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ABSTRACT
Memristor-based Computation-in-Memory is one of the
emerging architectures proposed to deal with Big Data prob-
lems. The design of such architectures requires a radically
new automatic design flow because the memristor is a pas-
sive device that uses resistance to encode its logic value.
This paper proposes a design flow for mapping parallel al-
gorithms on the CIM architecture. Algorithms with similar
data flow graphs can be mapped on the crossbar using the
same template containing scheduling, placement, and rout-
ing information; this template is named skeleton. By con-
figuring such a skeleton with different pre-designed circuits,
we can build CIM implementations of the corresponding al-
gorithms in that class. This approach does not only map an
algorithm on a memristor crossbar, but also gives an estima-
tion of its performance, area, and energy consumption. It
also supports user-defined constraints and parallel SystemC
simulation. Experimental results demonstrate the feasibility
and the potential of the approach.

1. INTRODUCTION
Big Data Analytics is becoming increasingly difficult to

solve using classical Von Neumann-based computer archi-
tectures because of limited bandwidth (due to memory-
access bottlenecks), energy inefficiency and limited scala-
bility (due to CMOS technology). Computation-in-Mem-
ory (CIM)-based [1, 2] architectures address the aforemen-
tioned problems by enabling in-memory computations us-
ing non-volatile memristor technology [3, 4]. They have
huge potential and they could outperform the state-of-the-
art with orders of magnitude [2, 5]. Exploring the poten-
tial of such architectures and appropriately evaluating their
performance and scalability for larger applications require
automatic flows and methods that efficiently map high-level
algorithmic description to low-level memristor crossbar.

VLSI (Very-Large-Scale Integration) CAD (Computer
Aided Design) flows for CMOS-based hardware solutions are
not applicable to memristor-based CIM because of different
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signal propagation styles. In CMOS circuits, logic values
are represented by the voltage; they propagate along wires
implicitly and the propagation finishes within one clock cy-
cle [6]. Because memristors are passive devices that use
resistance to encode logic values, data has to be copied by
controllers explicitly. This requires specific commands and
several clock cycles; In addition, it depends not only on the
relative positions of the source and sink [7], but also on
their 1orientations on the crossbar. In conventional VLSI
CAD flows, placement and routing are performed based on
the High-Level Synthesis (HLS) scheduling results [8]. How-
ever, in memristor-based CIM, placement and routing infor-
mation is required before scheduling can be performed. As
a consequence, a new methodology is required to appropri-
ately design a memristor-based CIM architecture.

In this work, we propose a design and simulation flow
that performs scheduling, placement, and routing simulta-
neously; the flow is based on the algorithmic skeleton [9]
concept, or a skeleton in short. A skeleton provides an im-
plementation template for a specific class of algorithms that
have similar Data Flow Graph (DFG)s. It uses this knowl-
edge for optimising communication and hides its implemen-
tation details from the user. Skeleton-based design flows
have been used in parallel programming for supercomput-
ers [10], GPU [11], grid structures [12], and hybrid archi-
tectures [13]. Benkrid et al. extended this concept into a
hardware skeleton with placement information and applied
it to FPGA (Field Programmable Gate Arrays)-based de-
signing [14, 15]. Hardware skeletons do not contain routing
information since it can be generated by FPGA back-end
tools. However, the routing information is an essential part
of mapping algorithms on the memristor crossbar. We fur-
ther extend the hardware skeleton concept with routing in-
formation and refer it as 2CIM skeleton. This skeleton can
be configured with different predesigned circuits for imple-
menting corresponding algorithms. Furthermore, complex
algorithms can be implemented by composing simple skele-
tons. The main contributions of this paper are:
• Extending the hardware skeleton concept by append-

ing routing information. The extended skeleton in-
tegrate information about scheduling, placement, and
routing for a class of algorithms.
• Developing a design and simulation flow for memristor-

based CIM architecture based on the extended skele-
ton. By using a few carefully designed skeletons, many

1Direction of source/sink input/output ports, i.e., North,
South, East, West.
2In the rest of the paper, skeletons refer to CIM skeletons.
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Figure 1: CIM/CPU Heterogeneous Computing and
Memristor Crossbar Configuration

parallel algorithms can be implemented rapidly. Both
a SystemC model and a layout are generated through
the flow.

