A Heterogeneous Quantum Computer Architecture

Invited Paper

X.Fu, L.Riesebos, L.Lao, C.G.Almudever,

F.Sebastiano, R.Versluis, E.Charbon, K.Bertels

QuTech, Delft University of Technology, the Netherlands
x.fu-1@tudelft.nl, L.Riesebos@student.tudelft.nl,

{L.Lao, C.GarciaAlmudever-1, F.Sebastiano,

ABSTRACT

In this paper, we present a high level view of the heteroge-
neous quantum computer architecture as any future quan-
tum computer will consist of both a classical and quantum
computing part. The classical part is needed for error correc-
tion as well as for the execution of algorithms that contain
both classical and quantum logic. We present a complete
system stack describing the different layers when building a
quantum computer. We also present the control logic and
corresponding data path that needs to be implemented when
executing quantum instructions and conclude by discussing
design choices in the quantum plane.

Categories and Subject Descriptors

C.1 [Computer systems organization]: Quantum com-
puting; B.10 [Hardware|: Quantum error correction and
fault tolerance

Keywords

Quantum Computer (Micro-)architecture

1. INTRODUCTION

Research on quantum computing started in 1982 when
Richard Feynman suggested to use a quantum system to
simulate another quantum system [11]. The basic idea is to
exploit two fundamental phenomena of quantum mechan-
ics, superposition and entanglement, providing exponential
compute capacity, as will be explained later, such that quan-
tum computers can solve some class of problems that are
intractable by classical computers [27].

Superposition A classical bit has two exclusive states,
0 or 1 and can only be in one state at any point in time.
In contrast, the elementary unit of quantum computers, the
quantum bit or qubit, can reside not only in a single basis
state |0) or |1) but also in a superposition of both states,

Permission to make digital or hard copies of all or part of this work for per-
sonal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than the author(s) must be honored. Abstract-
ing with credit is permitted. To copy otherwise, or republish, to post on
servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from Permissions@acm.org.

CF’16, May 16-18, 2016, Como, Italy

Copyright is held by the owner/author(s). Publication rights licensed to
ACM.

ACM 978-1-4503-4128-8/16/05...$15.00

DOI: http://dx.doi.org/10.1145/2903150.2906827.

R.Versluis, E.Charbon, K.lL.m.Bertels@tudelft.nl}

[¥) = «|0) + B|1). a,B € C are probability amplitudes
that satisfy |a|>+|3]? = 1. |a|® and |B]? represent the prob-
ability of getting the measurement result +1 or —1, corre-
sponding to states |0) or |1) respectively, when measuring
the qubit in the computational basis. The act of measur-
ing the qubit will project the state of the qubit onto one of
the basis states, implying that a quantum state cannot be
measured directly without losing the stored information.

Entanglement In classical computing, a system com-
posed by n classical bits can only store and process one
of the 2™ possible states at a time. However,in quantum
computing multiple qubits can be combined, resulting in
a new state that is a superposition of all 2" possible states
|) =ao|0---00)+ai |0---01)+- - -+agn_1|1...11), where
a; € C,Y |a;)? = 1. Entanglement is a special case of such
combination meaning that the combined qubit state can-
not be decomposed into separate states. When applying a
(quantum) operation on those combined qubits, the opera-
tion is applied on those 2" possible states at the same time.

The exponential large state space offered by superposition
and entanglement and a universal set of quantum operations
are the foundation for the exponential speedup of a quantum
computer.

Even though the potential of quantum computing is huge,
the achilles heel of quantum technology is the fragility of
the qubits. Through interaction between the qubits and the
environment, the information of qubits leaks to the environ-
ment, called decoherence. The qubits’ fragility is therefore
one of the main challenges for building and using a quan-
tum computer as this behaviour causes errors during com-
putation. Quantum error correction (QEC) mechanisms are
needed to make quantum computing fault-tolerant and is
therefore a key component of any quantum computer archi-
tecture, as will be discussed in section 3.

The challenges to build a circuit-model based quantum
computer - called the standard universal quantum computer-
are huge. One of the main physics challenges is to increase
the number of qubits per chip that can be entangled as well
as to make their lifetime longer and the operation fidelity
higher. The engineering challenges focus on the technology
necessary to provide high speed control logic in a way which
is scalable and flexible. This paper focuses on the architec-
tural and system design challenges !. The main contribu-
tions of the paper are the following:

e This paper provides the first systematic discussion of

!This work is funded by Intel in the context of the QuTech-
Intel collaboration.

the functionality that fills the gap between algorithms
and the quantum physical layer;

e To this purpose, a multi-layered system stack for a
quantum computer is defined;

e A heterogeneous micro-architecture is presented for
the control logic and corresponding data path based
on a real experimental quantum device [32];

e We discuss how such an architecture can be made as
technology independent as possible and define a hard-
ware mechanism that substantially reduces the code-
size of the executable and reduces the execution over-
head.

