
General Purpose Computing

with Reconfigurable Acceleration

Anthony Brandon, Ioannis Sourdis, and Georgi N. Gaydadjiev

Computer Engineering, TU Delft

Emails: {A.A.C.Brandon, I.Sourdis, G.N.Gaydadjiev}@tudelft.nl

Abstract—In this paper we describe a new generic approach
for accelerating software functions using a reconfigurable device
connected through a high-speed link to a general purpose system.
As opposed to related ISA extension approaches, we insert system
calls to the original program at hand to control the reconfigurable
accelerator. The reconfigurable device is controlled by the host
through a device driver, and initiates communication by raising
interrupts; it further has direct accesses to the main memory
(DMA) operating in the virtual address space. To do so, the
reconfigurable device supports address translation, memory pro-
tection and paging, while the driver serves the device interrupts,
and ensures that shared data in the host-cache remain coherent.
The system is implemented in a machine which provides a
HyperTransport bus connecting a Xilinx Virtex4-100 FPGA.

I. INTRODUCTION

Integrating Reconfigurable computing with traditional Com-

puting systems has been a challenge since the early days of

FPGAs; several machines have been designed to this direction,

such as PAM [1], Splash [2], and DISC [3]. The primary

drawback of all these attempts was the limited bandwidth

and increased communication latency between the host gen-

eral purpose processor and the reconfigurable device. Re-

cently, however, several components have been released which

support standard high-speed communication between general

purpose processor(s), memory and other peripheral devices.

These solutions use high-speed on-board links such as the

Intel QuickPath [4] and the AMD HyperTransport bus [5]

and provide multi-GByte/sec low latency communication. The

above developments offer a new opportunity for integrating

reconfigurable computing in general purpose systems.

Rather than building a machine from scratch or suggesting

fundamental architectural changes, it is more performance-

and certainly cost-efficient to propose a generic solution that

uses existing off-the-shelf components with only software (and

configuration) modifications. As opposed to approaches that

require ISA extensions to the host processor, such as Molen

[6], Garp [7] and others, we describe a generic solution

that requires only an FPGA device driver, a few compiler

extensions and a reconfigurable wrapper in the FPGA.

The remainder of the paper is organized as follows: in

Section II we describe the system architecture of our approach.

In Section III, we discuss the details of our implementation

platform and evaluate the performance and area cost of our

solution. Finally, in Section IV we draw our conclusions.

Wrapper

Reconfigurable Device (FPGA)

High-
Speed Link
Interface

Address
Translation

IO XREG

Control

DMA IH

Reconfigurable
Accelerator

DriverHost

Main Memory

High-Speed
Link

Fig. 1. Block diagram of the proposed system.

II. SYSTEM ARCHITECTURE

The proposed system consists of a general purpose machine

with a reconfigurable device used for accelerating in hard-

ware computationally intensive functions. Such functions are

annotated in the code to indicate that they will be executed

in hardware. The compiler is then responsible for generating

the binary where the arguments of the respective functions

are sent to the reconfigurable device and the return results

are read from the device. In order to facilitate the execution

of functions in hardware, the reconfigurable device works on

virtual shared memory, supports memory protection, cache

coherence, paging, and virtual to physical address transla-

tion maintaining a local TLB copy. Figure 1 illustrates the

overview of the proposed system. The reconfigurable device

is connected to the host general purpose processor and to the

main memory through a high-speed link. On the host side, a

driver has been developed to support the communication of

the FPGA device with the host and the main memory. On

the FPGA a module is used to interface with the high-speed

link. The reconfigurable device further contains the reconfig-

urable accelerator intended to speed-up a software function;

depending on the application running in the machine arbitrary

accelerators can be designed. Finally, we have designed a

wrapper around the reconfigurable accelerator to support the

integration of the FPGA device in the system. More precisely,

the wrapper controls the accelerator and performs tasks such

as address translation, DMA operations, handles the interrupts

caused by the device (IH), and maintains some memory-

mapped IO regions: exchange registers (XREGs), the TLB

copy, and control and status registers. The system supports

three types of communication of the FPGA with the host and

the memory. The host can write and read data from the FPGA,

the FPGA can send data to the host, and the FPGA can read

and write data to/from the memory.

