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Abstract—Next Generation Sequencing techniques have dra-
matically reduced the cost of sequencing genetic material, resul-
ting in huge amounts of data being sequenced. The processing
of this data poses huge challenges, both from a performance
perspective, as well as from a power-efficiency perspective.
Heterogeneous computing can help on both fronts, by enabling
more performant and more power-efficient solutions.

In this paper, power-efficiency of the BWA-MEM algorithm,
a popular tool for genomic data mapping, is studied on two
heterogeneous architectures. The performance and power-
efficiency of an FPGA-based implementation using a single
Xilinx Virtex-7 FPGA on the Alpha Data add-in card is
compared to a GPU-based implementation using an NVIDIA
GeForce GTX 970 and against the software-only baseline system.
By offloading the Seed Extension phase on an accelerator, both
implementations are able to achieve a two-fold speedup in
overall application-level performance over the software-only
implementation. Moreover, the highly customizable nature
of the FPGA results in much higher power-efficiency, as the
FPGA power consumption is less than one fourth of that of
the GPU. To facilitate platform and tool-agnostic comparisons,
the base pairs per Joule unit is introduced as a measure of
power-efficiency. The FPGA design is able to map up to 44
thousand base pairs per Joule, a 2.1x gain in power-efficiency
as compared to the software-only baseline.
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I. INTRODUCTION

Next Generation Sequencing (NGS) techniques dramatically
decrease the cost of sequencing genetic material. The cost to
sequence one complete human genome is rapidly approaching
the important $1,000 mark [1]. As a result of these falling
costs, the production of genetic data is surging and is projected
to rival, if not overtake, other Big Data fields such as streaming
video services and astronomy [2]. A single run on a state-of-
the-art X Ten sequencing machine [3] can generate up to 1.2
TB of data, which in turn requires multiple days to process,
even on a large computing cluster. The extreme scale of
data and tremendous computing efforts involved in processing
this data necessitates the use of high performance computing
solutions to face this challenge. Heterogeneous computing,
and in particular reconfigurable computing, offers a large
promise as a solution that enables both high performance
and power-efficiency compared to traditional computing tech-

niques. Power-efficiency is becoming at least as important as
raw performance, as power consumption is an important driver
to overall data center cost.

NGS data is typically processed by a complex pipeline
of algorithms. In the case of DNA NGS data, the short
reads as produced by the sequencer are first mapped onto a
reference genome. Then, this output is sorted and duplicates
are marked. Finally, mutations in the genetic material as
compared to the reference are found during a variant calling
stage. Only at this stage does the raw data become usable for
further downstream analysis, for example by researchers or
medical professionals. To illustrate the immense computational
requirements, processing such a data set can easily require
multiple days, even on a large cluster.

BWA-MEM is a Burrows-Wheeler Alignment based tool for
mapping short reads onto a reference genome [4]. Although
many other alignment tools exist (examples include [5], [6]),
BWA-MEM is the de facto standard for alignment mapping
and is part of the popular BWA-MEM/GATK pipeline, used
in organizations around the world [7]. In the example above,
BWA-MEM contributes about 36% to the overall processing
time, making up a significant portion of the processing time
of the entire pipeline. Therefore, it is an important target for
acceleration to reduce the overall time, cost and energy of
processing NGS data sets.

Similar to other mapping tools, such as [5], BWA-MEM
operates using the Seed-and-Extend paradigm (see Figure 1).
For each read, seeds, exactly matching subsequences between
the read and the reference, are generated. Subsequently, each
seed is extended in both directions using an inexact matching
algorithm, similar to the popular Smith-Waterman dynamic
programming algorithm [8]. The highest scoring extended seed
is chosen as final alignment. The Seed Extension phase forms
a major bottleneck in the BWA-MEM algorithm, requiring
between 30%-50% of total execution time, depending on the
computing platform [9], [10]. For example, on the highly mul-
tithreaded IBM Power8 platform, the Seed Extension phase
requires almost 50% of overall execution time, allowing for
an up to two-fold performance improvement, whereas on the
Intel Core i7 platform, a performance improvement of up to
1.7x is possible. In this paper, accelerated implementations of
the BWA-MEM Seed Extension phase on the Intel Core i7



Fig. 1. BWA-MEM processes reads using the Seed-and-Extend paradigm: for each read, likely mapping locations on the reference are found by searching for
exactly matching subsequences between the read and the reference (seeds). Then, these seeds are extended in both directions using a Smith-Waterman-like
dynamic programming approach that allows for inexact matches. From all of these extended seeds, the best scoring alignment is selected.

platform are considered. However, the main idea is generally
applicable to other mapping applications as well.

