880 times faster compared to a software reference using
the GSL implementation of MISER. Compared to naive MCI
in software, our design even requires up to 3572 times less
execution time to achieve the same accuracy.

I. INTRODUCTION

Monte-Carlo integration numerically approximates the
definite integral of an integrand. This computationally in-
tensive method evaluates the integrand at randomly chosen
points in a given domain. The average of these evaluations
is the estimate of the integral. Unfortunately, the accuracy
of the estimate only scales as the square root of the number
of samples. Stratified sampling can be used to enhance the
accuracy by concentrating most of the samples on ”difficult”
areas of the domain. Even with stratified sampling, MCI
converges very slowly for multidimensional integrals. These
integrations can benefit from acceleration with FPGAs.

Monte-Carlo methods are extensively used in finance. For
example, pricing exotic options is done by evaluating high-
dimensional integrals with no closed form solution. Stratified
sampling can be particularly useful for option pricing in
combination with a Brownian bridge. We demonstrate how
to improve the execution time of exotic option pricing by
combining a hardware implementation of a Brownian bridge
with the adaptive stratified sampling algorithm MISER.

The main contributions of this work are:
• A paradigm for splitting stratified MCI between soft-

ware and hardware, allowing for high utilization of the
hardware accelerator.

• A framework for implementing such a system in hard-
ware, allowing selection of custom integrands, that can
achieve one simulation per cycle if the integrand can
be evaluated in one cycle.

• Application of the framework to an exotic option pric-
ing problem, including a Brownian Bridge, to maximize
variance reduction.

• Evaluation in hardware, achieving an acceleration of
880 times over a software reference using the GSL
implementation of MISER running on an Intel i7-4770
CPU at 3,40 GHz.

• Evaluation of the combined advantage of stratification
and FPGA-acceleration, requiring up to 3572 times less
execution time to achieve the same accuracy compared
to a software reference using naive MCI.

The remainder of this paper is structured as follows.
Section III will first discuss the background topics MCI,
stratified sampling, option pricing and Brownian bridges.
We adapt MISER to the requirements for a parallel design
in Section IV and develop a hardware design in Section V.
Section VI discusses the implementation in hardware of an
integrand for Asian option pricing. Results for the timing
and accuracy of this design are discussed in Section VII.
Section VIII concludes this paper.

II. RELATED WORK

Previous work has demonstrated the effectiveness of
FPGAs for Monte-Carlo methods in finance. Thomas et
al. present FPGA implementations for five different Monte-
Carlo simulations of asset price movements in [1]. In [2],
an FPGA, a GPU and CPUs are all used to accelerate the
computation of the Value at Risk for a portfolio of correlated
assets using Monte-Carlo simulation.

FPGA-accelerated Monte-Carlo designs using variance re-
duction methods are presented in (among others) [3], [4], [5]
and [6]. A control variate option pricing framework is used
in [3] to determine the price of an Asian option. [4] uses
Quasi-random numbers to determine the price of American
options. [5] presents a Quasi-Monte-Carlo simulator with a
Brownian bridge to generate random walks. In [6], random
numbers are generated by using stratified sampling and latin
hypercube for a Gaussian random number generator.

In contrast to [6], which applies stratification for improved
random number generation, our design uses an advanced
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stratification strategy controlled by CPUs, to adaptively
allocate the optimal number of simulations to a specific
segment of the entire integration domain. Furthermore, our
high-throughput FPGA design produces one entire brownian
bridge per clock cycle, where [5] produces one point of the
bridge every clock cycle.

III. BACKGROUND

A. Monte-Carlo Integration

Monte-Carlo integration is a numerical method to deter-
mine the value of an integral. Consider the function y = g(x)
and the integral ∫ 1

0

g(x) dx, (1)

where x is a scalar. If f(x) is the probability density function
(PDF) of X which has a uniform distribution on the interval
[0, 1], this integral can also be described as∫ 1

0

g(x) dx =

∫
R
g(x)f(x) dx = E[g(x)]. (2)

An estimate for this expected value can be found by Monte-
Carlo simulation. This estimate is y, which is the average
result of N simulations1. This method will be referred to
as naive MCI. This method can also be applied on multidi-
mensional integrals. In Section III-E, we will integrate an n
dimensional function for Asian option pricing.

