
Exploration of Alternative GPU Implementations of
the Pair-HMMs Forward Algorithm

Shanshan Ren
Computer Engineering Lab

Delft University of Technology
2628CD Delft,The Netherlands

s.ren@tudelft.nl

Koen Bertels
Computer Engineering Lab

Delft University of Technology
2628CD Delft,The Netherlands

k.l.m.bertels@tudelft.nl

Zaid Al-Ars
Computer Engineering Lab

Delft University of Technology
2628CD Delft,The Netherlands

z.al-ars@tudelft.nl

Abstract—In order to handle the massive raw data generated
by next generation sequencing (NGS) platforms, GPUs are widely
used by many genetic analysis tools to speed up the used
algorithms. In this paper, we use GPUs to accelerate the pair-
HMMs forward algorithm, which is used to calculate the overall
alignment probability in many genomics analysis tools. We firstly
evaluate two different implementation methods to accelerate the
pair-HMMs forward algorithm according to their effectiveness
on GPU platforms. Based on these two methods, we present
several implementations of the pair-HMMs forward algorithm.
We execute these implementations on the NVIDIA Tesla K40
card using different datasets to compare the performance. Exper-
imental results show that the intra-task implementation has the
highest throughput in most cases, achieving pure computational
throughput as high as 23.56 GCUPS for synthetic datasets.
On a real dataset, the inter-task implementation achieves 4.82x
speedup compared with a vectorized implementation executed on
a 20-core POWER8 system.

I. INTRODUCTION

Compared with first generation sequencing technology, Next
Generation Sequencing (NGS) technology [1] is fast, low-cost
and high-throughput, which brings great opportunities for new
discoveries in disease diagnosis and personalized medicine.
The raw DNA data produced by NGS platforms need to be
processed by a series of complex genomic analysis tools to
turn into meaningful data for genomic research, which is
referred as to NGS data analysis. However, due to the large
size of used datasets, it would take long time to perform NGS
data analysis, even using high-performance systems or big
clusters. Acceleration of genetic analysis tools is needed to
render them more efficient.

Since many bioinformatics workloads are easy to execute
in parallel, we can use dedicated hardware, such as GPUs and
FPGAs, instead of general-purpose processors, to accelerate
the computationally intensive algorithms and achieve large
speedups. For example, the Smith-Waterman algorithm, widely
used to identify optimal sequence alignment of two sequences,
can be implemented on GPUs and FPGAs to improve the
performance [2][5].

The pair-HMMs (pair hidden Markov models) forward
algorithm (or PFA) is used to calculate the overall alignment
probability of two sequences, making it a common algorithm
in many genetic analysis tools, such as [6][7]. However, PFA
consumes a large proportion of the overall execution time

of the GATK HaplotypeCaller. In this paper, we implement
PFA on GPUs in order to reduce its execution time and thus
improve the overall performance.

In this paper, we present the following contributions: (1)
evaluate two methods to implement PFA on GPUs; (2) present
several implementations of PFA on GPUs based on these two
methods; (3) discuss the performance of these implementations
with different datasets on GPUs.

The rest of this paper is organized as follows: Section II
presents a brief overview of related work and describes the de-
tails of PFA. This section also evaluates two acceleration meth-
ods on GPUs: inter-task and intra-task. Section III presents
two implementations of the inter-task acceleration method,
while Section IV shows three implementations of the intra-task
acceleration method. Section V discusses several GPU-specific
optimizations. Section VI presents the experimental results
of different GPU implementations. Section VII concludes the
paper and discusses future work.

II. BACKGROUND

A. Pair-HMMs Forward Algorithm

In this paper, we mainly focus on PFA in the way it is
defined in the GATK HaplotypeCaller, in which PFA takes a
read and a haplotype as the input and calculates the overall
alignment probability [3]. Equations (1) to (3) define how PFA
is performed in the GATK HaplotypeCaller. In these equations,
m and n are the length of the read R and the haplotype H ,
respectively. Mi,j stands for the overall alignment probability
of two sub-sequence R1. . .Ri and H1. . .Hj . Ii,j stands for
the overall alignment probability of R1. . .Ri and H1. . .Hj

when Ri aligned to gap. Di,j stands for the overall alignment
probability of R1. . .Ri and H1. . .Hj when Hj aligned to gap.

