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Abstract—To overcome the increasing sensitivity to variabil-

ity in nanoscale integrated circuits, operation parameters (e.g.,

supply voltage) are adapted in a customized way exclusively to

each chip. A standard industrial approach to achieve customized

circuit adaptations is the use of on-chip monitors that allow

fast performance evaluation during production or lifetime. Such

on-chip monitoring approaches estimate operation parameters

either based on responses from performance monitors with no

interaction with the circuit or by monitoring the actual critical

paths of the circuit. In this paper, we discuss a number of well-

known performance monitoring methodologies and compare them

with each other in term of their advantages and disadvantages.

This enables evaluating the suitability of various performance

monitoring methodologies for specific applications based on their

respective requirements in terms of accuracy, power efficiency

and cost. In addition, we discuss the challenges that these

monitoring methodologies face with decreasing node sizes, in

terms of accuracy and effectiveness. By simulating ISCAS’99

benchmarks using the Nangate 45 nm open cell library, we show

that the accuracy of these approaches is design dependent, and

requires up to 15% added design margin.

I. INTRODUCTION

Measurement of operation parameters of integrated circuits
can be done either during run-time using online parameter es-
timation approaches or during production using offline circuit
monitoring. Online estimation approaches set the operation
parameters for the chip based on the feedbacks they receive
from on chip performance monitors. Thus, whenever a change
in environmental variations occurs, the system updates the
parameter estimation so that all parts of the chip are able to
function properly at the target frequency. These approaches
are very accurate in estimation and also very efficient in
saving power since margins to compensate for environmental
variations are measured online. On the other hand, this is
rather difficult to implement since the software needs to be
manipulated in order to perform online estimation based on the
feedbacks received from performance monitors. Furthermore,
these techniques are risky for final application since there is
a possibility of failure if some parameters are not managed
properly.

Offline estimation approaches create a pre-characterized
look-up table that links operation parameters to each target
frequency. Since parameter estimation for each chip during
production should be done as fast as possible, running func-
tional tests on CPU to measure operation parameters for each
operating point is not feasible. Moreover, even though using
functional patterns for programmable parts of the design such
as CPU and GPU is possible, the rest of the design such

as interconnects and USB cannot be characterized using this
approach. Hence, performance monitors should be embedded
in the chip structure. Based on the frequency responses from
performance monitors during production, the operation param-
eters are estimated exclusively for each operating point of each
chip. Then, the margins for temperature and voltage variations
as well as aging are added on top of the measured parameters
to make sure that the chip works even in the worst-case
condition. Although these approaches seem very pessimistic
and thus not as power efficient as online approaches, they are
very much cost effective and easier to implement since no
changes in software is needed. Moreover, offline approaches
can be seen as an incremental solution for existing devices,
which mitigates the risk of the design.

Regardless of using online or offline approaches, perfor-
mance monitors should be embedded in the chip architecture
so that based on the frequency responses, the operation param-
eters could be estimated. Many process monitors have been
proposed for both online and offline monitoring from simple
ring oscillators to more complicated design dependent critical
path replicas and in-situ delay monitors. In this paper we
evaluate the accuracy and effectiveness of using performance
monitors for operation parameter estimation. The contributions
of this paper are the following:
• An overview of various on-chip performance monitors for
online and offline circuit adaptation including a discussion
about pros and cons of each approach.
• Investigation of the limitations of on chip performance
monitors in terms of accuracy and effectiveness for ISCAS’99
benchmarks using Nangate 45 nm open cell library with
different process corners.

The rest of this paper is organized as follows. Section
II overviews process monitoring methodologies. Section III
gives some recommendations of suitable process monitoring
techniques based on design specification. Limitations on pro-
cess monitoring methodologies are presented in Section IV
using simulation results on ISCAS99 benchmarks. Section V
concludes the paper and proposes potential solutions for future
work.

II. PROCESS MONITORING METHODOLOGIES

Fig. 1 illustrates a taxonomy of process monitoring
methodologies based on various monitoring architectures. Ac-
cording to this figure, circuit adaptation is done either us-
ing indirect measurement approaches or direct measurement
approaches. Indirect measurement approaches estimate oper-
ating parameters through correlating frequency responses of
performance monitors to the circuit frequency, whereas, direct
measurement approaches set the circuit operating parameters
by monitoring the actual critical paths of the circuit [9].
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Fig. 1. Classification of process monitoring methodologies

A. Indirect measurement approaches

These approaches embed one or various performance mon-
itors in the chip structure. Due to within-die variations, it is
more efficient to place various performance monitors close or
inside the block which is being monitored so that all types
of process variations are captured and taken into account for
parameter adaptation. The number of performance monitors
depends on the size of the chip. There is no interaction between
performance monitors and the circuit.