The estimator y is unbiased, but suffers from a large sam-
pling error. The (1−α)-confidence interval with 0 < α < 1
is given by

[y − z (1− α
2 ) · SEy , y + z (1− α

2 ) · SEy ] , (3)

where SEy is the standard error of y and z (1− α
2 ) is the

(1 − α
2 )-quantile of the standard normal distribution. For

example, z (1− 0.05
2 ) = 1.96. For naive MCI, the standard

error is given by
SEy =

σy√
N
, (4)

where σy is the standard deviation of y.

B. Stratified Sampling

Improving the accuracy constitutes to reducing the length
of the confidence interval. Increasing N with a factor p
decreases the standard error of the estimator only with a
factor

√
p. However, variance reduction techniques such as

stratified sampling can reduce the size of the confidence
interval without increasing N.

Stratified sampling divides the sample space of X into
m segments (or ’strata’). The integral for each segment can
be determined with a different number of samples for each
segment. The integral on the entire domain follows as a
weighted sum of the integrals on the segments according
to

E[g(x)] =
m∑
i=0

E[g(x)|x ∈ Ji] · P[x ∈ Ji], (5)

1This average should be multiplied by the volume of the integration
domain, which is 1 in this situation.
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Figure 1: Contour graph of h(x, y). The domain is divided into 3
segments.

where P [x ∈ Ji] is the probability that a realization x
from X is from segment Ji [7]. To increase the accuracy,
one should allocate more simulations to segments that are
responsible for most of the variance in the Monte-Carlo
estimator.

Stratification can also be applied to multidimensional
integrals. As an example, consider the graph of function
h(x, y) in Figure 1. Naive MCI can determine the integral
on the domain x = [0, 1], y = [0, 1]. However, dividing the
domain in 3 segments as shown by the dotted lines in the
figure can increase the accuracy of the Monte-Carlo estimate.
The figure shows that the variance of h(x, y) is lowest in
segment I. The variance is higher in segment II and highest
in segment III. Allocating most simulations to segment III
and fewest simulations to I will reduce the variance of the
estimate compared to naive MCI.

C. MISER

An adaptive variance reduction algorithm can be used
when it is unknown prior to the integration on which domain
the integrand has the highest variance. MISER [8] is a widely
used adaptive algorithm for high-dimensional integrals based
on recursive stratified sampling.

MISER integrates a function with N simulations on an
integration domain. MISER performs one of two actions
when it is executed:

• Determine the integral on the given domain with N
simulations using naive MCI.

• Determine the optimal bisection of the domain and call
MISER on each segment recursively.

Which action MISER performs is based on some user-
defined threshold M. If N < M , MISER performs naive
MCI. If N ≥ M , MISER bisects the domain, leading to
two new MISER calls. Figure 2 shows this process for the
integration of h(x, y) from Section III-B over the domain
x = [0, 1], y = [0, 1] using N = 1000 and M = 200.

X = [0 : 0,5]
Y = [0 : 1]
N = 800

X = [0,5 : 1]
Y = [0 : 1]
N = 100

X = [0 : 1]
Y = [0 : 1]
N = 1000

X = [0 : 0,5]
Y = [0 : 0,5]
N = 420

X = [0 : 0,5]
Y = [0,5 : 1]
N = 300

Entire 
domain

Segment 
III

Segment 
II

Segment 
I

Segments 
II & III

Figure 2: Progress of MISER for function h(x, y).
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MISER needs to determine the optimal dimension to
bisect, which we will refer to as ’segmentation’. For this
purpose, a fraction α of the N available simulations is
used to sample the integration domain. MISER considers
a bisection for each dimension and estimates the variance
for each of the 2n segments using α ·N samples. In Figure
2, α = 0.1. For each bisection, the variance estimates of the
two segments are accumulated. The bisection which results
in the largest accumulated variance is optimal and MISER is
used recursively on each segment [9]. The variance estimates
are used to determine the optimal number of simulations for
each segment. When the recursion finishes, the results for
all segments are combined with Equation 5 to compute the
entire integral2.