A. Linux Driver

We have developed a driver that allows the software to

use the reconfigurable FPGA device. The driver provides an

application programming interface for software to interact

with the device, it also performs the initialization of the device

and handles interrupts caused by the device.

1) API: Application Programming Interface: The program-

ming interface of the driver provides the following system

calls: open(), close(), read(), write(), ioctl()

used to control the functionality of the FPGA device. The

open() system call is used by a program to get a lock

on the device, while the close() system call releases the

lock. The write() and read() system calls are used to

write the arguments of function calls to the exchange registers

(XREGs) of the FPGA device and to read the return values,

respectively. Finally, the ioctl() call can be programmed to

pass commands to the device, i.e., to initiate the execution of

the reconfigurable accelerator. Using system calls rather than

for instance extending the ISA of the host processor, like in

[6] provides a more generic approach applicable to any system

that supports a connection to an FPGA device.

2) Interrupts: The driver receives interrupts from the FPGA

(i) on a TLB miss during address translation, and (ii) when the

reconfigurable accelerator has completed execution. Since the

High-Speed link interface supports only one interrupt identi-

fier, we use a status device register to differentiate between

the two cases above. The status register has different values

for a TLB miss and for an execution completion interrupt.

a) Address Translation: During address translation at

the reconfigurable device, a TLB miss may occur causing

an interrupt. The device driver, then handles the interrupt

providing the device with the missing TLB entry. During

this process the driver should support memory protection. The

reconfigurable device inherits the memory access permissions

of the program that called it. The driver ensures that the

FPGA device receives new TLB entries only for pages that

has permissions to read or write; furthermore, read-only pages

are protected from write accesses. Another task of the driver is

related to memory paging. The driver checks whether a page

accessed by the FPGA device exists in the memory; in case

a page is swapped out to disk, the driver loads it back to the

memory. Finally, the driver maintains cache coherency after

the completion of a hardware-accelerated function.

b) Execution Completion: Upon execution completion

of the reconfigurable acceleration the FPGA will raise an

interrupt. Then, the driver will wake up the program that

initiated the execution and will unlock all the pages that were

locked and mapped during execution.

3) Initialization: The third task of the driver is to initialize

the FPGA-device. When the driver is first loaded into the

kernel, it registers the FPGA device-id and creates an interrupt-

id. Then, in case the kernel detects the FPGA device, the driver

is notified and initializes the device as well as several related

data structures within the driver, e.g. it maps the memory

mapped IO regions of the FPGA.

a t t r i b u t e \
((user (” r ep l a c e ”)))

int f oo (int a){
int b ;
. . .
. . .
return b ;

}
int main (void){

return f oo (0) ;
}

int f oo (int a){
int b ;
wr i t e (dev , a , 0) ;
i o c t l (dev , EXECUTE) ;
b = read (dev , 1) ;
return b ;

}
int main (void){

dev = open (DEVICE) ;
return f oo (0) ;

}

Fig. 2. Code modification by the extended compiler.

B. The Compiler

The programmer can indicate which functions are to be

executed in hardware, by annotating them with gcc attributes:

__attribute__((user("replace"))). The compiler

will then automatically insert the appropriate system calls to

the drivers API in order to achieve the hardware execution

of the function. To do so, we have extended our gcc 4.5

compiler with a plugin which scans the source code for such

annotated functions. The body of such a function is then

replaced with the required system calls. As depicted in Figure

2, such system calls are the following: open(), write(),

ioctl(), read() (close() is called by the kernel, hence

not inserted by the compiler). As opposed to ISA extensions

approaches, using system calls makes our approach generic. In

addition, supporting virtual addresses in the FPGA allows to

pass as function-arguments pointers to larger data-structures

in memory which can then be accessed during the execution

of the function with DMA transactions.