Initialization:
Mi,0 = Ii,0 = Di,0 = 0 (0 ≤ i ≤ m)
M0,j = I0,j = 0 (0 ≤ j ≤ n)
D0,j =

1
n (0 ≤ j ≤ n)

(1)

Recurrence:Mi,j = λi,j(αiMi−1,j−1 + βiIi−1,j−1 + βiDi−1,j−1)

Ii,j = δiMi−1,j + εiIi−1,j

Di,j = ζiMi,j−1 + ηiDi,j−1

(2)

Termination:

Result =

n∑
j=1

Mm,j + Im,j (3)

where λi,j is the emission probability, which has two different
values, depending on the base value of the read at position i
and the base value of the haplotype at position j. αi, βi, δi,
εi, ζi and ηi are transmission probabilities that only depend
on the read position i.

Algorithm 1 Pseudo code of PFA in the GATK Haplotype-
Caller

procedure ALGORITHM(R[], H[], α[], β[], δ[], ε[], ζ[],
η[], λ[])

M ← I ← D ← 0
D0,0...n ← 1

n
for i← 1,m do

for j ← 1, n do
Mi,j ← λi,j ·(αi ·Mi−1,j−1+βi ·Ii−1,j−1+

βi ·Di−1,j−1)
Ii,j ← δi ·Mi−1,j + εi · Ii−1,j

Di,j ← ζi ·Mi,j−1 + ηi ·Di,j−1

end for
end for
return

∑n
j=1Mm,j + Im,j

end procedure

Algorithm 1 shows the pseudo code of PFA used in the
GATK HaplotypeCaller. It uses a two-layer loop to calculate
every element of three matrices M , I and D, which results
in the O(mn) computational complexity of the algorithm.
In the GATK HaplotypeCaller, this algorithm is performed
millions of times, even in smaller datasets such as the 4.3
GB experimental dataset, where the algorithm is executed
more than 3 million times [4]. Thus, acceleration of PFA
is very important to improve the performance of the GATK
HaplotypeCaller and other genetic analysis tools.

As shown by Equations (1) to (3) and Algorithm 1, each
element of M , I and D only depends on the top, left and
top-left neighbor elements in the three matrices. Fig. 1 shows
the data dependency in PFA, which implies that all elements
on the same anti-diagonal of each matrix can be computed in
parallel as there is no data dependency among these elements.
This defines the inherent parallelism of the algorithm, which
could be exploited for algorithm acceleration.

B. Related Work

Previous research on GPU-based acceleration of algorithms
related to HMMs (Hidden Markov models) in computational
biology mainly focuses on HMMer, which is a software suite

Fig. 1. Data dependency in the pair-HMMs forward algorithm

for protein sequence similarity calculation using probabilis-
tic models called profile hidden Markov models (profile-
HMMs) [8][9]. However, the input of the profile-HMMs
forward algorithm in HMMer is composed of a sequence
and a reference database, which is much different from the
input of PFA in the GATK HaplotypeCaller. Here, the input
is composed of many different sequence-pairs, which makes
the data storage and data access on GPUs different from the
GPU implementations of HMMer.

GPUs are also widely used to accelerate the Smith-
Waterman alignment algorithm [2][10], which is similar to
PFA. However, operations of Smith-Waterman are mainly
integer based, while operations of PFA are in the floating-point
domain. Moreover, the equations of PFA have several emission
and transmission probabilities, which makes the register usage
of PFA on GPUs larger than that of the Smith-Waterman
alignment algorithm.

Research on increasing the speed of PFA by optimiza-
tions and acceleration can be found in [11][12][13][14]. Intel
researchers employ vector instructions to reduce the execu-
tion time on Intel processors [11]. In the same way, IBM
researchers provide a vectorized implementation with vector
instructions on POWER processors [12].

In addition, [13] and [14] propose FPGA-based implemen-
tations of PFA on the Convey Computer platform and the IBM
POWER8 platform, respectively. [13] employs a systolic array
to map the algorithm on FPGAs. [14] proposes pipelined PEs
(processing elements) of the systolic array, in addition to using
the CAPI interface of the IBM POWER8 platform, which
makes the data transfer more efficient.