Segmentation is computationally very intensive for mul-
tidimensional integrals. The number of possible bisections
equals the number of dimensions n. For each (recursive)
MISER call with N ≥ M , the variance is estimated for all
2n considered segments. The execution time to determine
the optimal bisection is thus O(α ·N · n).

D. Option Pricing

An option provides the right but not the obligation to buy
(call) or sell (put) an asset, such as a stock or a bond. The
price for which the asset can be bought or sold is called the
strike price, denoted by K. The date for which the option has
to be exercised is the expiration date or maturity, denoted by
T. The simplest option is a European option. The payoff for
a European option only depends on a fixed strike price and
the underlying stock price at maturity. Exotic options, such
as Asian options, barrier options and basket options, have
more complex payoff structures. For example, the payoff for
a discrete Asian call option with fixed strike is determined by
the difference between the average stock price at n moments
in time and the strike price according to

Payoff = max

(
0,

1

n
· Σni=1S(ti)−K

)
, (6)

where S(t) is the price of the underlying asset at time t and
T = tn. Such an option, for which the payoff depends on the
price path of the underlying asset, is called path dependent.
We refer readers with further interest in options and other
financial derivatives to [10].

Determining an option price requires a model for the un-
derlying asset. In the commonly used Black-Scholes model
[11], the stock price movement is described by a geometric
Brownian motion. The stock price at time t is modeled by

S(t) = S(t0) · e
(
r−σ22

)
t+W (t)

,with W (t) = σ
√
tZt, (7)

where r is the risk free rate, σ is the volatility of the
underlying asset and Zt is a random variable with a standard
normal distribution. The term

(
r − σ2

2

)
t is called the drift.

Using this model for S(t), the current value of an Asian

2The interested reader is referred to [9] for a more extensive explanation
of MISER.

Figure 3: Brownian bridge construction after 1, 2, 4 and 8 points
have been sampled.

option is given by

V = e−rT · EQ

[
max

(
0,

1

n
· Σni=1S(ti)−K

)]
, (8)

where the operator EQ[·] gives the expected value under risk
neutral probability measure Q [10]. Monte-Carlo integration
can be used to determine this current value V .

E. Brownian Bridge

Determining the value of an Asian option with Monte-
Carlo integration requires the generation of N entire stock
price paths with n timesteps. A natural way to construct
these stock price paths using Equation 7 is by calculating
S(t1), S(t2), . . . , S(tn) sequentially. To do this, the expo-
nent W (t) in Equation 7 can be calculated according to

W (ti) = W (ti − τ) + σ
√
τZt, (9)

where τ is the difference between two consecutive timesteps.
In this sequential approach, W (ti − τ) is calculated before
W (ti). However, the data points can be generated in any or-
der as long as Zt is sampled from the distribution conditional
on the values that are already generated. Furthermore, some
parallelism can be exploited since two data points W (ti)
and W (tj) with i < j can be generated in parallel as long
as there is already a data point W (tk) with i < k < j
generated.

To make optimal use of stratified sampling with MISER, a
Brownian bridge can be used. A Brownian bridge constructs
a point on a Brownian path by conditioning on the known
surrounding points. Consider the graph in Figure 3 where
T = tn. First, the values of W (t0) and W (T ) are calcu-
lated. Conditional on these values, W ( 1

2T ) is calculated.
Next, W ( 1

4T ) can be calculated conditional on W (t0) and
W ( 1

2T ). W ( 3
4T ) can be calculated in parallel using W ( 1

2T )
and W (T ). Finally, W ( 1

8T ), W ( 3
8T ), W ( 5

8T ) and W ( 7
8T )

are calculated such that the entire stock price path is known.
Each simulation requires the generation of a new stock

price path. Data points in a stock price path are independent
of other stock price paths. This parallelism can be exploited
on an FPGA.

Stratified sampling can be used to generate stock price
paths that contribute most to the variance of the Monte-Carlo
estimator. The generation of W (T ) has a big influence on
the entire stock price path. A high value for W (T ) will lead
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Figure 4: Parallelizable version of MISER

to a high average for the stock price. Therefore, a Brownian
bridge is well suited for stratified sampling.