The paper is organized as follows. We begin by introduc-
ing related research in Section 2 followed by the basic idea
of quantum error correction in Section 3. Then we discuss
the different system layers of a quantum computer in section
4. In section 5, we introduce the classical architecture that
provides the necessary support for the execution of quan-
tum instructions with corresponding error correction. We
conclude the paper by briefly discussing the architectural
design choices that also need to be made for the quantum
plane.

2. RELATED RESEARCH

The first quantum algorithm was proposed by David Deu-
tsch in 1985 along with the Quantum Turing Machine [9].
A lot of work has been done since then and nowadays we
can find more than 50 basic quantum algorithms [37]. The
most representative example of a quantum algorithm is the
famous Shor’s Factoring algorithm [34] that is used to fac-
torize a very large number. It is the first quantum algorithm
that has an application to real world problems, e.g. decryp-
tion, and shows exponential speed up over its classical coun-
terparts. However, Shor’s algorithm requires millions if not
billions of physical qubits for factorizing big numbers [12].
That is why it becomes increasingly appealing to investigate
quantum algorithms with low number of qubits, such as the
variational eigenvalue solver [40].

In terms of QEC, the first quantum error correction code
(QECC) called Shor’s code was proposed by Peter Shor in
1995 [35]. Since then, many other codes have been proposed
such as CSS codes [7]. In 1997, Kitaev introduced the idea
of topological methods for implementing QEC [22], forming
the basis of Surface Code [12]. Other promising topological
codes are topological subsystem codes and color codes [3,5].

Since the ground-breaking experimental work of Haroche
and Wineland demonstrating the measurement and manip-
ulation of individual quantum systems [38], different quan-
tum technologies have been investigated such as quantum
dots [1], trapped ions [26], superconductors [8, 21, 32] and
photons [42]. Current state-of-the-art quantum chips con-
tain around 10 qubits. In the rest of the paper, we assume
superconducting qubits given its potential for scalability.

Along with the progress in superconducting quantum chips,
classical control in the experiment has been advancing from
simple pulse generation by various AWGs and digitizers to
customized devices for feedback control [32]. However, these
control schemes suffer from low speed feedback loops and
limited scalable control logic. No comprehensive solution
with a scalable and flexible (micro-)architecture has been
proposed yet.

Several quantum programming languages [15, 28, 33, 41]

and compilers for e.g. circuit decomposition and reversible
circuit design [19,31,41] have been developed.

Few papers have tried to formulate in a systematic way
what the different components or layers are of a quantum
computer. Van Meter et al. [39] proposed a high level view
consisting of related research domains rather than an im-
plementable architecture. Jones et al. [20] defined a layered
control stack of a quantum computer architecture but fo-
cuses more on the gate abstractions rather than the archi-
tectural support.

3. QUANTUM ERROR CORRECTION

As we already mentioned, the main handicap of quantum
technology is its fragility. First, the coherence time of qubits
is extremely short. For example, superconducting qubits
may lose its information in tens of microseconds [8,32]. Sec-
ond, quantum operations are unreliable, error rate around
0.1% [21]. It is therefore inconceivable to think about build-
ing a quantum computer without error correction.

QEC is more challenging than classical error correction
because of the following: 1) unknown quantum states can-
not be copied (no-cloning theorem), 2) errors are continuous
and 3) measurement may destroy the information stored in
qubits.

The basic idea of QEC techniques is to use several phys-
ical imperfect qubits to compose more reliable units called
logical qubits based on a specific quantum error correction
code [4,7,14,35,36] - e.g. surface code [12]. Such encod-
ing does not need to clone the qubit state, as it is done by
entangling several qubits called data qubits. Furthermore,
possible errors in the logical qubit are detected by measuring
some ‘helper’ qubits called ancilla qubits. In this way, the
information in data qubits can be preserved. Measurement
forces continuous errors into discrete errors and allows iden-
tifying whether there are errors, and if yes what kind (bit-
flip, phase-flip or both) and in which qubit(s) the error(s)
are. This kind of measurement is called error syndrome mea-
surement (ESM). Since quantum errors accumulate as time
elapses, ESM has to be done repeatedly.