The contributions in this paper include:
• A comparison of both performance and power-efficiency

of an FPGA-accelerated implementation to software-only
and GPU-based implementations.

• The introduction of the base pairs per Joule (bp/J) unit
as measure of power-efficiency, allowing for platform-
agnostic comparison of system-level power-efficiency on
genomic data sets.

The remainder of this paper is organized as follows. Related
work is discussed in Section II. Architectural details of the
FPGA and GPU implementations are provided in Section III.
The results on performance, scalability and power-efficiency
are given in Section IV. Then follows a discussion of the results
in Section V. The conclusions are given in Section VI.

II. RELATED WORK

A major part of BWA-MEM execution time is spent in the
Seed Extension phase. The inexact mapping algorithm used
is similar to the Smith-Waterman algorithm. This algorithm
has received much acceleration attention (e.g., [11], [12]).
However, for multiple reasons most implementation ideas are
not directly applicable to BWA-MEM, the main ones being:

• The highest speedup is generally obtained when per-
forming mapping of very long sequences that contain
thousands of bases, whereas NGS reads and BWA-MEM
are more focused towards the mapping of short reads of
at most a few hundred base pairs.

• For load balancing purposes, these implementations batch
alignments of similar length together. In the case of
BWA-MEM, this is impractical as the inexact mapping
calls are dynamically generated for alignments of varying
length, which makes the batching strategy inefficient due
to the large communication and temporary data overheads
this would require.

Although many accelerated Seed-and-Extend based map-
ping tools have been proposed (for example [13]), results from
these implementations are not directly comparable. In bioin-
formatics, exactness of results is critical, as larger population
studies can take several years to complete and intermediate
results need to be comparable. Even a change in version is of-
ten unacceptable. Note that BWA-ALN, for which accelerated
implementations do exist, is a different algorithm.

A kernel-level acceleration effort specific to the BWA-MEM
algorithm is reported in [14], where one of the BWA-MEM
kernels, the inexact matching phase, has been accelerated on
an FPGA for an up to 26x kernel-level speedup. However,
due to the above mentioned reasons, only the kernel-level
speedup is reported, and no overall application-level speedup
is mentioned. In our experience, accommodating the kernel
implementation into a full application is far from a trivial
task. The authors acknowledge that the significantly varied
input data would pose a challenge for the Smith-Waterman
algorithm, but disregard the additional challenges a full-
application implementation needs to face.

To our knowledge the only application-level accelerated
integrated implementations of BWA-MEM that exist are:
an FPGA-accelerated implementation of the Seed Extension
phase [15] achieving a 1.5x speedup, further improved in
[16] for an overall 2.6x speedup; and a GPU implementation
[9], further improved to achieve an up to 2x speedup [17].
The FPGA implementation used here builds on [15], and
a comparison of the implementation here is made to the
improved GPU implementation. This paper focuses on power-
efficiency, besides overall application performance, as for
many scenarios, such as processing in a large scale data center,
this is at least as important as absolute performance.

III. ARCHITECTURE DESIGN AND IMPLEMENTATION

In this section, first the BWA-MEM algorithm is briefly
described, along with the features that both the FPGA and
GPU implementations share. Then, the details of the FPGA-
accelerated implementation on the Alpha Data card are given.
Finally, details of the GPU implementation are briefly dis-
cussed (further details can be found in [17]).