To be able to estimate the circuit frequency based on
performance monitor responses during production, the cor-
relation between performance monitors and circuit frequency
should be measured during characterization, which is an earlier
stage of manufacturing [1]. This procedure is done for the
amount of test chips representative of the process window to
find the correlation between performance monitors and circuit
frequencies. Once the performance monitors are tuned to the
design during characterization, they are ready to be used for
parameter adaptation for each chip during production. Fig. 2
shows an example of a chip with multiple voltage islands,
among which performance monitors are distributed. During
production, based on the frequency responses from these
monitors, the circuit frequency is estimated so that operating
parameters can be adapted to each voltage domain of the chip.

Various performance monitoring structures have been pro-
posed from simple generic ring oscillators to more complicated
design dependent critical path replicas. The technique pre-
sented in [3] implements replica-paths, representing the critical
paths of the circuit. Alternatively, the critical path replica can
be replaced by fan-out of 4 (FO4) ring oscillator [4] or a delay
line [5]. They claim that with varying operating conditions, the
timing of monitors will change similarly to the actual critical
path. Moreover, the method presented in [6] synthesizes a
single representative critical path (RCP) for post-silicon delay
prediction. They claim that the RCP is designed such that it is
highly correlated to all critical paths for some expected process
variations.

However, as the technology scaling enters nanometer
regime, specially from 45 nm onwards, finding one unique
critical path has become impossible. Depending to the process
corner, voltage and temperature variations, and also workload
many different timing paths might become critical, therefore,
for real circuits the concept of finding one critical path and
create a critical path replica as a performance monitor is
too simplistic. As a result, regardless of using generic ring
oscillators or design dependent replica paths, the characteri-
zation phase should be done to find the correlation between
monitoring responses and the actual performance of the circuit.

The process monitors, which are widely used today for
many products, are ring oscillators designed based on the most
used cells extracted from the potential critical paths of the
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Fig. 2. Operating parameter estimation using indirect measurement ap-
proaches

design, reported by static timing analysis. So, based on the
design, some standard logic cells are put in an oscillator to
form performance monitors, which will be distributed among
the chip to capture all kind of variations. During characteri-
zation, performance monitors are tuned to the design so that
during production, according to the frequency responses of
performance monitors, the operation parameters are adapted
to each chip.

B. Direct measurement approaches

Direct measurement approaches estimate operation param-
eters by monitoring actual critical paths of the circuit. These
approaches add one in-situ delay monitor per critical path. In-
situ delay monitors are special latches or flip-flops, included
at the end of critical paths to report the timing behavior of the
circuit [7]. Circuit delay characterization using in-situ delay
monitors can be done in two different ways. The first is by
observing the regular operation of a circuit and to detect
timing errors in the circuit itself during operation. With the
error information, the critical operation parameters, which are
needed for correct operation, can be determined. The second
possibility is to observe an over-critical system. Here, a test
module which is always slower than the most critical part of
the chip is observed, and as soon as the test module fails, the
system predicts a delayed data transition called a pre-error [8].

For the in-situ monitors, which are able to detect timing
errors, error recovery circuits are needed to repeat single com-
putations after malfunction. In contrast, for in-situ approaches
which detect pre-errors, no additional hardware effort and
complexity for the recovery circuitry is needed, thus, these
approaches are easier to manage. Fig. 3 shows an in-situ delay
flip flop which detects pre-errors. These in-situ flips flops
detect pre-errors when the timing slack in critical paths drops
below a certain value. The idea is to reduce the operation
parameters as long as no pre-error is detected and to raise
the operation parameters as soon as the pre-error rate is above
a certain value.