It is worth noting that errors do not need to be corrected
immediately. Instead, errors are tracked in classical logic
using a technique called Pauli Frame [23]. Quantum oper-
ations and measurements are translated by the Pauli Frame,
preserving the correctness of quantum computation.

One of the most promising and currently very popular er-
ror correction techniques for quantum systems is surface
code [12]. In surface code, qubits are arranged in a reg-
ular 2D lattice which only enables nearest-neighbour (NN)
interaction (Figure 1). The NN lattice architecture is one
of the most-promising structure from theory to experiment
[8,10,17,21,32]. Surface code has an error threshold rate of
~ 1% [12] meaning that it can tolerate a physical error rate
up to 0.01.

In Figure 1, open circles represent data qubits and green
and red filled circles correspond to Z and X ancilla qubits,
respectively. In surface code, the ESM is done by performing
the circuits shown in Figure 2. They can detect phase-flip
errors (through the X ancilla) and bit-flip errors (through
the Z ancilla). As we mentioned, these circuits will be re-
peatedly applied during computation. The interval between
the starting point of two consecutive ESM is called a Surface
Code Cycle (SC cycle). In surface code, the measurement
results +1/ — 1 coming from several rounds of ESM, are

X

D1
DO
D4
D3

Figure 1: Implementation of the surface code 17, also called
Ninja star.

o[H H z {1]10 jppea(r
) D2
& D1
D D5
VARY D4
U

(b)

—

a)

Figure 2: ESM circuit for (a) X ancilla (b) Z ancilla with
surrounding data qubits, taking as example an X and Z an-
cilla as shown in Figure 1.

then forwarded into classical logic where errors are iden-
tified (quantum error detection, QED) by using decoding
algorithms, such as Blossom algorithm [13].

In this paper, we restrict our discussion to planar sur-
face code. An important metric is the code distance which
is the minimum number of physical operations required to
perform a logical operation, or the length of the shortest er-
ror chain that is undetectable [12]. The distance-3 surface
code is shown with a yellow frame in Figure 1. It contains
17 qubits, nine of them are data qubits and eight of them
are ancilla qubits. It is also called a Ninja star due to their
similarity in shape. The implementation of logical opera-
tions for the Ninja star is listed in Table 1. For instance, a
logical X operation is performed by applying three physical
X operations in qubits 0, 4 and 8, X0 X4 Xs.

QEC allows fault tolerant computation and is thus a fun-
damental part of any quantum computing system. The
drawback is that it dramatically increases the number of
physical qubits needed for running any quantum algorithm.
It also creates a large control overhead and requires a con-
tinuous and close interaction between the quantum chip and
the classical platform that makes the quantum computing
process more complex in terms of integration, architecture,
and run-time control as will be described in the following
sections.

4. QUANTUM SYSTEM STACK

A quantum computer will always consist of both quan-
tum and conventional computing components because of the
following two reasons: the quantum algorithms and con-
sequently the quantum applications that will be executed,
consist of both classical as well as quantum parts and will
thus be executed by their respective computing blocks [27].

Table 1: Logical Operations for Ninja Star

Logical | Physical Implementation
X/ Z | XoXuXs | ZoZyZs
H 1. HyH,--- Hs
2. Z / X ancilla turn into X / Z ancilla
1. Measure all data qubit with result M;|i—o,1,...8
2. Perform 3 rounds of ESM only for Z ancilla.
Msmt ;
3. Correct errors in M;
4. Logical measurement result M = H?:o M;
1. Reset all data qubits into the |0) or |1) state.
Init 2. Perform 3 rounds of ESM.
3. Correct errors appearing in step 1 & 2.
4. The final logical state is |0z) or |11).
T State inject, see [18].
CNOT | Perform a CNOT on each data qubits ¢; of the
target Ninja star with each controlled by ¢; of the
control Ninja star.

The second reason is that, as is explained in Section 3, a
quantum computer requires very close monitoring and, if
necessary, correction by classical logic. Figure 3 provides
a high-level view of the quantum system stack consisting of
the following layers. The top layers represent the algorithms
for which specific language constructs and compilers need to
be developed such that the algorithms can exploit the un-
derlying quantum hardware. Here the qubits are defined as
logical qubits. Figure 4 depicts the compiler infrastructure
consisting of a conventional host compiler and a quantum ac-
celerator compiler. The former compiles the classical logic
and the latter will produce the quantum circuits. The quan-
tum compiler will perform quantum gate decomposition, re-
versible circuit design, and circuit mapping and translates
the logical quantum operations to a series of physical op-
erations. As represented by the third dimension in the fig-
ure, the logical-to-physical quantum instruction translation
is driven by choices regarding the error correction encoding
scheme for the logical qubits.