The rest of the paper is organized as follows. After intro-
ducing the CIM architecture in Section 2, Section 3 presents
the design and simulation flow. Section 4 shows the ex-
perimental results for three study cases. Finally, Section 5
concludes the paper and discusses future research directions.

2. BACKGROUND
Figure 1 shows the heterogeneous CIM/CPU computing

scenario. The CPU works with memristor-based memory,
including Resistive Random Access Memory (RRAM) and
CIM. Besides of storing data, CIM also performs computing
as an accelerator of CPU.

2.1 CIM Architecture
CIM architecture [2] consists of a memristor layer and a

CMOS layer. The former is a dense crossbar with a memris-
tor at each cross point while the latter is used to implement
the controller as shown by Figure 1. Any part of the cross-
bar can be configured as either memory or logic, depending
on the commands of the controller. The communication be-
tween logic and memories within the crossbar can be in any
direction, as shown in the figure. Due to the high density of
memristor technology [16, 17], a CIM chip could contain as
many as 106 functional units. As a result, manually explor-
ing the design space is impossible. To transfer data between
functional units, we have two options. One is through the
CMOS layer, which has a bandwidth limit. The other one
is on the memristor crossbar, which is named as the copy
operation [7]. The latter one is preferred, because it has
higher parallelism. The state of a memristor can be copied
to another in one cycle if they share the column or the row.
Otherwise, this operation will take a minimum of two cycles
and temporary registers will be needed. In Figure 2, A and
C represent source memristors on the output ports of two
multipliers while B and D are destinations memristors on
two input ports of an adder. Since A and B share the row,
copying the data from A to B needs only one cycle. The
pseudo command of the controller is:

S1 : Move (25, 25) to (35, 25) {A→ B}.
The controller addresses the memristors with their coordi-
nates. Different from this case, C and D are not in the same
column or row. Thus, we need to divide the communication
into two steps:

S1 : Move (25, 10) to (40, 10) {C → E}
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Figure 3: ASAP Scheduling of Inner Product

S2 : Move (40, 10) to (40, 20) {E → D}.

2.2 Requirements for a New Flow
The data transfer mechanism on memristor crossbar has

a significant influence on the design flow, especially for
scheduling. Scheduling is a process that assigns time steps
to operations. If a design cannot meet the constraint, the
compiler will allocate more resources and try to schedule
again. Figure 3 illustrates the scheduling results of the

vector inner product function: ~a · ~b =
∑n

i=1 aibi. Here,

~a = (a1, a2, ... , an), ~b = (b1, b2, ... , bn)ᵀ, and the vector
size n = 4. For explanation purposes, we set a latency con-
straint of 100 cycles for this function. We assume the mul-
tiplication’s latency is 30 cycles and addition is 20. Now, if
three adders and only one multiplier are allocated, the low-
est latency of the function is 160 cycles. It can be achieved
by using ASAP (As-Soon-As-Possible) scheduling algorithm.
The start cycle of each operation is marked in Figure 3a.
This scheduling cannot meet the constraint, so the compiler
will allocate more resources and schedule again. Figure 3b
shows the scheduling results with two multipliers and three
adders. The overall latency is 100, which meets the con-
straint. From this case, we learn that scheduling validates
resource allocation. Because the placement and routing are
based on the allocated resources, they can only be performed
after the scheduling process.

The scheduling process for memristor-based CIM also de-
pends on routing results. Let A and B be two operations and
B have a data dependency on A. For conventional CMOS
technology, the data transfer from A to B is done once op-
eration A finishes in no more than one cycle. Therefore, we
can schedule B to the next time step after A without con-
sidering the routing. In CIM architecture, the data transfer
needs one or more cycles, depending on the routing between
them. As a result, the scheduler cannot decide the numbers
of time steps between A and B without routing information.
In conclusion, the scheduling, placement and routing depend
on each other in CIM architecture. Hence, conventional de-
sign flows cannot be applied directly to CIM designing.