C. The FPGA Device

The FPGA Device consists of three parts: the high-speed

link interface, the Reconfigurable accelerator and its wrapper.

The high-speed link interface abstracts the communication

details of the bus allowing the rest of the device to exchange

data using a simpler protocol. The reconfigurable accelerator

is the implementation of the hardware accelerated function

and has a standard interface to exchange data with the rest

of the system. The wrapper is located between the high-speed

link interface and the accelerator; it is used to provide all

the necessary functionality for integrating the FPGA device

with the rest of the system; it supports address translation,

DMA transfers and interrupts, maintains the memory-mapped

IO device registers, and handless the interface with the driver.

a) Address Translation: The FPGA device is working

on the virtual address space. Consequently, in order to access

memory the device needs to have address translation support.

To do so, the virtual addresses are translated into physical

using a local TLB copy in the FPGA; our current implemen-

tation maintains a TLB copy of 512 entries. TLB misses are

handled by interrupts raised by the device. In such case, the

driver will write the missing entry to the FPGA TLB which

then will be able to proceed with the respective translation.

All pages stored in the FPGA TLB copy are then locked by

the driver in memory, while pages the entries of which are

replaced should get unlocked.

Address

Translation

IO XREG

Control

DMA Write IH

TLB

DMA Read

Reconfigurable

Accelerator

Wrapper

(a) Basic DMA support.

Address

Translation

IO XREG

Control

DMA Write IH

TLB

Cache

DMA Read

Reconfigurable

Accelerator

Wrapper

(b) DMA manager with cache.

Address

Translation

IO XREG

Control

DMA Write IH

TLB

DMA Read

Reconfigurable

Accelerator

Wrapper

(c) DMA manager with queues.

Fig. 3. Alternative designs for the accelerator wrapper, using different DMA managers.

b) DMA: Direct Memory Accesses: The FPGA device

accesses the memory using DMA reads and writes. The

Reconfigurable accelerator places the memory access requests

and subsequently these are handled by the DMA manager

module located in the wrapper. We have designed three

different versions of the DMA manager, a basic one, a DMA

with a cache, and a DMA with fifo queues. The basic DMA

manager, shown in figure 3(a) serves the accelerator requests

sequentially; this means that there are no concurrent DMA

accesses and, in case of reads, the data read from memory

need to arrive to the FPGA device before a new request takes

place. This first approach introduces significant overhead since

after each memory access the accelerator needs to stall waiting

for the access to be completed. In our attempt to reduce

the number of memory accesses we added a cache to the

DMA manager which stores data coming to the device (Figure

3(b)). A DMA read will then bring an entire cache line to

the FPGA and subsequent read requests to that line will not

go to memory. In order to further reduce memory latency,

we attempted to exploit the regularity of memory accesses in

some types of applications; e.g. streaming applications. In such

cases, the accelerator can pre-fetch data from the memory. The

read data as well as the write requests should then be queued

in a read and in a write fifo, respectively, as depicted in Figure

3(c). Multiple requests can be active at the same time while the

reconfigurable accelerator continues processing. Furthermore,

multiple memory accesses to consecutive lines can be merged

into one request reducing the packetization overhead.

c) Interrupts: An interrupt caused by the FPGA is han-

dled in the Interrupt Handler (IH) in the wrapper. Sending

interrupts is achieved by writing to a memory location speci-

fied by the driver during the initialization of the device using

a write DMA operation.

d) Memory mapped IO: The host processor controls the

FPGA device through the driver using three regions of memory

mapped IO. The host uses these regions by mapping them into

the kernel address space and accessing them as arrays of data.

The FPGA uses the IO regions as follows: The first region

is mapped to the XREGs, which allow the driver to write

function arguments to the device and read return values. The

second region is used to send commands to the device and to

get information about the status of the device. In this region

every address is mapped to a different function e.g. for sending

commands, reading the cause of an interrupt, and reading the

address to be translated. The third region is used for the driver

to read and write directly to/from the TLB.