IV. PARALLEL ARCHITECTURE

We develop an efficient FPGA-accelerated implementa-
tion of MISER. CPUs control the stratification. FPGAs per-
form the data intensive work: naive MCI and segmentation.
We need to solve two key problems to develop this parallel
design. First, we need to remove the recursion from MISER
to expose parallel tasks. Next, we need a paradigm that
maximizes the utilization of pipelined FPGA operators. An
important factor here is the communication overhead. The
size of the data required by the FPGA for integration and
segmentation is O(n). The size of the result communicated
to the CPU is O(n) too. Communicating this data is a
bottleneck for highdimensional integrals, stalling the FPGAs.

To eliminate the recursion, we consider each node in
the graph of Figure 2 to be a Task. A Task is either a
Segmentation Task (ST) or an Integration Task (IT). The leaf
nodes in Figure 2 result in ITs, while the other nodes result in
STs. Unhandled Tasks are stored on a stack. The CPU pops
unhandled Tasks and creates packets that hold the minimal
amount of information required to process a Task: the type
of task, the number of simulations, the integration domain
and possibly other integrand specific parameters. The CPU
communicates the packets to an FPGA, which performs the
integration or segmentation on an integration kernel. One
FPGA may hold multiple integration kernels. The FPGA
communicates one Sub-Result per packet to the CPU. If the
FPGA processed an ST, the CPU pushes two new Tasks on
the stack. Execution of an IT yields an Integration Result,
stored on a separate stack. Execution finishes when all Tasks
are handled. Figure 4 shows the flow of data in this parallel
design.

The design hides the communication overhead by per-
forming the data communication in parallel to the work on
the FPGA. Packets and Sub-Results are stored in a double
buffer in a shared memory. We maximize the throughput
by loading data to and from the FPGA while the FPGA
processes Tasks in parallel. Since the FPGA can execute
packets in any order, this paradigm allows a scheme where

the Task with most simulations is communicated first. While
the FPGA is processing that Task, smaller Tasks may be
communicated in parallel without stalling the FPGA.

V. INTEGRAND INDEPENDENT HARDWARE DESIGN

We implement pipelined integration kernels on an FPGA
to process STs and ITs in single precision floating-point
format. Figure 5 shows the structure of an integration
kernel. Various integrands can be used with this design. The
implementation of the pricing function for an Asian option
using a Brownian bridge is discussed in Section VI. This
section describes the integrand independent hardware.

A random number generator (RNG) produces n random
numbers from an arbitrary distribution per clock cycle. The
random numbers are used to sample the integrand. For
stratified sampling, the random numbers are generated in
the correct segment. Our RNG generates random numbers
in four steps. First, uniformly distributed fixed-point random
numbers are generated using the RNG from [12]. Second,
these numbers are transformed into uniformly distributed
floating-point numbers on the domain [0,1] with the tech-
nique described in [13]. Third, the floating-point numbers
are converted to the correct integration domain. Fourth, the
uniformly distributed numbers are transformed to random
numbers from the target distribution using the Inverse Cu-
mulative Distribution Function (ICDF) as described in [14].
The authors of [14] allow us to use their design and adapt
it to our requirements.

The integrand is sampled with new random numbers every
clock cycle. The integrand should be compiled into a deep
pipeline, generating one simulation on every clock cycle.

For ITs, the FPGA calculates the average and variance
of the simulations. For STs, the FPGA finds the optimal
segmentation. Each segmentation creates a left and a right
segment. For all segments, an estimate of the standard devi-
ation is required. Following the implementation of MISER
in [9], the estimate of the standard deviation of a segment
is implemented as the difference between the minimum and
maximum value for that segment3. Figure 6 shows how the
minimum and maximum are calculated.

3This method leads to a stable design according to [9]. Using the sample
standard deviation for each segment gives a better estimate, but results in
a much larger resource utilization on the FPGA
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VI. INTEGRAND FOR ASIAN OPTION PRICING IN
HARDWARE

Asian option pricing requires an integrand that can gener-
ate one Brownian bridge per clock cycle. Such a design was
presented in [15]. Every simulated Brownian bridge yields
one simulated option payoff. To construct the Brownian
bridge, we use the algorithm from figure 3.2 in [16].