It is possible to adapt the conventional flow to CIM by
iteratively executing it. However, even to get a subopti-
mal result, a long execution time is needed. The idea is to
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Figure 4: CIM Compilation Tool-chain

make assumptions on data transfers during the scheduling
phase. Later, we convert these assumptions into constraints
on placement and routing. If these cannot be met, then we
need to increase the assumed costs and restart from schedul-
ing. Placement and routing are time-consuming processes,
so this iteration leads to a long time. Alternatively, we can
make a trade-off between the quality of the solution and the
execution time. In this case, the result is suboptimal.

Different from this approach, we solve the scheduling,
placement and routing all together for a class of problems
with a particular structure. We obtain the optimal solution
without the need to iterate. This methodology is introduced
next.

3. SKELETON-BASED DESIGN AND
SIMULATION FLOW

Figure 4 shows the overview of the complete CIM/SW
compilation tool-chain, which consists of four components.
At the highest level (Box 1 in the figure), the user programs
an application in a high-level language, such as C, with an-
notations of using CIM library functions. These functions
are the most time-consuming algorithms in the application,
which are designed by library developers (Box 2). Their
work is based on the support of skeleton designers and hard-
ware designers, who provide the specification of fundamental
skeletons (Box 3) and primitive circuits (Box 4) respectively.

In this paper, we address only the flow for the library
developer, i.e., the CIM compiler. It translates algorithms
into CIM implementations, including configuration files for
the memristor crossbar and the controller circuits. In cur-
rent research phase, we generate SystemC models for sim-
ulation, together with files that indicate the function-level
layout. Section 3.1 introduces the compiler’s working basis,
i.e., primitive circuits and skeletons. Section 3.2 uses three
examples to show the system generation process. Section 3.3
presents the support for parallel simulation.

3.1 Primitive Circuits and Skeletons
Primitive circuits form the basic structures with which

we build higher-level functional blocks. They are crossbar
memristor implementations of widely used operators, such
as Boolean logic gates [18], adders [19], multipliers. We
use SystemC models to represent them. Along with these
models, the hardware designer also needs to provide the at-
tributes of the primitive circuits, which are latency, energy,
and area (i.e., width and height within the crossbar). They
are used by the CIM compiler to calculate the attributes of
generated functions. When a circuit is idle, it consumes no
energy, due to the zero-leakage property of memristors [20].
We regard the boundary of a circuit as a rectangle. Its width
and height are given by the number of memristors used in
each side. We assume CIM works at a fixed frequency, and

the attributes are evaluated at this frequency.
In this work, a skeleton consists of several nodes. It spec-

ifies the parallelism, communication, and synchronization
of these nodes, without defining their functionality. These
nodes can be configured as either primitive circuits or skele-
tons. When a node is configured as a primitive circuit, its
functionality is decided. Configuring a node as a skeleton
is called skeleton nesting. By using nesting repetitively, the
function designer can build large and complex skeletons.

In Figure 4, the skeletons stored in the repository are pro-
vided by skeleton designers. They are called fundamental
skeletons. The skeleton designer first needs to decide the
set of fundamental skeletons, according to their expressive-
ness, reuse-ability, and designing difficulty. Then, he defines
the scheduling, placement, and routing algorithms for each
skeleton. When a skeleton is used to create library functions,
the library designer does not need to care about its imple-
mentation details. We choose the fundamental skeleton set
following the classification proposed by Campbell [21] and
for which the DFGs are shown in Figure 5; the nodes with
the same letters are configured with the same primitive cir-
cuit or skeleton. These fundamental skeletons are:

• Recursively partitioned. Problems are partitioned
into a small size, and they are solved separately. After
that, the solutions are collected in a recursive style.
• Task queue. These problems are solved by repeated

concurrent execution of many instances of a task.
• Systolic. It consists of nodes that have data flowing

between them and that may operate concurrently in a
pipelined fashion.
• Crowd. Similar to the Systolic skeleton except for

that there is no data flow between the concurrently
operating nodes. A one-dimensional Crowd skeleton
is an array of nodes while a two-dimensional one is a
matrix.

To represent the layout, every skeleton is extended with a
coordinate system. The placement of its nodes is performed
under this system. A circuit rectangle may have eight differ-
ent orientations, which is sufficient to be represented by an
angle (0, 90, 180, and 270), and whether it reflects over the
x-axis [22]. We use the coordinate of the bottom left corner
as the position of the node. When skeletons are nested, their
layout coordinate systems are also nested. Ports are also re-
garded as rectangles. Their placement is described under
the coordinate system of a primitive circuit or a skeleton.