In this paper, we analyze existing GPU acceleration strate-
gies published in the literature to accelerate similar algorithms
and compare their acceleration potential to PFA. Based on this,
the best solution alternative is selected and used to accelerate
the algorithm.

C. GPU Architecture

GPUs are originally designed to process graphics and im-
ages. Due to their highly parallel structure, modern GPUs are
used as accelerators to implement algorithms, which process
large data in parallel. NVIDIA GPUs have a number of
multiprocessors, which are called Streaming Multiprocessors
(SMs), and each SM consists of many cores. Taking the
NVIDIA GeForce GTX TITAN X card as an example, the
card has 24 SMs with each SM consisting of 128 cores. In

total, this card has 3072 cores that can execute in parallel for
algorithms with abundant parallelism.

CUDA (Compute Unified Device Architecture) is a parallel
computing platform and programming model that enables
programmers to use NVIDIA GPUs for general purposed
processing efficiently. In the context of CUDA, when the host
processors launch a GPU kernel, a large number of threads
are generated on the GPU device. Each thread executes an
instance of the GPU kernel. CUDA introduces a two-level
thread hierarchy to organize threads: blocks of threads and
grids of blocks. A grid is a collection of all threads produced
by a GPU kernel and a thread block is a collection of many
threads; a grid consists of many thread blocks, each having the
same number of threads. When mapping hardware architecture
to CUDAs thread hierarchy, a single GPU chip executes one
or more grids; an SM handles one or more thread blocks; a
core handles one or more threads.

D. Two Acceleration Methods on GPUs

According to the characteristics of GPU platforms and
the inherent parallelism of PFA, there are two methods to
accelerate this algorithm on GPUs based on the parallelism
granularity: inter-task parallelization and intra-task paralleliza-
tion.

a) Inter-task parallelization: The general way to accel-
erate an algorithm on GPUs is to map the whole processing of
the algorithm to a single thread, in order to have many copies
of the algorithm running in parallel. Each thread implements
the algorithm independently. This is called inter-task paral-
lelization, which is also called coarse-grained parallelization.

b) Intra-task parallelization: As mentioned in Sec-
tion II-A, in PFA, all the elements on the same anti-diagonal
of the matrices can be computed in parallel. We exploit this
inherent parallelism by mapping the algorithm on a single
thread block. Each thread in the thread block computes the
values of elements in the same column as all threads work
along the wave-front from the top-left to the bottom-right
corner of the matrix (Fig. 1). This method requires a whole
block of threads to compute a single copy of the algorithm.
This reduces the number of copies of the algorithm that can
be executed in parallel on the GPUs compared to the inter-
task parallelization. However, the computation complexity of
the algorithm implemented using this method is reduced to a
linear O(m+ n) instead of the quadratic O(mn) required in
the first method.

In the following sections, we will present several imple-
mentations of the two methods and compare the performance
based on different datasets.

III. INTER-TASK IMPLEMENTATIONS

In this section, we firstly present a naive implementation of
the inter-task method and later present an optimized imple-
mentation, which is based on tiling.

A. Naive Implementation

As mentioned in Section II-D, in the inter-task method, each
thread implements PFA independently. Each thread computes
the overall alignment probability of a read-haplotype pair as
described in Algorithm 2.

Algorithm 2 Pseudo code of PFA using the inter-task method
procedure ALGORITHM(R[], H[], α[], β[], δ[], ε[], ζ[],
η[], λ[])

for i← 1,m do
MU ← IU ← 0
DU ← 1

n
MID ← βi ·DU
for j ← 1, n do

if i > 1 then
MU ← MMj

IU ← IIj
DU ← DDj

end if
DN ← ζi ·MN + ηi ·DN
MN ← λi,j ·MID
IN ← δi ·MU + εi · IU

MID ← αi ·MU + βi · IU + βi ·DU
MMj← MN
IIj← IN

DDj← DN
end for

end for
return

∑n
j=1Mm,j + Im,j

end procedure

In Algorithm 2, each thread employs three vectors in the
global memory to store the values of top neighbor elements,
which are MM , II and DD, while MN , IN and DN are
used to store the values of left neighbor elements. MU , DU
and IU are used to store the data loaded from the MM , II
and DD vectors. MID is used to store the intermediate values
of top-left neighbor elements. By using MID, the algorithm
avoids to load the value of top neighbor elements from the
global memory twice.