We transform this algorithm in order to produce one
Brownian bridge per clock cycle on an FPGA. Listing 1
shows the transformed (MATLAB-based) pseudocode for
timesteps of size 1

n and T = tn = 1. The algorithm first
computes n random numbers, then computes W (ti) condi-
tional on W (tl) and W (tr) for all i and finally computes
the stock prices S(ti). W (tl) and W (tr) are the known
surrounding points of W (ti).

Gaussian numbers are generated in line 2. These numbers
are converted to the correct conditional distribution by mul-
tiplying them with the coefficients ci =

√
1
4 (tr − tl) (line

4). These coefficients only depend on the order in which the
data points are generated and can be precomputed. Finally,
the random numbers are multiplied with σ as in Equation 7
(lines 8 and 9) and stored in the first row of matrix W .

At this point, W (t0) and W (tn) are known. On each
iteration of the outer loop, all matrix elements in the middle
of two known elements are calculated by the inner loop in
line 16 and stored in the next row of W . All other elements
are copied to the next row (line 20). Thus, one row of W is
completely filled in each iteration of the outer loop. When
the loops finish, S(ti) is found with Equation 7 (line 25).

Figure 7 shows how to move this algorithm into hardware
for n = 4. The RNG provides a stream of n Gaussian num-
bers. These numbers are multiplied with the precomputed
coefficients (stored in registers) and σ, as in lines 4, 8 and
9 of Listing 1. Next, W (tn/2 ) is calculated conditional on
W (t0) and W (tn) using an ADA (add-divide-add). ADAs
are the hardware implementation of line 16 of Listing 1.
They add the nearest known left (L in the figure) and right
(R) data point, divide them by 2 and add the random number

1 n = 2m

2 Generate Z(1 : n) ∼ N (0, I)
3 c = precomputed_coefficients
4 cond_random_numbers = c .* Z(1 : n− 1)
5
6 W = empty_matrix(m+ 1, n+ 1)
7 W (1, 1) = 0
8 W (1, 2 : n) = σ ∗ cond_random_numbers
9 W (1, n+ 1) = σ ∗ Z(n)

10
11 for k = 1 : m
12 for j = 1 : n

13 if (modulo(j, n/2k−1)==n/2k)
14 l = −2m−k

15 r = 2m−k

16 W (k + 1, j + 1) = W (k, j + 1)+
17 W (k, j + 1 + l)/2+
18 W (k, j + 1 + r))/2
19 else
20 W (k + 1, j + 1) = W (k, j + 1)
21 end
22 end
23 end

24 drift = (r − σ2

2 ) * [ 1n : 1
n : 1]

25 S = S(t0) * exp(W (m+ 1,:) + drift)
26 return(S)

Listing 1: Transformed algorithm to generate a Brownian
bridge with n equally sized timesteps from t0 = 0 to tn = 1.

Mul Mul Mul Mul

FIFO FIFO FIFO
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Figure 7: Integrand with Brownian bridge in hardware for n = 4.

(M). One ADA is found in each column. All other numbers
are stored in FIFOs until they are required for an operation.
The FIFOs are the hardware representation of line 20.

All4 W (ti) are known after addition of the correct drift
(line 25). The actual asset prices can be found with Equation
7. From the asset price, the payoff can be determined with
a hardware implementation of Equation 6.

Some optimizations may be implemented to decrease the
resource usage. These optimizations include:

1) Reducing the number of FIFOs
2) Making the ADAs more efficient
3) Reducing the number of multipliers
4) Reducing the number of adders

Figure 8 shows the improved stucture.

4The hardware has to be slightly restructured when the number of
timesteps n is not a power of two.
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The number of FIFOs can be reduced (1) by moving
the random number generators and multipliers closer to the
ADAs. The ADAs can be implemented more efficiently (2)
when three floating-point numbers are added first and the
result is divided by two. To allow this, the random numbers
need to be multiplied by two since they are divided by two
as well. Multiplying all exponentiated values (3) with S(t0)
can be replaced by adding ln (S (t0)) to the exponents. We
set the left-most data point equal to ln (S (t0)) instead of
zero and add ln (S (t0)) to the final data point W (tn) like
Figure 8 shows. Due to the ADAs, ln (S (t0)) will be added
to all W (ti) automatically. Finally, addition (4) of the drift
after generating all data points can be eliminated similarly.
The drift can simply be added to the final data point right
after the random number is generated. The ADAs make sure
the drift is added to all data points automatically.