A skeleton is associated with a placement and routing
algorithm. In the Recursively partitioned skeleton, nodes
are arranged following the H-tree [23] pattern to minimize
the communication cost. In this pattern, an output port is
linked with a direct path to an input port if there is a data
flow in between. Since all the corresponding bits share same
rows or columns, their communication costs are just one
cycle. Figure 6 shows a layout of a three-level Recursively
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partitioned skeleton as an example. In other skeletons, the
nodes are placed next to each other in a matrix style.

Since a skeleton also defines the placement and routing
algorithms, it knows the communication cost between op-
erations during the scheduling phase. For instance, all the
communication costs are only one cycle in Recursively par-
titioned skeletons while some of them are two cycles in Task
queue skeletons. In Figure 5, the starting moments of the
nodes’ execution are marked besides the skeletons. Tx rep-
resents the latency of node x in these expressions.

3.2 System Generation
In functional programming languages, skeletons are

higher-order functions. They take functions as parameters.
Via these parameters, a skeleton’s nodes are configured as
primitive circuits or skeletons. If a skeleton is scalable, it
also has parameters for configuring the size.

Suppose we want to implement the matrix multiplication
algorithm:

AB =
(
~a1

ᵀ ~a2
ᵀ · · · ~an

ᵀ)ᵀ (~b1 ~b2 · · · ~bn
)

=


~a1 · ~b1 ~a1 · ~b2 · · · ~a1 · ~bn
~a2 · ~b1 ~a2 · ~b2 · · · ~a2 · ~bn

...
...

. . .
...

~an · ~b1 ~an · ~b2 · · · ~an · ~bn

 ,

where ~ai is a row vector of matrix A and ~bi is a column
vector of B. This is a complex algorithm that does not fit
any fundamental skeleton. However, we can see that it con-
tains repetitive patterns. Each element of the result matrix
is an inner product of two vectors. Thus, we can divide it
into two levels. The top level is a two-dimensional Crowd
skeleton, because there are no data flows between these ele-
ments. The lower level is the vector inner product function.
This function suits a Recursively partitioned skeleton, with
“a” and “b” nodes in Figure 5 configured as multipliers and
adders. They are predefined operators that can be found in
the primitive circuit library.

To implement the matrix multiplication, we need to build
the system bottom-up. First, we declare instances of the

...

...

...

...

...

Figure 7: Multiplication of Two 16× 16 Matrices

adder and the multiplier. Subsequently, we instantiate a Re-
cursively partitioned skeleton based on these primitive cir-
cuit library elements. Constraints can be applied to the
skeleton if necessary. Finally, we build a two-dimensional
Crowd skeleton on top of the inner product and generate
SystemC codes. We assume both matrices are 16 × 16, so
the vector size of the inner product is also 16. Figure 7
represents the generated system. The symbols “×” and “+”
stand for multipliers and adders while dashes between them
are communication paths. Each subsystem, as shown in the
dashed box, has a detailed layout following the H-tree pat-
tern. If an application cannot fit any existing skeleton, it is
necessary to develop a new one. In this case, the skeleton
repository should be extended.

In a similar way, we can calculate all the results of discrete
convolution on range [−M, M ]:

(f ∗ g)[n] =

M∑
m=−M

f [n−m] · g[m], n ∈ [−M, M ],

where f and g are two functions, and n is a variable. we
can use the Systolic skeleton as the low level, and instanti-
ate a one-dimensional Crowd skeleton on top of that. An
instance of the Systolic skeleton produces the result of one
input value, so all the results can be acquired with multiple
instances simultaneously.

3.3 Parallel Simulation Support
The standard SystemC implementation [24] does not sup-

port parallelism. It limits the performance and scale of the
simulation since the resources on a single machine are finite.
Therefore, we add parallel simulation support in code gen-
eration for acceleration and for enlarging the system scale.