III. WHICH APPROACH SUITS A DESIGN?

In this section we compare indirect measurement versus
direct measurement approaches in terms of accuracy, tuning
effort, impact on design planning, implementation risk, and
area overhead as illustrated in Table I. With regard to accuracy
and tuning effort, direct measurement approaches are very
accurate and no tuning effort is needed, since they monitor
the actual critical path of the circuit, and there is no need to
add safety margins on top of the measured parameters due to
inaccuracies. However, for indirect measurement approaches,



TABLE I. COMPARISON OF DIRECT MEASUREMENT VS. INDIRECT MEASUREMENT APPROACHES

Technique Accuracy Tuning effort Impact on design planning Implementation risk
Direct measurement high none high medium to high
Indirect measurement medium high low low
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Fig. 3. Structure of in-situ flip-flops which detect pre-errors

since there is no interaction between performance monitors
and the circuit, the correlation between performance monitor
responses and the actual performance of the circuit is estimated
during the characterization phase using the amount of test
chips representative of the process window. Since there are
discrepancies in the responses of same performance monitors
from different test chips, the estimated correlation between the
frequency of performance monitors and the actual performance
of the circuit could be very pessimistic, which results in
wasting power and performance. Hence in terms of accuracy
and tuning effort, direct measurement approaches always win.

To validate our claim of low accuracy of indirect measure-
ment approaches, we have done silicon measurement on 625
devices manufactured using nanometric FD-SOI technology
[10]. 12 performance monitors (PM) are embedded in each
device. First, we have measured the real value of optimal
voltage (Vmin) for each chip using test patterns. Then, we
set an arbitrary voltage for each chip and collected frequency
responses from all 12 performance monitors. Finally, we
mapped each frequency response of a PM to the Vmin of the
chip in which that PM is located. Fig. 4 shows an example of
such a plot for one specific PM on all 625 devices measured.
To quantify the amount of this discrepancy in this figure, for
each value of frequency response, we have looked for the Vmin
variation. We take the maximum amount of this variation as
the Vmin discrepancy for that PM. We measured the amount
of Vmin discrepancy for all 12 monitors, the result of which
is presented in Fig. 5. This figure also presents the wasted
power as a results of inaccuracy in Vmin estimation using
performance monitors. Results show that minimum voltage
estimation based on performance monitors lead to nearly 10%
of wasted power on average and 7.6% in the best case, when
a single PM is used for performance estimation.

In terms of planning effort and implementation risk,
direct measurement approaches are considered very risky and
intrusive since adding flip-flops at the end of critical paths
requires extensive modification in hardware and thus incurs
a high cost. Moreover, for some sensitive parts of the de-
sign, such as CPU and GPU, which should operate at high
frequencies, implementing direct measurement approaches is
quite risky since it affects planning, routing, timing conver-
gence, area, and time to market. On the other hand, indirect
measurement approaches are considered more acceptable in
terms of planning and implementation risk, since there is
no interaction between performance monitors and the circuit,
hence, performance monitors can even be placed outside
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Fig. 4. Example of Vmin discrepancy for one PM on all 625 devices measured
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Fig. 5. Inaccuracy in the minimum operating voltages estimated using
different performance monitors [10]

the macros being monitored, but not too far due to within
die variations. Consequently, indirect measurement approaches
seem more manageable due to the fact that they can even be
considered as an incremental solution for existing devices and
the amount of hardware modification imposed to the design
is very low. Consequently, according to the application, one
can decide which technique more suits a design. For example,
for medical applications accuracy and power efficiency are far
more important than the amount of hardware modification and
planing effort, while, for nomadic applications, such as mobile
phones, tablets, and gaming consoles, cost and the amount of
hardware modification are considered the most significant.

IV. LIMITATIONS OF INDIRECT MEASUREMENT
APPROACHES

As we discussed earlier, indirect measurement approaches
estimate operation parameters based on responses from perfor-
mance monitors with no interaction with the circuit. In deep
sub-micron technologies, performance monitors are showing
limitations to accurately estimate the silicon performance.
Within die variations and the amount of parameters that should
be taken into account tend to prevent accurate computation
of needed optimum operation parameters for a given target
frequency. To investigate the variability of critical paths of
a design in different corners, first we present an industrial
case study regarding critical path variability of a nanometric
FD-SOI device through static timing analysis. Next, in order



TABLE II. PERCENTAGE OF CLOCK PERIOD SPENT ON 5000 MOST
CRITICAL PATH IN 16 CORNERS

Corner % of clock period Corner % of clock period
1 13.63 9 13.42
2 13.95 10 6.34
3 4.86 11 9.13
4 11.60 12 12.41
5 9.55 13 15.59
6 9.08 14 9.89
7 12.47 15 17.02
8 4.75 16 8.46
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Fig. 6. Percentage of unique paths out of the 5000*16 critical paths present
in 1 to 16 corners [10]

to generalize the idea of critical path variability as a result
of process and environmental variations, we back up the
industrial case study through simulation results on ISCAS’99
benchmarks using Nangate 45 nm open cell libraries.