The original BWA-MEM algorithm operates in a serial
fashion (refer to Figure 2). The input is processed in batches
of reads, that are processed one-by-one by two major ker-
nels: Seed Generation, where seeds (exactly matching sub-
sequences) are generated for each read, and Seed Extension,
where the generated seeds are extended allowing for inexact
matches. This process repeats itself until the input is ex-
hausted. These phases take full advantage of multithreading,
as reads are completely independent from each other and can
be processed in parallel. To improve the utilization of system
resources when using an accelerator, the BWA-MEM algo-
rithm has been reorganized into a fully pipelined organization.



Fig. 2. BWA-MEM processes the input reads one-by-one. For each read, the seeds are generated and then, these seeds are extended. To reduce communication
overhead, the accelerated implementations described here use an optimized program architecture, whereby work of multiple reads is batched together. First,
seeding is performed for a large group of reads. Then, such a batch is offloaded onto an accelerator that performs the Seed Extension. Its execution is
overlapped with work on the CPU. As long as the Seed Extension phase requires less time on the accelerator than the Seeding on the CPU, its execution
time is effectively ”hidden”.

Multiple reads are processed in groups, and the two phases are
executed in parallel and are overlapped. Thus, Seed Generation
executes simultaneously on the CPU with Seed Extension on
the accelerator, resulting in a large performance improvement.

A. FPGA Design and Implementation

The FPGA-accelerated BWA-MEM offloads the Seed Ex-
tension phase onto hardware (refer to Figures 1 and 2).
After seeds have been generated, they are transferred to the
FPGA on-board memory. Typically, a single read will result
in multiple seed locations on the reference genome being
found. Seeds that are mapped close together on the reference
genome are grouped into chains. Seeds are processed one-
by-one. Seed Extension for a seed can be skipped depending
on the result of previous extensions. On average only one
seed per chain requires extension. Moreover, the length of the
extension to be performed is dependent on the part of the read
that forms the seed. This interdependence between executions
makes this phase unsuitable for streaming and, therefore, the
FPGA performs both this control logic, as well as the inexact
mapping algorithm itself. The resulting mappings are stored
in on-board memory and transferred back to the host system.

The Seed Extension module design is based on the design
in [15]. The inexact mapping is similar to the Smith-Waterman
algorithm. To find the optimal mapping, a 2D similarity matrix
is filled. This is implemented as a systolic array, with anti-
diagonals of the matrix being calculated in parallel. Each
cycle, one processing element (or PE) of the systolic array
computes a value of the 2D similarity matrix. Hence, the
execution time is reduced from O(M× N) to O(M+N), where
M and N are the length of the reference and the read. This
is the reason why certain Smith-Waterman implementations,
at least for longer alignments, are able to achieve speedups
of several magnitude. In this paper, only short reads of up
to 150 base pairs are considered, which is the read length
of contemporary sequencers, such as the Illumina HiSeq X.
The minimum seed length for BWA-MEM is 19 symbols.
Therefore, each inexact mapping engine contains 131 PEs.
To improve utilization for shorter reads, early exit points as
described in [15] are implemented.

The implementation described here uses an Alpha Data
add-in card with a single Xilinx Virtex-7 FPGA (details
can be found in Section IV). A floorplan of the design is

shown in Figure 3. The design contains six modules that
are able to process the Seed Extension phase. Within each
module, the larger block contains the systolic array logic,
the smaller block is filled with control logic. Between the
six modules resides the logic that distributes reads over the
modules and is responsible for I/O. The rest of the area is
taken up by interconnection-related logic, such as the PCI-
Express interface and the memory controller.

A significant difference to the design in [15] and [16] is
the fact that the Alpha Data card used here contains only a
single Virtex-7 FPGA, whereas [15] and [16] use the Convey
HC-2EX as implementation platform, which contains four user-
configurable Virtex-6 FPGAs. As the design here is limited
by the amount of LUTs available, and the Virtex-7 FPGA on
the Alpha Data card contains 432,368 LUTs versus 474,240
LUTs per Virtex-6 FPGA on the Convey, this means only
about 23% of the resources are available as compared to the
Convey platform. This, in turn, requires a careful selection to
place only those modules on the FPGA that most benefit from
acceleration. Hence, the decision was made to only implement
the Seed Extension phase in hardware. In total, about 71% of
all LUTs is utilized and the Seed Extension modules run at a
clock rate of 160 MHz.