The next layer is the Quantum Instruction Set Architec-
ture (QISA) which is the dividing line between hardware
and software. The algorithm designer and programmer are
offered a logical instruction set with the possibility to opt for
certain encoding schemes, thus exposing the relevant error
correction functionality. As stated above, the compiler will
translate logical instructions into the physical instructions
that belong to the QISA and for which architectural sup-
port is provided. Examples of physical instructions in the
QISA are initialization, measurements and quantum gates
such as Hadamard and CNOT.

The quantum execution (QEX) block will execute the
quantum instructions that are generated by the compiler
infrastructure. It will also provide the necessary hardware
support such as the insertion of ESM circuits or the use of
Pauli Frames for software based error tracking. These op-
erations are finally sent to the quantum-classical interface,
which will apply the proper electrical signals to the quantum
chip. Note that the quantum-classical interface is responsi-
ble for all the conversions between the analog qubit plane
and the digital layers in the system stack. The QEC layer,
is responsible for the error detection and correction. It will
receive from the quantum-classical interface layer the ESM
data which it will process to identify possible errors. Then,

Q Algorithm

Programming Paradigm & Languages
Runtime Compiler

Q Instruction Set Architecture

Q Arithmetic

Bacon-Shor code

2
8
3
3
8
5
S
8

Surface code

QEX QEC

Quantum-Classical Interface{;L

Quantum Chip &

Figure 3: Overview of quantum computer system stack

Pragma
Code

7

l« Quantum Accelerator Compiler
} Logical Q Circuit
Reversile Gt | decomposition & | &
9 optimization &
8
Logical QASM 2
Host Compiler Logical Circuit Mapping (with schedule)
FT ion of Logical Circuits e
Physical Circuit Mapping §
(With schedule) &
. . ¢
Physical QASM(virtual Q addresses)

| Linker-Loader |

Figure 4: Compiler infrastructure

it will make the required corrections by updating the Pauli
frame or by sending the appropriate corrective operations
when required.

It is worth noting that the classical-quantum interface to-
gether with the quantum chip are technology dependent rep-
resented by the star symbol in the figure. In the next sec-
tion, we will further specify from where on the architecture
is technology independent. Defining a layered system stack
allows to develop the functionality of the quantum computer
as independently as possible from other layers and indepen-
dent of the underlying quantum technology.

S. CLASSICAL CONTROL

This section describes at a high level the micro-architecture
for a quantum computer to support the execution of the
physical quantum instructions. The overall architecture, as
shown in Figure 5 is heterogeneous where the rightmost
block of the figure represents the quantum chip (QUBE)
and the other blocks represent the classical logic needed to
control the quantum chip. As was explained above, a lot of
conventional processing is necessary to provide the required
error correction feedback after each quantum operation. In
addition, quantum algorithms will always be a mixture of
classical logic and quantum routines which can finally be
executed on the quantum chip. In the following paragraphs,
we discuss the functional blocks that are needed to execute

instructions in QISA. These blocks are based on the control
logic as developed for the transmon processor as described
in [32].The green parts are underlying technology depen-
dent wave control modules. Digital-to-Analog Converters
(DAC) are used to generate analog waveforms to drive the
quantum chip and Analog-to-Digital Converters (ADC) to
read the measurement analog waveform. They receive or
send signals to the Flux and Wave Control Unit and the
Measurement Discrimination Unit. The Physical Execution
Layer (PEL) serves as middle layer between the Quantum
Control Unit (QCU) and the wave control modules, making
the Quantum Control Unit technology-independent. The
QCU decodes the instructions belonging to the QISA and
performs the required quantum operations, feedback con-
trol and QEC. The QCU can also communicate with the
host CPU where classical computation is carried through
the eXchange Register File (ERF).