A. Case study

We have done timing analysis on a nanometric FD-
SOI device in sixteen corners with different process and
environmental conditions [10]. For each of the sixteen
functional corners, we have extracted the 5000 most critical
paths of the device. The path lists are sorted from the most
critical path to less critical.

In order to understand if five thousand paths are enough
for our study, we have computed the distribution of these
paths compared to the clock cycle. The objective is to check
whether the spread of 5000 paths represents very small part
of the clock cycle, which requires to increase the number
of paths or is considered enough. For each corner, we have
computed paths spread as follows:

Spread = (slack5000 � slack1)/(Tclock

) (1)

where slack5000 is the slack of the 5000th critical path,
slack1 is the slack of the most critical path, and T

clock

is the
clock period. Table II presents the percentage of clock cycle
spent on the 5000 most critical path in 16 corners. As it can
be seen in this table, depending on the corner, the spread of
5000 paths spans the range from 4.75% to 17% of the clock
period, which is considered as enough for our study.

From the sixteen lists of 5000 critical paths, we have
extracted the total number of unique paths. We have found
25936 unique paths out of 5000*16. Fig. 6 shows the
percentage of the 25936 paths present in 1 or more corners.
In this case, only 35.8% of paths are present in 1 corner, and
only 53% are present in one or two corners. Two third of the
paths are present in maximum 3 corners. None of the paths
are present in the list of critical paths of all 16 corners, which
means it does not matter which critical path we choose, it
does not stay critical even within 5000 most critical paths of
all corners.

These results show that identifying a critical path that
covers all the corners is not possible. Therefore, when a path
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Fig. 7. Performance estimation error using the critical path of another corner
[10]

is the most critical in a corner, it is important to know how
this path is changing across various process, voltage and
temperature conditions. Suppose that P

x

is the critical path of
corner X , P

y

is the critical path of corner Y . First, we have
computed the distance of the P

x

from P

y

for all 16 corners
against each other in terms of delay. Then, we measured the
maximum as well as the average error for each corner if we
assume that the critical paths of other corners are the most
critical in that corner. Fig. 7 presents average and maximum
error measured when the critical path of corner X is used to
evaluate performance in corner Y . Results are presented in
% of clock period and have been clamped to the value of
the 5000th path of the corner Y list. Based on these results,
whatever the critical path and the corner we take, maximum
error is above 10% of the clock cycle.

B. Simulation set up

This subsection explains the definition of parameters in
order to characterize the simulation results. We use Nangate
45 nm open cell library [11] to investigate critical path
variability on ISCAS’99 benchmarks [12] using Cadence RTL
Compiler. ISCAS’99 contains 29 designs from small circuits
with 21 cells to more complicated designs with almost 44 K
cells. Nangate 45 nm library contains 5 different process
corners with different characteristics in terms of process and
environmental variations. These corners are typical, fast, slow,
low temperature (low), and worst low (worst).

In order to characterize the results, we defined a parameter
named error

max

which is measured for each design. If we
assume the critical path of each design is the critical path
of the typical corner, error

max

is the maximum percentage
of critical path delay change when measured in the other
corners. The concept relates to how much margin should be
taken into account due to inaccuracies as a result of critical
path variability in different corners, if we assume that for each
design the critical path remains critical in all process corners.
To be able to measure error

max

for each design, first we
check if the critical path in each corner is different from the
critical path of the typical corner. In the case of critical path
difference, we measure error

corner

for the process corner by:

error

corner

= (P

corner

� P

typ

)/P

corner

(2)
where P

corner

is the delay of the critical path in that corner,
and P

typ

is the delay of the critical path of the typical corner
in that corner. Once error

corner

is measured for all process
corners, error

max

can be obtained for the design by:

error

max

= max

all corners
[error

corner

] (3)