Different skeletons require different support strategies.
Figure 5 illustrates one possible parallelization method for
each skeleton. The parts marked with dotted boxes can be
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Figure 8: Experimental Results

simulated in parallel by different threads (possibly on differ-
ent machines). The sizes of these boxes are decided by the
number of available threads. The communication between
these threads is implemented with MPI (Message Passing
Interface).

4. EXPERIMENTAL RESULTS
To validate the design flow, we first demonstrate the ap-

proach for vector inner product. Thereafter, we analyze its
scalability while considering not only the inner product but
also matrix multiplication and convolution. Finally, the abil-
ity of the proposed approach to perform large simulation will
be shown. It is worth noting that these experiments are per-
formed on a high-performance computer with 20 Intel Xeon
E5-2670 HT cores, running at 2.50 GHz.

4.1 Placement and Routing Results
We use the graphic output of inner product to show

the placement and routing results. We configured the Re-
cursively partitioned skeleton with multipliers and a sub-
system, which is the combination of an adder and two regis-
ters. Registers are needed to change the orientations of the
input ports so that the adders and the multipliers can be
arranged in a H-tree style. The attributes of these primitive
circuits are listed in Table 1 [2, 18, 19]; they are synthetic
data used only for illustration purpose. Here, the latency
is the number of clock cycles (CC) between the inputs and
the corresponding output. The width and height are ex-
pressed in the number of memristors. The energy is valued
for producing one (set of) result(s) in terms of femtojoule
(fJ). Figure 9 shows the graphic output generated by our
flow when the vector size is 16. Adders and multipliers are
marked with“A”and“M”while registers are squares without
labels. The input ports (orange triangles) are aligned with
the output ports (violet triangles), and the circuit is mapped
according to the H-tree pattern. The graphical output al-
lows us to verify that the placement algorithm defined by
the skeleton works correctly.

4.2 System Scaling
We varied the system sizes to evaluate the scaling capa-

bilities without putting any constraint, and generated three
cases: inner product, matrix multiplication, and convolu-
tion; we assume the matrices to be square N ×N . The re-
sults are shown in Figure 8 for Latency, Area, and Energy.

Table 1: Primitive Circuit Attributes

Module Latency/CC Width Height Energy/fJ
Adder 20 80 100 67

Multiplier 30 120 160 134
Register 1 33 33 1

Figure 9: Graphic Output of Inner Product

The area is defined based on the total number of memristors
used by the implementation. The time complexities of the
inner product and matrix multiplication are O(logN) while
that of the convolution is O(N). They are confirmed by the
experimental results.

Next, we put area constraints to investigate the flow’s abil-
ity to handle them; the constraint specifies that the width
and height should not exceed 50,000 memristors each. We
have to point out that this is only a hypothetical setting. In
reality, a CIM chip could be much bigger than this. These
experiment results are also shown in Figure 8; they are
marked with CSTR in the legend. Comparing these with
those for which no constraints was assumed, we can see that
the trends of latency and area change. The area stops grow-
ing, which shows that the constraint is applied. However,
the latency grows in a polynomial manner due to hardware
reuse.

4.3 Parallel Simulation
We enabled the parallel simulation support to examine its

effect. First, we simulated the baselines which are based on
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sequential simulations. The results are shown on the right
side of Figure 10; it lists the simulation sizes and the corre-
sponding simulation time. The abbreviations IP, MM, and
Con stand for Inner Product, Matrix Multiplication, and
Convolution respectively. Thereafter, we fixed the system
size and changed the number of MPI nodes. For each con-
figuration, we performed the simulation ten times and cal-
culated the average execution time after removing the max-
imum and minimum values. Figure 10 shows the speedup
of each configuration over the sequential simulation as the
baseline. The output data of all the parallel simulations
are verified and found to match those of the sequential one.
When MPI nodes are less than 16, the speedups are almost
the same as the thread number. This result shows a good
scalability.

5. CONCLUSION AND FUTURE WORK
In this work, we explained why a skeleton-based flow is

required for CIM, and we presented a high-level description
of this flow with a focus on the collaboration between dif-
ferent designers. We extend hardware skeletons with rout-
ing information. An extended skeleton provides scheduling,
placement, and routing algorithms for a class of problems
that have similar structures. With composition operations,
complex skeletons can be built from simple ones.

In future work, we will address each of the specific tool-
chain compilers in detail.
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