5.1 Quantum Control Unit

We assume that one binary is loaded in memory and the
instruction fetch unit fetches the instructions. Based on the
opcode of the instruction, the arbiter sends the instruction
either to the host CPU or to the QCU. In the remainder
of the text, we focus on the architectural support for the
execution of quantum instructions and not on the execution
of instructions on the classical CPU. As explained above,
the compiler maps a circuit using logical and virtual qubit
addresses for the logical and physical qubits respectively.
Instructions from the Quantum Instruction Cache are first
address-translated by the Q-Address Translation module.
This means that the compiler-generated, virtual qubit ad-
dresses are translated into physical ones. This is based on
the information contained in the Q Symbol Table which pro-
vides the overview of the exact physical location of the log-
ical qubits and provides information on what logical qubits
are still alive.

QO Symbol Table

The Qubit Symbol Table, with a sample entry in Table 2,
provides the following information:

e The mapping of logical qubits to the virtual and physi-
cal addresses of the physical qubits (Physical/ Virtual/
Logical QID and Phys. Addr field);

e What physical qubits are available to be allocated to
a logical qubit (valid field);

e Bookkeeping of operations for every round of error syn-
drome measurement (Associated Data Qubit field).

e The type of qubit: data qubit, Z ancilla or X ancilla
(Type field).

Runtime information about the state of the logical qubits
is essential for logical feedback control and high execution
speed. An example of algorithms requiring such feedback
facility is Shor’s Factoring algorithm where the number of
qubits can be substantially reduced by mapping the inverse
Quantum Fourier Transform on n qubits into multiple Binary-
Controlled (BC) Z-Rotations on a single qubit at n different

Table 2: An example of Q Symbol table

Associated
Data Qubit
1,0, 4,3 Z

Valid Phys. | Phys. | Virtual | Logical
al QID | Addr QID QID
T 11 (3, 3) 22 T

Type

Instruction
Fetch

eXchange
register fi

HOST CPU

Msmt Logic

Quantum : _nwmawﬂo”_ ﬁ02:3_
Instruction

FLUX Queue 1 ‘
FLUX Queue 2 .

FLUX Queue n .

AWG Queue n .

Execution
Controller

Figure 5: Overview of Quantum Computer Micro-architecture

time points [2]. Also, fast ESM circuit generation and QED
is better done in hardware than software, which requires
layout information of logical qubits in surface code.

Execution Controller

The Execution Controller can be seen as the brain of the
Quantum Control Unit. The Execution Controller then de-
codes the various instructions that are fetched:

e Physical gate/measurement/reset: The Execu-
tion Controller sends these instructions to the Pauli
Arbiter for further processing.

e Update Q Symbol Table: based on a series of in-

structions such as the ones performing a logical Hadamard

or a logical measurement, the Q Symbol Table needs
to be updated. Also for deallocating qubits such an
update is needed.

e ECC slot. The Execution Controller sends this in-
struction to the QEC cycle Generator, which is trig-
gered to generate a round of error syndrome measure-
ment circuit based on Figure 2.

QEC Cycle Generator

As far as error correction is concerned, the necessary ESM
instructions for the entire qubit plane are added at run-
time by the QEC Cycle Generator, based on the information
stored in QQ Symbol Table. In Figure 6, we plot the number
of instructions as a function of the number of physical qubits.
The top plot shows how many ESM instructions are needed
as generated by the compiler and the bottom plot shows the
substantial reduction in codesize through HW generation.
In addition, it reduces substantially the datapath for the
execution of these instructions.

QED Unit

The responsibility of the QED Unit is to detect errors based
on ESM results. The decoder will use decoding algorithms
such as Blossom algorithm. QED starts to work only when
d rounds of error syndrome are collected, where d is the
Surface Code distance.

108
10'7 e
108/
1015 I

101 AT

The number of instructions, Nm5

101
S— Normal micro-architecture
~+— Proposed micro-architecture

2 4 6 8 10 12 14
The total number of physical qubits, NP (Millions)

10'2
0

Figure 6: Reduction of number of instructions through HW
support

The Pauli Frame Unit and Pauli Arbiter

The Pauli Frame mechanism [23] allows us to classically
track Pauli errors without physically correcting them. The
Pauli Frame Unit manages the Pauli records for every data
qubit. The Pauli Arbiter receives instructions from the Exe-
cution Controller and the QED Unit. It skips all operations
on ancilla qubits and sends them directly to the PEL, re-
gardless of the operation type. Operations on data qubits
are processed as follows based on instruction type:

e Pauli gate: The Pauli Arbiter sends this instruction
directly to the Pauli Frame Unit, and no operation is
sent to the PEL. The Pauli Frame Unit updates the
Pauli records of the corresponding data qubit(s).