TABLE I
IMPLEMENTATION RESOURCES (IN SLICES AND BRAMS) OF THE FPGA

DESIGN BLOCKS. (S: SLICES, B: BRAMS)

Basic DMA DMA w/ Cache DMA w/ Queues

HTX interface 5,066S + 29B

Wrapper 865S + 7B 1081S + 11B 1,847S + 9B

Reconfigurable
Accelerator

1,546S + 12B

Total 7,477S + 48B 7,693S + 52B 8,459S + 50B

III. EXPERIMENTAL RESULTS

We use an AES program and its AES accelerator described

in [8] to evaluate our approach. We experiment using the three

design alternatives for our FPGA wrapper and compare them

with each other as well as with running the purely software

version of the program to the host processor.

The implementation platform used to instantiate the pro-

posed system, consists of an AMD Opteron-244 1.8GHz

64-bit host processor and a 1-GByte DDR memory at an

IWILL DK8-HTX motherboard. The motherboard provides a

HyperTransport bus [5] and an HTX connector which we use

to connect an HTX FPGA board [9]. The HTX FPGA board

has a Xilinx Virtex4-100 FPGA. For the FPGA interface with

the HyperTransport bus we used the HTX module developed

in [10] which supports 3.2 GBytes/sec throughput.

Table I offers the area requirements of the FPGA mod-

ules. The HTX interface occupies about 5,000 slices and

29 BRAMs; that is due to multiple queues needed for the

communication with the HyperTransport bus as well as tables

to keep track of ongoing transactions. The wrapper with

the basic DMA manager needs more than 800 slices and 7

BRAMs, when adding a cache to the DMA it needs about

1,100 Slices and 11 BRAMs, while the wrapper with the

queues in the DMA needs roughly 1,800 Slices and 9 BRAMs.

All wrappers need BRAMs for the TLB implementation while

having queues or cache in the DMA adds 2-4 memory blocks.

Although the rest of the design can operate at 200MHz, the

operating frequency of the entire FPGA device is limited

by the AES Reconfigurable accelerator to 100 MHz. It is

noteworthy, that TLB misses take thousands of FPGA cycles,

an address translation with a TLB hit requires 4 cycles, while

the memory latency for a single read is 50 cycles.

We evaluate the performance of the three alternative designs

of our system and compare with software using the ECB

mode of the AES application having 256 bit keys and input

files ranging from 16 Bytes to 64 MBytes [8]. The above

configuration of the AES reconfigurable accelerator processes

128-bits every 16 cycles on a cycle time of 10 ns, having

a processing throughput of 80 Mbytes/sec. Although the bus

supports IO throughput of 3.2 GBytes/sec, the above means

that our accelerated function is compute bounded.

Figure 4 shows the AES execution time of the four alter-

natives for different file sizes to be encrypted, while Figure

5 shows the speedup of the hardware approaches compared

to software. For small file sizes the software version is

significantly better, up to 5× faster than the FPGA accelerated

approaches. However, when the file size gets larger than

1KByte then accelerating the core AES function in hardware

gets faster. For 64 MByte files the FPGA accelerated version

is 1.5-5× better than software. As depicted in the results,

the basic DMA configuration is always slower than in soft-

ware; practically the memory latency is dominating and the

reconfigurable accelerator is most of the time waiting for IO

rather than processing. The DMA version with cache is up

to 2× faster than the basic DMA and up to 1.7 better than

software. In this case, several memory accesses are avoided;

a memory access for a single word (64-bits) brings to the

FPGA cache a cache line of 8 words (512-bits) which may

potentially give subsequent cache hits. The DMA with queues

is able to improve about 3× the DMA with cache for large file

sizes and up to 5× compared to software. In the DMA with

queues, the memory latency is almost totaly hidden since data

are prefetched and stored in queues before they are consumed

by the accelerator, while both read and write requests are

packetized more efficiently allowing a single command to

handle memory accesses for more than one words. Another

interesting note is that for large files (64 MBytes) the design

with Queues in the DMA manager supports a processing

throughput of about 80Mbytes/sec which is equal to the

theoretical maximum throughput. Finally, as expected, the

larger the input sizes the better the performance of the system,

since the setup overhead at the beginning of the program is

then hidden by the long processing of the accelerated function.