VII. RESULTS

We implement the design on the Convey HC2-ex platform
[17]. The Convey HC2-ex has four Xilinx Virtex-6 LX760
FPGAs and two Intel Xeon X5670 6-core processors running
at 2,93 GHz. However, this work only uses one of the
FPGAs. The CPU could send Tasks to any FPGA, but we
did not implement this yet in the interest of time. The FPGA
resource utilization for the Asian option is shown in Table I.
The design runs at 150 MHz. Floating-point operators were
generated with the FloPoCo generator [18].

As a reference, we use the MISER implementation from
the GNU Scientific Library [19]. The software is compiled
with ICC 10.1 and executed on an Intel i7-4770 CPU running
at 3,40 GHz.

We compare three different methods to compute the value
of an Asian option: (i) naive Monte-Carlo integration in
software, (ii) MISER integration in software and (iii) MISER
integration in hardware (this work). The parameters from
Table II define the Asian option. These parameters are

Design Available Percentage
Flip Flop 343,176 948,480 36.2%

LUT 319,563 474,240 67.4%
DSP 649 864 75.1%

RAMB36E1 192 720 26.7%
RAMB18E1 113 1,440 7.8%
Table I: FPGA utilization on a Virtex-6 LX760.

S(t0) K r σ T n
50 55 0.1 0.25 1 64

Table II: Parameters of the Asian option.

economically justified, but many other sets of parameters
could have been used.

To analyze the performance of the three methods, we vary
the number of simulations N from 1000 to 150 million.
We measure the execution time and the accuracy of the
result. We configure MISER to use 5 percent of the available
number of simulations to evaluate the integration domain
for segmentation. Segmentation stops when less then 900
simulations or less then 10 percent of the original amount
of simulations is left for a Task. The minimal amount of
simulations that is used to integrate or segment an integra-
tion domain is 100 simulations. In the following tests, the
software and hardware programs are run 15 times.

Figure 9 demonstrates the results of these integrations.
Figure 9(a) shows that the graphs converge to the same
option value when the sample count is increased. Conver-
gence is faster for MISER software and hardware compared
to naive Monte-Carlo software. Figure 9(b) shows the ad-
vantage of the hardware implementation over the software
implementation5. The hardware is already converging in the
same time it takes the software to perform a Monte-Carlo
integration with 1000 simulations. When the same amount
of simulations is used, the hardware design is up to 880
times faster compared to the MISER software reference.

Figure 9(c) shows the root mean squared error6 (RMSE) in
percentages of the option price that was found with Monte-
Carlo integration. The error decreases when the sample count
increases. The RMSE is always smaller for the designs
that use MISER’s stratified sampling. The small difference
in RMSE between the software and hardware version of
MISER is caused by Monte-Carlo noise and the difference
in estimating the variance of each segment. Figure 9(d) gives
Pareto curves that show the trade-off between the execution
time and the error. The MISER hardware is able to limit the
error to 0.01% in only one second of execution time. The
MISER software requires 860 seconds to reach this accuracy.
The naive Monte-Carlo software is unable to reach such an
accuracy with 1.5 · 108 simulations, which is the maximum
sample count we used. Between 0.001 and 0.01 seconds,
different errors occur for the same execution time. The
communication overhead is the main cause of this pattern.
We explain this pattern in depth in [20].

The standard deviation of the Monte-Carlo integration
indicates the variability of the result. If there is no proxy for
the ’true’ option value7, this is the only piece of information
available to determine the significance of the integration
result. Figure 9(e) shows the standard deviation achieved by

5Notice the logarithmic scale of the horizontal axes. The graphs of
MISER HW stop at 1 second, since the FPGA requires only 1 second
for 150 million simulations. No tests have been performed for larger N.