e Clifford gate: The Pauli Arbiter sends the operation
to both PEL and the Pauli Frame Unit. The Pauli
Frame Unit updates the Pauli records accordingly.

e Non-Clifford gate: When executing a non-Clifford gate,
the involved data qubits need to be physically up-
dated (corrected) by applying the Pauli gate informa-
tion stored in the PF unit. The PF Logic unit will
generate the necessary instructions and sends them to
the arbiter who the forwards them to the PEL, fol-
lowed by the non-Clifford instructions.

e Measurement: The Pauli Arbiter sends this instruction
to the PEL to trigger physical qubit measurements.
After the measurement results comes back from the
PEL, they are translated based on the Pauli records
for the target qubits. The translated results are then
sent to the Logic Measurement Unit for further pro-
cessing. Finally, the Pauli Frame Unit removes the
Pauli records for the target qubits.

Logical Measurement Unit

The function of the Logical Measurement Unit is to combine
the data qubit measurement results into a logical measure-
ment result for a logical qubit. Once the Execution Con-
troller receives a logic measurement instruction on a speci-
fied logical qubit, it notifies the Logical Measurement Unit
to wait for measurement results to arrive from the Measure-
ment Discrimination Unit.

Based on this information the Pauli Frame Unit updates
the Pauli records. After all translated data qubit measure-
ment results come, the Logical Measurement Unit computes
the logical measurement result. The QED Unit also con-
tributes to this procedure by identifying possible errors that
may appear during the execution of quantum operations.
After that, the Logical Measurement Unit sends the logical
measurement result to the ERF, where it can be used in Bi-
nary Control by Execution Controller, or picked up by the
host processor and used e.g. in branch decisions.

5.2 Physical Execution Layer

Physical Microcode Unit

The next hardware block is the Physical Microcode Unit.
There are three main reasons to introduce a microcoded ap-
proach. Each quantum technology will have its own way
to perform the different (universal) quantum gates. When
defining an architecture, it should be as independent as pos-
sible of any particular technology and using micro-instructions
is one of way of isolating the technology impact. The second
and highly related reason is that not all physical quantum

gates can be directly applied on the qubits but rather re-
quire an (sometimes approximating) sequence of elementary
operations. In addition, the microcode approach allows that
these sequences are easily changed as technology evolves. As
an example, consider the Hadamard gate that needs to be
applied on transmon qubits. A Hadamard gate can be de-
fined as state rotations around the X-axis or Y-axis for w
or /2 angles or H = iR.(m)Ry(m/2). As these rotations
are well defined for transmon superconducting qubits, the
microcode for the transmons Hadamard gate will therefore
consist of the sequence of these two rotations. When the un-
derlying quantum technology changes, it suffices to change
the microcode unit to enable the new technology.

The Q Control Store in the Physical Microcode Unit gen-
erates, for a particular physical quantum instruction, the se-
quence of micro-instructions (or pulses) with detailed timing
information based on the underlying technology. The timing
is relative to a signal generated by the Surface Code Clock
indicating the starting point of the SC cycle the physical op-
erations should lie in. The output from the Q Control Store
is first buffered in the Quantum Microcode Buffer (QMB)
before being sent to the Flux and AWG Queues for execution
in the form of the tuple (codeword, timing). The codeword
identifies the specific AWG and the timing is relative to the
SC trigger.

Flux and Wave Control Units

The Flux Control Unit puts the qubits in a certain frequency
by tuning the bias flux strength and the Wave Control Unit
sends the pulse sequence received from the Physical Mi-
crocode Unit to apply operations on qubits. Flux Queues
store the flux control information, which is used to tune the
qubit and cavity frequency at run-time. The Flux Control
Unit works in the same way as the Wave Control Unit.

Feedback Control Unit

Physical feedback is needed for two reasons. First, when
initialising a logical qubit, an active physical qubit reset is
performed (as opposed to a passive one wich implies waiting
for the qubit to relax). Second, recent experiments [6] show
that feedback on ancilla qubits can improve the overall QEC
quality, which is essential to quantum computing.

The QMB sends the microcode to the Feedback Control
Unit.After the measurement on the target qubit is done, the
Feedback Control Unit bypasses the AWG or Flux Queues
and triggers directly the Flux and Wave Control Unit to per-
form certain operations based on the physical measurement
result.