In general, attempting to hide the memory latency is very

crucial for system performance. Adding queues in the DMA

can be applied in certain types of applications, such as

streaming ones, due to their regular memory accesses. A cache

next to the DMA seems to be the alternative for functions

that have a more irregular memory access pattern. Finally, the

overhead of integrating an FPGA card in a system as proposed

in this paper is 10-15% in a Xilinx Virtex4-100.

IV. CONCLUSIONS

We described a new generic, platform-independent approach

for exploiting reconfigurable acceleration in a general purpose

machine. In this paper we showed techniques to integrate

a reconfigurable device into systems that provide a high-

speed link to an FPGA device. We developed a Linux driver

to control the device and support interrupts. Furthermore,

we extended the gcc compiler to insert system calls to the

code for the control of the reconfigurable accelerator. The

proposed system offers direct access of the FPGA to the

shared main memory of the machine using virtual addresses,

memory protection, paging, and coherent cache of the host. We

10 us

100 us

1 ms

10 ms

100 ms

1 s

10 s

32 256 2 k 16 k 131 k 1 M 8 M 67 M

T
im

e
 (

s
e

c
o

n
d

s
)

File size (bytes)

no cache
cache

queues
software

Fig. 4. Execution times of the AES application in the HTX platform when
running in software, and with hardware acceleration.

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

 5.5

32 256 2 k 16 k 131 k 1 M 8 M 67 M

s
p

e
e

d
u

p

File size (bytes)

no cache
cache

queues
software

Fig. 5. Speedup of the hardware accelerated approaches in the HTX platform
compared to purely software.

described three alternative designs for the DMA manager of

the FPGA device. Finally, we evaluated the proposed system

using an AES application and showed that significant speedup

can be achieved over the pure software implementation.

REFERENCES

[1] P. Bertin and H. Touati, “Pam programming environments: practice
and experience,” in IEEE Workshop on FPGAs for Custom Computing

Machines, April 1994, pp. 133 –138.
[2] J. M. Arnold, “The splash 2 software environment,” J. Supercomput.,

vol. 9, no. 3, pp. 277–290, 1995.
[3] M. Wirthlin and B. Hutchings, “A dynamic instruction set computer,”

in IEEE FPGAs for Custom Computing Machines,, 1995, pp. 99 –107.
[4] “Intel quickpath,” http://www.intel.com/technology/quickpath/.
[5] “Hyper transport bus,” www.hypertransport.org.
[6] S. Vassiliadis, S. Wong, G. Gaydadjiev, K. Bertels, G. Kuzmanov, and

E. M. Panainte, “The molen polymorphic processor,” IEEE Transactions

on Computers, vol. 53, pp. 1363–1375, 2004.
[7] J. Hauser and J. Wawrzynek, “Garp: a mips processor with a reconfig-

urable coprocessor,” in The 5th Annual IEEE Symposium on FPGAs for

Custom Computing Machines, April 1997, pp. 12 –21.
[8] R. Chaves, G. Kuzmanov, S. Vassiliadis, and L. Sousa, “Reconfigurable

memory based aes co-processor,” in 13th Reconf. Arch. Workshop, 2006.
[9] “Htx broard,”

http://ra.ziti.uni-heidelberg.de/index.php?page=projects&id=htx.
[10] D. Slogsnat, A. Giese, M. Nüssle, and U. Brüning, “An open-source

hypertransport core,” ACM Trans. Reconfigurable Technol. Syst., vol. 1,
no. 3, pp. 1–21, 2008.