TABLE III. PERCENTAGE OF error

max

FOR ISCAS’99 BENCHMARKS
USING NANGATE 45 NM LIBRARY

Benchmark # Cells error

max

Benchmark # Cells error

max

b01 30 6.93 b15 3142 0
b02 21 0.10 b15 1 3141 0
b03 76 11.65 b17 9559 0
b04 196 6.29 b17 1 9584 0
b05 390 2.85 b18 22175 15.03
b06 29 1.35 b18 1 22093 0
b07 179 0.84 b19 43916 9.24
b08 71 0 b19 1 43822 0.23
b09 94 0.52 b20 3970 0.69
b10 110 0 b20 1 4025 0.71
b11 326 0 b21 4022 0.72
b12 547 4.19 b21 1 4082 0.71
b13 154 0 b22 6102 1.12
b14 1967 0.69 b22 1 6164 0.74
b14 1 2043 0.67 - - -
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Fig. 8. Percentage of error

max

for ISCAS’99 benchmarks using Nangate
45 nm library

To further elaborate on how error is measured for each
design, here we calculate error for one of the benchmarks
(b03) with 76 cells. The delay of the critical path of the
design in typical corner is 678ps. We name this path as P

typ

.
In the fast corner, P

typ

is not critical anymore. It drops to
the 55th path with the delay of 424ps, while the delay of the
critical path of the fast corner (P

fast

) is 453ps. So, error
fast

can be measured by:

error

fast

= (453� 424)/453 = 6.40% (4)

In the slow corner, P

typ

stays critical, thus error

slow

equals to zero. For the low temperature corner, P
typ

drops to
the 247th path, and for the worst low corner, P

typ

drops to
the 12th path, hence the errors can be measured in the same
way. error

low

equals to 11.65%, error
worst

equals to 2.12%.
Consequently, error

max

is obtained by:

error

max

= max[error

fast

, error

slow

, error

low

, error

worst

]

(5)
= max[6.40%, 0, 11.65%, 2.12%] = 11.65% (6)

The error

max

is measured for all 29 ISCAS’99 benchmarks,
the result of which is presented in the next subsection.

C. Simulation results

Fig. 8 illustrates the error

max

for all 29 ISCAS’99 bench-
marks. As shown in this figure, although for some designs the
error is zero or negligible, for some other designs the error is
rather high and for one case, b18, it even reaches 15%. Table
III presents the detailed simulation results for all 29 ISCAS’99
benchmarks. According to this table, it is not possible to find

a unique critical path for most designs, which stays critical
in all 5 corners. Therefore, in order to investigate if the error
further can be reduced, we took into account all the paths,
which become critical in different corners for performance
evaluation.

In order to discover if the error can be reduced for the
designs with non-zero error

max

, we estimated delay of each
design based on all critical paths in all corners as well as the
average critical path delay. To further elaborate, we perform
the procedure for benchmark b01 as an example. Let P1, P2,
and P3 be the paths of b01 that become critical in one or
more of the 5 process corners. As it can be seen in Table IV,
P1 is the critical path of the typical and slow corners; P2 is
the critical path of the fast and low temperature corners; P3

is the critical path of the worst low corner. P1P2P3 is the
average delay of these three critical paths. We let the circuit
delay in each corner be the maximum delay of all critical paths
(delay). We performed a linear least square regression analysis
of the correlation between circuit delay and the delay for each
critical path as well as the average critical path delay. The 4
regression functions are defined as:

est

P1 = Func1(P1) (7)
est

P2 = Func1(P2) (8)
est

P3 = Func1(P3) (9)
est

P1P2P3 = Func1(P1P2P3) (10)
Based on these 4 functions, we computed the delay of the
circuit as est

P1, est
P2, est

P3, and est

P1P2P3. The estimated
delay of b01 is defined as the maximum value of 4 estimations
in each process corner (column est

max

in the table).
For the est

max

values, we calculated the estimation errors
(error

est

) as the difference between est

max

and delay, as
shown in Table V. According to the table, although we consid-
ered all critical paths of b01 to estimate the circuit delay, there
is still an estimation error of up to 4.5% in delay estimation
for different process corners (error0

max

). We performed the
same procedure for all benchmarks with non-zero error

max

,
the results of which are presented in Table VI. Based on this
table, the error can be reduced up to 98.8%, which is for
benchmark b07. However, although we estimated the design
delay considering all critical paths of all corners, there is still
some unacceptable error present for some designs such as b18.
The error of b18 is reduced by 47.11%, remained 7.95% out
of 15.03%, but still this error is not negligible.