B. GPU Implementation

Similar to the FPGA implementation, the GPU implementa-
tion, further described in [17], also accelerates the Seed Exten-
sion phase. However, in contrast to the FPGA implementation,
which contains six Seed Extension modules, the available
execution resources on the GPU depend on the actual GPU
model being used. A batch of reads is sent to the GPU as a
grid of thread blocks, where each read is mapped onto a single
block of 32 threads. This ensures scheduling is automatically
taken care of by the GPU, with per-read granularity, based
on the available execution resources. In the case of the test
platform, an NVIDIA GeForce GTX 970, there are thirteen
multiprocessors available. Up to 32 thread blocks can be active
per multiprocessor at any single time, due to limits on the
amount of registers and shared memory available.

Similar to the FPGA implementation, the Seed Extension
phase is logically split between the control logic, which loops
over all the seeds of a single read, and the actual inexact
mapping. This control logic code is executed by a single
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Fig. 3. Floorplan of the FPGA design with six Seed Extension modules. Each module contains control logic to loop over all seeds to be extended, and the
Seed Extension systolic array with 131 Processing Elements (see inset). In between the Seed Extension modules resides the arbitrating logic. The remaining
area is filled with interconnection-related logic, such as the PCI-Express controller and the DRAM controller.

thread, whereas the inexact mapping code is performed in
a systolic array-like manner using 32-PEs at a time. In this
case, each CUDA thread acts as a separate PE. Hence, longer
extensions require that multiple passes are made over the
similarity matrix. The choice to use only 32-threads at a
time allows for the use of the intra-warp shuffle functionality,
which allows CUDA threads to access each other’s registers,
to implement data transfer between the PEs, eliminating the
need of temporary storage of row data while calculating the
similarity matrix elements.

IV. EXPERIMENTAL RESULTS

Tests have been performed using a system with an Intel Core
i7-4790 at 3.6 GHz with eight logical cores (four physical
cores), SpeedStep and Hyper-Threading enabled. The system
contains 16 GB of RAM. Tests were run using CentOS 7.1.
To minimize power consumption, no unnecessary services
were running. In addition, for the FPGA-accelerated tests,
an Alpha Data ADM-PCIE-7V3 card with a Xilinx Virtex-
7 XC7VX690T-2 and 16 GB of on-board RAM was added
to the system [18]. The Seed Extension modules run at a
clock rate of 160 MHz. For the GPU-accelerated tests, an
NVIDIA GeForce GTX 970 with 1664 CUDA cores with
a maximum clock frequency of up to 1.25 GHz and 4 GB
of on-board RAM was added to the system. The GPU is
allowed to go into lower power states when idle to conserve
power. The software-only results were gathered without either
of these cards installed. An emonPi energy measurement unit
from OpenEnergyMonitor [19] was used to measure idle and
load power utilization of the entire system under test. The
current probe was connected directly to the mains power cord
to measure system level power consumption, taking hundreds
of samples per second.

BWA-MEM version 0.7.8 was used. Tests were performed
using publicly available data from the Genome Comparison &
Analytic Testing (GCAT) framework [20]. The single-ended

alignment (150bp-se-small-indel) and pair-ended alignment
(150bp-pe-large-indel) data sets were used. Each data set
contains about eight million reads of 150 base pairs, or
about 1.2 billion base pairs in total. The reads were aligned
against the reference human genome (UCSC HG19). The
GCAT online sequence alignment quality comparison service
was used to verify that results of the FPGA-accelerated and
the GPU-accelerated versions are indistinguishable from those
obtained with the software BWA-MEM algorithm.

In the remainder of this section, performance results on all
three platform are shown for the single-ended and pair-ended
GCAT tests. The scalability of the heterogeneous platforms
is investigated to find the optimal balance between host
CPU count and accelerator performance. Finally, the power-
efficiency of the various platforms is determined.