Measurement Discrimination Unit

After sending a measurement pulse to the quantum circuit,
it is required to discern the measurement result from the
analog waveform reflected by the quantum circuit to finish a
physical measurement. The ADC unit converts the reflected
analog waveform into a digital signal. The Measurement
Discrimination Unit then removes the offset in the digital
signal, and integrates it with a particular set of weights.
The results from the integration are then compared with
the integration thresholds after some linear transformation
to get the final measurement result, which are either +1s or
-1s.

6. QUBE: THE QUBIT PLANE

Q buffer
L=,
(4482
44D
T3 3
T 1 “Ancilla factory! 1
TITTITT

Figure 7: Example QUBE architecture.

Finally, we discuss the way the quantum plane can be
organised and what infrastructure is necessary for fast exe-
cution and error correction. A first point that needs to be
addressed is whether or not a Von Neumann like architecture
should be implemented in the quantum plane as advanced
by many papers [24,29,30]. Just like with classical Von
Neumann architectures, the quantum plane is then split in
in specialised regions for processing and communication and
others to store quantum states. There are two main argu-
ments to not go in that direction: first, the computational
paradigm of quantum logic can be seen as the dual of the
classical one. The qubit states represent the information as
it has been computed up to now and all future operations are
applied on these qubits. In principle, there is no movement
required of the qubit states to an ALU like component as
the quantum gates are directly applied on the qubits. So the
logic is streaming through the qubits rather than the oppo-
site. A second reason is that by introducing a Von Neumann
architecture, we also introduce all the parallelisation chal-
lenges, such as the memory wall issue, that have proven to
be very difficult to solve for conventional architectures.

However, as shown in Figure 7, it may still be useful to
create specialised regions, for instance to transport qubit
states to different parts of the quantum plane. Ancilla fac-
tories may also be necessary to create, e.g. EPR pair used
for teleporting states [25] and special ancilla states used for
implementing fault-tolerant T and S gates [12]. What func-
tional specialisation of the qubit is necessary and how rigid
or flexible that should be is still an open issue. The two
extreme views are that the qubit plane can be seen as com-
pletely undefined for which an ad hoc infrastructure will be
generated, or that the architecture is completely pre-defined
as proposed in [16,30]. In this sense, it is important to inves-
tigate what the trade-offs are for both choices given different
benchmarks or applications.

7. CONCLUSION

In this paper, we presented the first systematic description
of a heterogeneous architecture for a quantum computer and
we defined the system layers of such a computing platform.
We discussed the different system layers that are needed to
build a quantum computer and we have described the data-
path of quantum instructions as far as execution and error
correction are concerned. We also showed how hardware
choices can substantially reduce not only the codesize but

also the datapath for these ESM instructions.

Future work involves not only the development of the dif-
ferent hardware blocks that were described but also the de-
velopment of a digital quantum processor such that the con-
trol logic can be easily tested on a number of qubits which
is larger than current day devices can offer.

8.
1]

[15]

[16]

[17]

[18]

[19]

REFERENCES

T. A. Baart et al. Single-spin ccd. Nature
nanotechnology, 2016.

S. Beauregard. Circuit for shor’s algorithm using 2n-+
3 qubits. arXiv preprint quant-ph/0205095, 2002.

H. Bombin and M. Martin-Delgado. Topological
computation without braiding. Phys. Rev. Lett.,
98(16):160502, 2007.

H. Bombin and M. A. Martin-Delgado. Topological
quantum distillation. Phys. Rev. Lett., 97(18):180501,
2006.

S. Bravyi, G. Duclos-Cianci, D. Poulin, and

M. Suchara. Subsystem surface codes with three-qubit
check operators. arXiv:1207.1443, 2012.

C. Bultink et al. In preparation, 2016.

A. R. Calderbank and P. W. Shor. Good quantum
error-correcting codes exist. Phys. Rev. A, 54(2):1098,
1996.

A. Corcoles et al. Demonstration of a quantum error
detection code using a square lattice of four
super-conducting qubits. Nature Comm., 6, 2015.

D. Deutsch. Quantum theory, the church-turing
principle and the universal quantum computer. In
Proc. of the Royal Society of London A: Math.,
Physical and Engineering Sciences, 1985.

D. P. DiVincenzo. Fault-tolerant architectures for
superconducting qubits. Physica Scripta,
2009(T137):014020, 2009.

R. P. Feynman. Simulating physics with computers.
Intern. J. of Theoretical physics, 21(6):467-488, 1982.
Fowler et al. Surface codes: Towards practical
large-scale quantum computation. Phys. Rev. A,
86(3):032324, 2012.