Furthermore, simulation does not fully reflect the actual
variations on manufactured silicon. On a physical circuit, other
sources of variation, such as within-die variations and IR-drop
could promote paths which are not reported as critical by
static timing analysis, but will become critical on real silicon.
Table VII illustrates paths which are ranked top 9 in one of
the corners and the highest ranking of that same path in all
other corners. According to this table, a path ranked 1 in
one corner, drops above the rank 5000 in one of the other
corners. Therefore, for more accurate delay estimation, more
paths should be taken into account. The more paths we can
cover, the more accurate the delay estimation will be.

We further investigated on the reason of the variability in
error

max

for different designs. Each gate behaves differently
when being exposed to process and environmental variations.
Thus, corner changes incur a different error value to each
design according to the gate structure of the critical path



TABLE IV. DELAY ESTIMATION IN [PS] OF BENCHMARK b01 USING CRITICAL PATHS OF ALL CORNERS AS WELL AS THE AVERAGE CRITICAL PATH
DELAY

Corner P1 P2 P3 P1P2P3 delay est

P1 est

P2 est

P3 est

P1P2P3 est

max

Typical 360 356 354 356,66 360 368,26 367,58 367,73 376,21 376.21
Fast 226 238 235 233 238 235,85 233,96 232,87 245,76 245.77
Low 188 202 199 196,33 202 198,30 193,19 192,08 207,09 207.09
Slow 1158 1052 1049 1086,33 1158 1156,76 1155,73 1155,31 1145,86 1156.76
Worst 316 326 326 322,66 326 324,78 333,61 336 340,35 340.35

TABLE V. ERROR ESTIMATION OF BENCHMARK B01 FOR ALL
CORNERS

Corner error

est

Typical 4.5
Fast 3.26

Low temp 2.52
Slow 0.11

Worst low 4.40
error

0
max

4.50

TABLE VI. ERROR ESTIMATION OF ISCAS’99 BENCHMARKS WITH
NON-ZERO error

max

USING CRITICAL PATH OF ALL CORNERS AS WELL
AS THE AVERAGE CRITICAL PATH

Benchmark error

0
max

reduction Benchmark error

0
max

reduction
b01 4.50 35.1 b18 7.95 47.11
b03 6.40 45.1 b19 1.94 79.00
b04 3.04 51.7 b19 1 0.08 65.22
b05 1.83 35.8 b20 0.35 49.28
b06 1.19 11.8 b20 1 0.48 32.4
b07 0.01 98.8 b21 0.46 36.1
b09 0.35 32.7 b21 1 0.48 32.4
b12 1.30 68.9 b22 0.46 58.9
b14 0.47 31.9 b22 1 0.48 35.14
b14 1 0.47 29.8 - - -

of the design. To prove this point, we designed one of the
benchmarks, b03, using only NAND logic. As it can be seen in
Table III, b03 is a small design with 76 cells, but the error

max

is rather high, 11.65%. By designing using only NAND logic,
the error dropped to 0. However, since there is no simulated
variation of RC delay in different process corners of Nangate
45 nm library, in actual circuits, a small error might be present
in this case as well.

V. CONCLUSIONS AND FUTURE WORK

For some products such as nomadic applications, cost
and design customization effort are considered significant.
Despite the accuracy and effectiveness of direct measurement
performance monitoring approaches, cost versus benefit is not
proven since the implementation risk and the impact on design
planning is high. Thus, indirect measurement performance
monitoring approaches are considered more manageable for

TABLE VII. TOP 9 CRITICAL PATH RANKING OF B14 IN DIFFERENT
CORNERS

Least rank Highest rank Least rank Highest rank
1 297 5 869
1 >5000 5 18
1 26 6 862
2 646 7 1165
2 56 8 902
3 496 8 21
3 71 8 34
4 2493 9 423
4 3967 9 4902
4 27 9 47
5 1429 - -

many low cost products. However, in deep sub-micron tech-
nologies, indirect measurement approaches are showing limi-
tations to accurately estimate silicon performance, which leads
to unnecessary power loss. Based on simulation results on
ISCAS’99 benchmarks as well as static timing analysis of
a nanometric FD-SOI device, we showed that depending on
the design, critical path can change dramatically as a result
of PVT variations. Thus, the accuracy and effectiveness of
indirect measurement approaches is low.

Our future work will concentrate on solutions to avoid these
limitations. One possible solution could be using delay test
patterns for delay estimation of a design. The main challenge
of using test patterns for delay estimation is that there should
be a reasonable correlation between delay test patterns and
functional test patterns. Test time should also be reasonable
compared to the indirect measurement approaches which are
very fast during production.
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