A. Performance Analysis

The performance, scalability and power-efficiency results
have been gathered using the GCAT data sets. Each contains
about eight million reads with about 1.2 billion base pairs,
for a file size of about 3 GB for the single-ended data set
and 2x 1.5 GB for the pair-ended data set. A typical complete
Illumina X Ten sequencing run generates a data set about 400x
larger, or approximately 1.2 TB. The implementation has been
verified to scale up to work without issues on such larger data
sets, but, for reasons of practicality, tests have been performed
on the smaller data set.

Performance results on the single-ended and pair-ended
GCAT data sets are summarized in Table I. The execution time
is shown both as time required for the Seed Extension phase
on the accelerator hardware, and for the overall application
wall clock time. To facilitate cross-platform comparisons, the
results are converted into throughput in millions of base pairs
per second. Both the FPGA and GPU implementations are
able to achieve a two-fold improvement to performance, the
FPGA implementation being slightly faster.



TABLE I
EXECUTION TIME AND SPEEDUP FOR THE GCAT ALIGNMENT QUALITY BENCHMARK

Seed Extension Phase Overall Application

Test Platform Execution Time Speedup Execution Time Speedup Throughput

Single-Ended Software-Only 237 s - 552 s - 2.2 Mbp/s
Data FPGA-Accelerated 129 s 1.8x 272 s 2.0x 4.5 Mbp/s

GPU-Accelerated 144 s 1.6x 278 s 2.0x 4.3 Mbp/s

Pair-Ended Software-Only 246 s - 572 s - 2.1 Mbp/s
Data FPGA-Accelerated 130 s 1.9x 289 s 2.0x 4.1 Mbp/s

GPU-Accelerated 141 s 1.7x 293 s 2.0x 4.1 Mbp/s

On a kernel-level, the Seed Extension phase itself is up to
1.9x faster on the FPGA and up to 1.7x faster on the GPU,
as compared to software-only execution. This is equivalent
to a speed of about 15 and 14 logical Intel Core i7 cores,
respectively. Since the execution time of the accelerated Seed
Extension implementations only requires about half the overall
application execution time, it is clear that in both cases, the
accelerator is not fully utilized. Therefore, both the FPGA
and GPU accelerators can be used to accelerate a system that
is more powerful than the system as tested here, which only
contains eight logical processor cores. This is explored in the
next section.

B. Scalability Analysis

From the differences in execution time between the Seed
Extension phase and the overall application, as described in
Table I, it is clear that the FPGA and GPU implementations
are not fully utilized. The time spent by the accelerators in the
Seed Extension phase is only about half the overall application
execution time. This implies that the accelerator hardware is
not busy 100% of the time. Therefore, a faster host system
would still be able to be accelerated for the maximum speedup
of 2x. In contrast, if the accelerated implementations could not
keep up with the host, overall speedup would fall below 2x. In
this case, more Alpha Data cards, or more and/or faster GPUs
could be used. Hence, the objective is to design a system for
which all system resources (the CPU cores and either an FPGA
or GPU-accelerator) are fully utilized.

In Table II, the estimated scalability of the accelerated
platforms is shown, which is expressed in number of logical
CPU cores for which the accelerator is able to provide the
maximum two-fold speedup. In order to estimate the optimal

TABLE II
SCALABILITY OF THE ACCELERATED IMPLEMENTATIONS

Execution Time

Platform Seed Ext. Overall Utilization Scalability

FPGA (4 modules) 171 s 272 s 63% 12.7 cores
FPGA (5 modules) 146 s 275 s 53% 15.1 cores
FPGA (6 modules) 129 s 272 s 47% 16.8 cores
GPU 144 s 278 s 52% 15.4 cores

ratio of logical CPU cores for each accelerated platforms, the
following assumptions have been made. It is assumed that
overall application times decreases linearly with additional
CPU cores. Furthermore, it is assumed that the maximum
speedup is achieved as long as the time required for the Seed
Extension phase does not exceed overall application time.