6The error is the difference between the option price found by the Monte-
Carlo integration and the ’true’ option price. Since the ’true’ option price
is unknown, we use the result of naive MCI with N = 1, 5 · 1010 as a
proxy for the ’true’ value.

7Which is usually the case, otherwise the integration would be pointless.
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(a) Price of an Asian option using Monte-Carlo integration.
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(b) Price of an Asian option using Monte-Carlo integration.
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(c) RMSE of the Monte-Carlo integration for an Asian option, given
as a percentage of the integration result.
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(d) RMSE of the Monte-Carlo integration for an Asian option, given
as a percentage of the integration result.
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(e) Standard deviation of the Monte-Carlo integration for an Asian
option, given as a percentage of the integration result.
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(f) Standard deviation of the Monte-Carlo integration for an Asian
option, given as a percentage of the integration result.

Figure 9: Results of Monte-Carlo integrations to price an Asian option. The number of simulations N is varied from 1000 to 150.000.000
simulations.
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σ
Execution time

naive MC SW (sec)
Execution time

MISER HW (sec)
Effective
speed-up

0,1% 28,09 0,0092 3069,48
0,05% 112,36 0,0353 3179,23
0,01% 2809,00 0,8143 3449,43

0,005% 11236,00 3,1449 3572,77
Table III: Effective speed-up of the hardware design over a naive
Monte-Carlo software reference.

the software and hardware implementations. For all designs,
the standard deviation decreases slowly with the sample
count. The MISER software performs slightly better than the
MISER hardware, due to the different method to estimate the
variance of each segment. Figure 9(f) gives Pareto curves
that show the trade-off between the sample count and the
standard deviation. From the graphs can be seen that the
option price determined by the hardware has a standard
deviation smaller than 0.1% within 10 milliseconds.

We use Figure 9(f) to determine the required execution
time to reach a certain level of accuracy. Table III shows
these execution times for the naive MC software and the
MISER hardware. We define the effective speed-up as the
ratio of these execution times. The table shows an effective
speed-up of 3069 to 3572 for high levels of accuracy. This
is the combined effect of the hardware acceleration and the
stratified sampling. Furthermore, the speed-up increases for
a higher accuracy. This occurs because the sample count
is higher for these accuracy levels. As the sample count
increases, the communication between the CPU and FPGA
can be performed more and more in parallel with the
integration on the FPGA.

Taking the size of the FPGA and the multithreading of the
software reference into account, we estimate the hardware
acceleration of our design to be comparable to the Control
Variate (CV) Monte-Carlo design for Asian option pricing in
[3]. The main advantage of our work over the design in [3] is
the different range of applications. Like stratified sampling,
CV is a variance reduction method. Asian option pricing is
an application that benefits from both methods. Our work
and the work in [3] demonstrate that both methods can be
very powerful in combination with FPGAs.

VIII. CONCLUSION AND FUTURE WORK

We demonstrate how Monte-Carlo integration can be
performed on a heterogeneous multicore platform with CPUs
and FPGAs while using the general purpose algorithm
MISER to apply stratified sampling and reduce the variance
of the Monte-Carlo estimate. The parallel architecture for
MISER can be applied to various integrands. We demon-
strate the advantages of our design by pricing an Asian
call option. We implement a Brownian bridge rather than a
Brownian motion to make optimal use of the stratification.

By implementing stratified sampling in the hardware
design, an accuracy that requires minutes with software
programs can be achieved in a fraction of a second. Pricing
an Asian option using the FPGA-accelerated design is up
to 880 times faster than a software implementation using
MISER from the GSL library running on an Intel i7-4770
CPU at 3,40 GHz. Furthermore, our design requires up to

3572 times less execution time to achieve the same accuracy
as a software implementation without stratification.

Future work includes further research into the stratifica-
tion performed by MISER. Our hardware uses a simplified
estimator for the variance of each segment. The simplifi-
cation works well for this integrand, but other integrands
may require the sample standard deviation as an estimator.
Furthermore, the Brownian bridge could be implemented to
use fixed-point internally, in order to fit bridges of higher
dimensions on the FPGA. Finally, the latency of the design
can be minimized for smaller integrations, increasing the
speed-up for integrations with less than 100.000 simulations.
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