
A Locality-Aware Hash-Join
Algorithm
Jian Fang∗, Jan Hidders†, Koen Bertels∗,
Jinho Lee‡, Peter Hofstee‡∗

∗ Delft University of Technology, The Netherlands
† Vrije Universiteit Brussel, Belgium
‡ IBM Austin Research Lab, USA

ABSTRACT

The join is a commonly used operation in databases systems. As data volumes explode, join opera-
tions between two large relations become challenging. To overcome this challenge, some research
adopts FPGAs (field programmable gate arrays) to accelerate this operation. However, increas-
ing the bandwidth between accelerators and main memory provides additional opportunity for
improvement. In this paper, we propose a locality-aware hash-join algorithm, and apply this to ex-
plore the potential of using FPGAs to accelerate hash-join operations in databases. The tuples in
the input tables are partitioned into small buckets such that each bucket can fit into BRAM (Block
RAM) of the FPGA. Hash-join probe operations are only performed on buckets with the same
bucket number in these two tables. Analysis shows that the proposed method can take advantage
of large memory bandwidth and thus provide a high throughput.

KEYWORDS: Databases; Join; FPGAs; Acceleration; Locality-Aware

1 Introduction

Even though the concept “big data” has been studied for years, data are still getting “big-
ger”. A recent IDC report [IDC] shows that global data increased from 6.2ZB in 2014 to
8.6ZB in 2015, and it is expected to keep increasing at 40% per year, reaching 40ZB in 2020.
To handle such large data requires computer systems to process data faster. FPGAs excel in
domain-specific functions with high parallelism, and have been used as accelerators in the
databases community [SMT+12]. New hardware technology brings large available band-
width between FPGAs and memory [OPE], breaking one of the main limitations of FPGA-
based design. This provides FPGAs with new chances to enhance performance of computer
systems.

To show the acceleration potential, this paper illustrates a method to accelerate databases
using FPGAs. In databases, join operations between two or more large tables are widely
used. Accelerating joins can improve the performance of the system. Naively speaking, per-
forming joins is matching tuples in one table with tuples in other tables by a common value
of the join keys. There are many join algorithms including nested-loop join, sort-merge join

and hash-join. Among these algorithms, the hash-join is an efficient way due to a constant
time complexity of accessing hash tables on a reasonable distribution of keys. Some research
implements FPGA-based join algorithms, and gains speedups compared with the software
algorithms. However, prior work did not deal with very large datasets due to the limitations
of low memory bandwidth or long memory latency. In this paper, we propose a locality-
aware hash-join algorithm to handle join operations between two large tables. In this algo-
rithm, tuples in two tables are first divided into buckets that fit within BRAM. After the
partition, build operations follow, building hash tables for each bucket. Finally, probe oper-
ations are run between two buckets in each table with a same bucket number.

The rest of this paper is organized as follows: Section 2 describes related work, while
our proposed method is presented in Section 3. Section 4 discusses future work followed by
conclusions in Section 5.

2 Join Algorithms

Running a join on two or more tables consists of combining tuples from these tables that
have a common key. Among various join algorithms, the hash-join is illustrated to be one
of the efficient join algorithms since it is a linear scalable algorithm. The simplest hash-join
algorithm is the classical hash-join [KTMO83], which is a single node algorithm with two
phases, build and probe. As we know, the complexity of this algorithm is O(|R|+ |S|), where
|R| stands for the number of tuples in table R, and |S| stands for the number of tuples in table
S. However, this can be improved by utilizing more processing elements. By dividing both
input tables into portions and assigning them to p different workers, it can gain an ideal
speedup of p, compared with the classical hash-join. However, this may introduce a large
number of cache misses leading to a longer latency.

An efficient way to solve the cache miss problem is partitioning the relations to fit the
size of the cache [SKN94]. Figure 1 gives an overview of this idea. The main idea of this
algorithm is to add an extra phase to partition relations into small chunks with each size
fitting in the cache by hashing on their key values before the build phase. Consequently,
tuples in one bucket of relation R can only match tuples in one bucket with a same bucket
number of relation S. Thus, the hash table of one bucket can be stored in the cache, leading
to reduce cache misses. An improved algorithm, radix hash-join, further splits the partition
phase into multiple passes to reduce the possibility of TLB (Translation Look-aside Buffer)
misses introduced by the partition phase.