The scalability results are presented for three different
FPGA designs. These designs vary in the number of Seed
Extension modules that were placed onto the FPGA logic.
Although the time required for the Seed Extension phase
decreases significantly when more modules are available, this
proves to only have a slight impact on the overall execution
time. The reason for this is the fact that Seed Extension
performance is already fast enough. In contrast, scalability
results are much improved. The performance and power-
efficiency results in the other sections all consider the six
module FPGA design. This six module design is able to
support a host system with up to sixteen logical Intel Core
i7 cores at 3.6 GHz, for example the Intel Core i7-5960X.
The GPU implementation is able to support a host system
with up to fifteen logical cores.

C. Power-Efficiency Analysis

To measure the power-efficiency of the different platforms,
an emonPi energy monitor was used to track the system-level
power consumption as measured at the power plug. For the
power-efficiency tests, only the single-ended data set was used,
although the pair-ended data set should yield similar results,
given that the execution profile is similar. In order to minimize
the idle power draw, the tests were performed without active
GUI, and with a bare system with only an HDD, SSD and
optical drive present. In case of the accelerated platforms, the
respective accelerator card was added to the system.

To present a quick qualitative overview of the results, an
example trace of the power consumption for a single test is
shown in Figure 4. As expected, the accelerated platforms
use more instantaneous power than the software-only system,
both under load and when idle. However, they are also able
to map reads at a much higher rate, and both finish in
about half the time of the software-only implementation. The
results are summarized in Table III. This table gives the
power consumption, performance and energy efficiency for
each platform. Both the measured data is presented, as well



Fig. 4. Example trace of the power consumption over time for the software-only, FPGA-accelerated and GPU-accelerated platforms. The software-only system
consumes the least power, both when idle and under load. However, the additional power utilized by the accelerated platforms results in much faster completion
of the test, as both implementations finish in much less than three hundred seconds. The FPGA-accelerated platform has the highest power-efficiency.

TABLE III
POWER CONSUMPTION, PERFORMANCE AND POWER-EFFICIENCY FOR SOFTWARE-ONLY AND ACCELERATED PLATFORMS.

Power Consumption Performance Energy Efficiency

Logical Idle Load Execution Application Total Base Pairs Efficiency
Test Platform Cores Power Power Time Speedup Energy Per Energy Improvement

Measured Software-Only 8 37 W 105 W 552 s - 58 kJ 20.7 kbp/J -
Data FPGA-Accelerated 8 62 W 129 W 272 s 2.0x 35 kJ 34.1 kbp/J 1.6x

GPU-Accelerated 8 63 W 210 W 278 s 2.0x 58 kJ 20.5 kbp/J 1.0x

Estimated Software-Only 15 37 W 164 W 294 s - 48 kJ 24.8 kbp/J 1.2x
Data FPGA-Accelerated 15 62 W 188 W 147 s 2.0x 28 kJ 43.2 kbp/J 2.1x

GPU-Accelerated 15 63 W 269 W 148 s 2.0x 40 kJ 30.0 kbp/J 1.4x

Software-Only 16 37 W 172 W 276 s - 47 kJ 25.2 kbp/J 1.2x
FPGA-Accelerated 16 62 W 196 W 138 s 2.0x 27 kJ 44.1 kbp/J 2.1x
GPU-Accelerated 16 63 W 277 W 144 s 1.9x 40 kJ 29.9 kbp/J 1.4x

as results for estimated, more well-balanced, systems with a
larger number of logical CPU cores. First, the results for the
measured data are discussed, afterwards the estimated data.

Similar to the trace shown in Figure 4, as expected the
power draw of the software-only system is the lowest, both
when idle at 37 W and under load at 105 W. The accelerated
platforms show significantly increased idle power consump-
tion, at 62 W for the FPGA platform and at 63 W for the GPU
platform, due to the addition of more hardware into the system.
Also, both platforms show a higher power consumption under
load, at 129 W for the FPGA platform and at 210 W for
the GPU platform. However, this is compensated by much
improved performance, as each implementation is able to
achieve a two-fold speedup as compared to software-only
execution. In addition, the FPGA-accelerated implementation
is much more power-efficient as compared to the other two
platforms: whereas the software-only and GPU-accelerated
platforms both require 58 kJ to complete the entire test, the
FPGA-accelerated platform requires only 35 kJ, an energy
efficiency improvement of 60%. On this system, use of a GPU-
accelerator merely provides the user a trade-off between per-
formance and power consumption, as overall power-efficiency
remains the same as compared to the software-only platform.