Fowler et al. Towards practical classical processing for
the surface code: Timing analysis. Phys. Rev. A,
86(4):042313, 2012.

D. Gottesman. Class of quantum error-correcting
codes saturating the quantum hamming bound. Phys.
Rev. A, 54(3):1862, 1996.

A. S. Green et al. An introduction to quantum
programming in quipper. In Reversible Computation,
pages 110-124. Springer, 2013.

J. Heckey et al. Compiler management of
communication and parallelism for quantum
computation. In Proc. of the 20th Int. Conf. on
Architectural Support for Prog. Languages and Oper.
Systems, pages 445-456. ACM, 2015.

C. D. Hill et al. A surface code quantum computer in
silicon. Science advances, 1(9):e1500707, 2015.
Horsman et al. Surface code quantum computing by
lattice surgery. New Journal of Physics,
14(12):123011, 2012.

A. JavadiAbhari et al. Scaffcc: A framework for
compilation and analysis of quantum computing

20]

(21]

(22]
23]

(24]

25]

[26]

27]

28]

29]

30]

(31]

(32]

(33]

(34]

35]

(36]

37]
(38]

(39]

(40]

[41]

programs. In Proc. of the 11th ACM Conference on
Computing Frontiers, page 1. ACM, 2014.

N. C. Jones et al. Layered architecture for quantum
computing. Phys. Rev. X, 2(3):031007, 2012.

J. Kelly et al. State preservation by repetitive error
detection in a superconducting quantum circuit.
Nature, 519(7541):66-69, 2015.

A. Y. Kitaev. Fault-tolerant quantum computation by
anyons. Annals of Physics, 303(1):2-30, 2003.

E. Knill. Quantum computing with realistically noisy
devices. Nature, 434(7029):39-44, 03 2005.

M. Mariantoni et al. Implementing the quantum von
neumann architecture with superconducting circuits.
Science, 334(6052):61-65, 2011.

Meter and other. Arithmetic on a distributed-memory
quantum multicomputer. ACM J. on Emerging
Technologies in Computing Systems, 3(4):2, 2008.

T. Monz et al. 14-qubit entanglement: Creation and
coherence. Phys. Rev. Lett., 106(13):130506—, 03 2011.
M. A. Nielsen and I. L. Chuang. Quantum
Computation and Quantum Information. Cambridge
university press, 2010.

B. Omer. Structured quantum programming.
Information Systems, page 130, 2003.

M. Oskin, F. T. Chong, and I. L. Chuang. A practical
architecture for reliable quantum computers.
Computer, 35(1):79-87, 2002.

W. otherss. A fault tolerant, area efficient architecture
for shor’s factoring algorithm. ACM SIGARCH
Computer Architecture News, 37(3):383-394, 2009.

A. Paler, I. Polian, K. Nemoto, and S. J. Devitt. A
compiler for fault-tolerant high level quantum circuits.
arXiv:1509.02004, 2015.

D. Riste, S. Poletto, M. Z. Huang, et al. Detecting
bit-flip errors in a logical qubit using stabilizer
measurements. Nat Commun, 6, 04 2015.

J. W. Sanders and P. Zuliani. Quantum programming.
In Mathematics of Program Construction, pages
80-99. Springer, 2000.

P. W. Shor. Algorithms for quantum computation:
Discrete logarithms and factoring. In Foundations of
Computer Science, 1994, 35th Annual Symp. on,
pages 124-134. IEEE, 1994.

P. W. Shor. Scheme for reducing decoherence in
quantum computer memory. Phys. Rev. A,
52(4):R2493, 1995.

A. Steane. Multiple-particle interference and quantum
error correction. In Proceedings of the Royal Society of
London A: Math., Phys. and Eng. Sciences, 1996.

J. Stephen. Quantum algorithm zoo. list available at
http://math.nist.gov/quantum/zoo, 2011.

Measuring and manipulating individual quantum
systems, 2012.

R. Van Meter and C. Horsman. A blueprint for
building a quantum computer. Comm. of the ACM,
56(10):84-93, 2013.

D. Wecker, M. B. Hastings, and M. Troyer. Towards
practical quantum variational algorithms. arXiv
preprint arXiw:1507.08969, 2015.

D. Wecker and K. Svore. Liqui|>: A software design
architecture and domain-specific language for quantum

computing. arXiv preprint arXiw:1402.4467, 2014.

[42] X.-C. Yao et al. Experimental demonstration of
topological error correction. Nature,
482(7386):489-494, 02 2012.