3 Architecture

An overview of the proposed architecture is shown in Figure 2. There are three main com-
ponents including the partition engine, the build engine, and the probe engine, representing
the three phases of this algorithm. All these three components are implemented in the FPGA
and connected to memory.

Our algorithm is described in Figure 3. It contains three phases which are the partition
phase, the build phase, and the probe phase. In the partition phase, all tuples in table R are
scanned and assigned to different buckets using a partition hash function. The hash function
is used to partition the data and assign the bucket number. The same partition operation is

Figure 1: Cache Conscious Hash-Join.

Figure 3: Three Phases of the Locality-Aware Hash-Join Algorithm.

Figure 2: Overview Ar-
chitecture

run on table S. To avoid long main memory latencies in the build
phase and the probe phase, we partition data into buckets that
fit into BRAM. Consequently, the hash table of a whole bucket
can be stored inside the FPGAs. The build phase performs a hash
function on tuples in table R bucket by bucket to build their hash
tables. Each bucket has its own hash table, and this table will be
read and stored in BRAM. The probe phase is also performed at
a bucket granularity. The tuples in bucket i of table S only probe
the hash table of bucket j, where bucket i and bucket j share a
same bucket number. So the whole hash table is stored in BRAM,
reducing the number of memory accesses when not using cache
or partitioning data in a larger size.

When designing an FPGA-based algorithm, we need to consider all the resources in FP-
GAs including the logic resource, buffers, memory bandwidth, and latency. Among these
constraints, buffers and memory latency are two main limitations. Our proposed method
partitions data into a size that meets the BRAM limitations. When having a larger BRAM,
we use a larger granularity, leading to less buckets. Utilizing BRAM also shows benefits
from low latency and large bandwidth. As we know, the latency of accessing memory is
much larger than that of accessing BRAM. Our method uses BRAM to store hash tables,
resulting in a low latency in the probe phase.

4 Future Work

Our algorithm aims to take advantage of the large available main memory bandwidth. Ben-
efit from this is shown in reducing the time for transferring data between FPGAs and mem-
ory. However, there are some remaining issues that need to be resolved, which we intend to
address in future work.

• Handling hash collisions. The two most commonly used techniques for this are sepa-
rate chaining with linked lists and open addressing. We want to investigate which type of
solution is efficient when using the FPGA. Since our algorithm stores the whole hash
table for a bucket and processes probes inside the FPGA, open addressing should be
an more effective choice. This is because it can save more BRAM for a larger hash table
since it does not need to represent there the linked lists.

• Design an efficient parallel algorithm that performs multiple partitions, builds, and
probes. A simple way to scale this algorithm into a parallel one is having more engines.
However, we should ensure that each engine reads and writes the right data.

• Increases of main memory bandwidth change the design of using FPGAs. Two impor-
tant questions are how to trade off between different resources and how to make full
use of the larger memory bandwidth.

5 Conclusions

In databases, the join is a commonly used operation. Enhancing the join performance can
improve the computation capacity of the whole computer system. In this paper, we propose
a locality-aware hash-join algorithm that partitions data into fragments whose size matches
the size of BRAM. We expect that our proposed method can achieve a high performance, but
many aspects need to be researched further.

References

[IDC] http://www.idc.com.

[KTMO83] Masaru Kitsuregawa, Hidehiko Tanaka, and Tohru Moto-Oka. Application of
hash to data base machine and its architecture. New Generation Computing,
1(1):63–74, 1983.

[OPE] http://openpowerfoundation.org/presentations/
brad-mccredie-board-advisor-ibm/.

[SKN94] Ambuj Shatdal, Chander Kant, and Jeffrey F Naughton. Cache conscious algo-
rithms for relational query processing. University of Wisconsin-Madison, Computer
Sciences Department, 1994.

[SMT+12] Bharat Sukhwani, Hong Min, Mathew Thoennes, Parijat Dube, Balakrishna Iyer,
Bernard Brezzo, Donna Dillenberger, and Sameh Asaad. Database analytics ac-
celeration using FPGAs. Proceedings of the 21st international conference on Parallel
architectures and compilation techniques, pages 411–420, 2012.

http://www.idc.com
http://openpowerfoundation.org/presentations/brad-mccredie-board-advisor-ibm/
http://openpowerfoundation.org/presentations/brad-mccredie-board-advisor-ibm/

	Introduction
	Join Algorithms
	Architecture
	Future Work
	Conclusions