To put the relative power efficiency of the FPGA and the
GPU into perspective, consider their respective power con-
sumption when executing the same workload. The difference
in load and idle power on the software-only platform implies
that the host CPU uses about 68 W of power under load. If it is
assumed that the host CPU requires a similar power draw when
running the accelerated platforms, then the power consumption
under load used exclusively for powering the accelerators can
be computed, being 25 W for the FPGA and 105 W for the
GPU. Hence, the FPGA power consumption is less than one
fourth of the GPU, showing the clear advantage in energy
efficiency of the reconfigurable platform. Moreover, the FPGA
does not seem to consume any additional power under load,
as its logic is always active.

To facilitate comparisons of power-efficiency for mapping
a certain data set of reads, the data is also reported as
number of base pairs mapped per Joule of energy. Using
this measure, the power-efficiency for a given data set can be
evaluated across platforms, architectures and mapping tools.
However, it is important to note that performance of the
various tools is not the only measure of interest, as mapping
tools can differ greatly in their mapping quality, which is the
ability to accurately map reads. As the data set used in these



tests contains about eight million reads, each with 150 base
pairs, the resulting power-efficiency for the FPGA-accelerated
platform is about 34 kbp/J, a 60% improvement in energy
efficiency as compared to the software-only platform.

Based on the scalability results obtained in the previous
section, Table III also contains the estimated performance
and power-efficiency for two more well-balanced systems that
contain more than eight logical CPU cores. The estimated
optimum configurations are shown for both the FPGA and
the GPU platforms. Note that the optimum configuration
for power-efficiency does not necessary need to be able to
obtain exactly the maximum two-fold speedup. The following
assumptions have been used for the estimation:

• For each platform, system idle power draw remains
identical to the measured platform, as no additional idle
power draw is assumed for the additional CPU cores (due
to perfect power gating of CPU cores);

• Additional power under load required by the additional
CPU cores is scaled linearly based on the difference
between software-only idle and load power consumption;

• The accelerators do not require additional power for the
scaled system, as their workload stays identical;

• Overall application performance scales linearly in CPU
core count.

All platforms show a higher energy efficiency as compared
to the base eight logical CPU core system. The faster execution
results in a lower overall execution time, in turn requiring less
power draw of the base system components. Conversely, a
system with fewer cores would show lowered power-efficiency.
The FPGA-accelerated platform is able to achieve an up to
2.1x improvement in power-efficiency, as compared to the
eight core software-only platform, and is able to map up to
44 kbp/J. The GPU-accelerated platform obtains a 46% power-
efficiency improvement on the more well-balanced system.

Note that the above results use a conservative estimate
for the power-efficiency of the accelerated platforms. These
platforms are the most efficient while fully utilized: only in
such a situation no unnecessary idle power loss is accumulated
while the accelerator is being idle. However, this is not the case
for the system on which the results have been gathered, as in
that system, the accelerators were idle about half of the overall
execution time. Hence, the measured power consumption
includes this idle power loss, which means that the results
as presented here are a conservative estimate of the power-
efficiency for both platforms. In practice, the power-efficiency
of a more well-balanced system should be even higher.

To illustrate the dependency of the power-efficiency on
the number of logical CPU cores in use, Figure 5 shows
the estimated normalized power-efficiency for a system with
varying number of cores, compared to the base eight core
software-only platform. Under all circumstances, the FPGA
platform is the most power-efficient. Both accelerated systems
show peak efficiency for a system with about sixteen cores.
Hence, a system with an Intel Core i7-5960X processor would
be a good matchup. A system with less cores is hampered by
under-utilization of the accelerator, whereas for a system with

Fig. 5. Estimated power-efficiency for a system with varying CPU core count.
The FPGA-accelerated platform is the most power-efficient.

more cores, the accelerator will not be able to keep up with the
CPU cores, which, as a result, will be partially idle. In such
a situation, load balancing between host and accelerator, as in
[9], could improve system resource utilization, resulting in a
more graceful drop-off in performance and power-efficiency.

V. DISCUSSION

Accelerate an algorithm such as BWA-MEM, which is
characterized by the fact that it contains multiple performance-
critical kernels, is always challenging. Hence, as per Amdahl’s
law, acceleration of a single kernel can only yield limited
overall application speedup. In the case of BWA-MEM on
the Intel Core i7 platforms, a maximum speedup of 1.7x
is implied. Even so, the FPGA and GPU implementations
manage to exceed this maximum speedup by at the same
time implementing a pipelined program organization, thus
achieving a two-fold improvement to execution time. Plat-
forms where the Seed Extension phase consumes a larger part
of total application execution time should be able to see an
even larger performance increase.

Both the FPGA and GPU-accelerated platforms manage to
obtain a two-fold performance improvement. However, it is
interesting to compare the nature of both architectures further.
The fixed function units on the GPU are able to process large
numbers of reads in parallel at a high clock frequency of up to
1.25 GHz. However, a large number of instructions is required
to perform a single systolic array cell update, and a large
amount of logic is required to provide the massive threading
and parallelism. In contrast, the much lower clock frequency
and highly customizable nature of the FPGA allows for much
more power-efficient processing, resulting in the fact that the
FPGA requires less than one fourth of the power consumption
of the GPU, while performing the same workload.

The highest power-efficiency of any system including ac-
celerator hardware will only be obtained through a careful
balance of system components. Utilizing an accelerator that



is overpowered compared to the rest of the system reduces
power-efficiency, whereas a well-balanced system can provide
much improved power-efficiency. As shown here, the results
for an optimally-balanced system are much better compared
to the baseline system. A further improvement to power-
efficiency of 29% for the FPGA platform was obtained, and
even a 46% improvement to power-efficiency for the GPU
platform. This balance of components is especially important
when considering cloud-based solutions for data processing,
as the available options that can be selected, in particular
when accelerators are involved, are restricted to those offered
by the cloud provider. The optimal combination may not be
always available. It is an ongoing effort to monitor the best
available options, making the optimal trade-off between power
and power-efficiency.

VI. CONCLUSIONS

In this paper, an accelerated implementation of the BWA-
MEM algorithm is introduced that targets the Alpha Data add-
in card with a single Xilinx Virtex-7 FPGA. This design is
able to provide a two-fold improvement to overall application
performance by offloading the Seed Extension phase onto
the FPGA and through better pipelining of the application.
Scalability analysis shows that the current design is able to
provide this maximum two-fold gain in performance for a
system with up to sixteen logical CPU cores.

To facilitate platform-agnostic comparison of power-
efficiency on mapping genomic data sets, the base pairs per
Joule measure is proposed as a unit to express platform power-
efficiency. The performance and power-efficiency is compared
to a GPU-based implementation, which is also able to obtain
a two-fold performance improvement. However, the FPGA
implementation is much more power-efficient and can map
34,000 base pairs per Joule of energy, an improvement of 60%
compared to the software only and GPU-platforms. Design
space exploration shows that a more well-balanced platform,
designed to fully utilize the accelerator’s potential, can provide
an up to 2.1x improvement in power-efficiency, providing
a mapping power-efficiency of up to 44,000 base pairs per
Joule. Due to the highly customizable nature of the FPGA,
its power-efficiency is much higher compared to the GPU and
software-only platforms. The FPGA consumes less than one
fourth of the power the GPU requires when executing the same
workload, showing the large benefit of customizable hardware,
as compared to more fixed function hardware.

The authors expect to see increased use of FPGA hardware
in the bioinformatics context, as the improvement in speed
and power-efficiency will help to reduce the bottleneck of an
important part of the widely used BWA-MEM/GATK pipeline.
More generally, it offers a large promise of power-efficiency
gains for the often extremely large computational challenges
in this domain.
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