Algorithm 2 has two loops to iterate on the all the bases of:
1. the read, and 2. the haplotype. We implement Algorithm 2
to iterate on the read bases in the outer loop and on the
haplotype bases in the inner loop. This way, we need to load
the emission and transmission probabilities only once. On
the other hand, if we iterate on the haplotype bases in the
outer loop, the emission and transmission probabilities need
to be loaded in each iteration, which is equal to the length of
haplotype. Thus, iterating on the read bases in the outer loop
reduces significantly the number of times we need to access
the memory.

B. Tile-based Implementation

In the naive implementation of the inter-task method, the
number of global memory accesses is large. This is because
calculating Mi,j , Ii,j and Di, j involves six global memory

Fig. 2. Execution trace of the inter-task implementation without tiling

Fig. 3. Execution trace of the inter-task implementation with tiling

accesses, three for loading Mi−1,j , Ii−1,j and Di−1,j , and
three for storing Mi,j , Ii,j and Di, j, which amounts to 6 ×
m× n accesses.

In order to reduce the number of global memory accesses,
we employ tiling technique [15]. A tile covers several succes-
sive elements in one column, where the number of elements
is the size of the tile.

Fig. 2 shows the execution trace of each thread without
tiling: it firstly calculates the elements in the first row, then
calculates the elements in the second row, and so on. Fig. 3
shows the execution trace of each thread with tiling (tile size
is 2): it firstly calculates the first tile in the first column, then
calculates the first tile in the second column, until it finishes
calculating the first tile in the last column, after which it starts
calculating the second tile in the first column, and so on.
In fact, the naive implementation could be considered as an
implementation with tile size equal to 1.

When calculating the elements in one tile, each thread only
loads three values used to calculate the first element in the tile
and stores three values of the last element in the tile. Thus, by
executing horizontally tile by tile, the number of total memory
accesses is reduced to (6×m×n) / k, where k is the size of
the tile.

The cost of reducing global memory accesses is that each

thread uses more registers and shared memory to store the
values of Mi,j and Di,j of each element in one tile, which
are used to calculate the elements in the neighboring tile. As
registers and shared memory are scarce resources on GPUs,
the tile size cannot continue to increase. We will discuss the
optimal tile size in Section VI.

C. Optimization by sorting

In CUDA, threads in the same block are divided into
multiple groups of threads called warps. For many NVIDIA
GPUs, there are 32 threads in each warp. The threads in the
same warp execute the same instruction at the same time,
which is referred to as SIMT (Single Instruction Multiple
Thread) execution model.

Although all threads implement PFA independently in this
method, threads in the same warp have to wait for each other to
finish their workload because of the SIMT execution model.
In order to reduce the waiting time, we can sort the pairs
according to the length of reads and haplotypes before sending
them to the GPU.

IV. INTRA-TASK IMPLEMENTATIONS

We firstly show a naive implementation of the intra-task
method and then discuss two modified implementations: the
warp-based implementation and tile-based implementation.

A. Naive Implementation

In the intra-task method, all the threads in the same
block implement the pair-HMMs forward algorithm, shown
in Fig. 4(a). We firstly assume the number of threads is equal
to the length of the read. As mentioned before, all the threads
work in a wavefront mode from top-left to bottom-right, which
is implemented as: at the first step, thread 0 (T0) calculates the
M1,1, D1,1 and I1,1 matrix elements; at the second step, T0
calculates M2,1, D2,1 and I2,1, while T1 calculates M1,2, D1,2

and I1,2; at the third step, T0 calculates M3,1, D3,1 and I3,1,
T1 calculates M2,2, D2,2 and I2,2, and T2 calculates M1,3,
D1,3 and I1,3, etc.

A synchronization function is called after each step to
ensure that the different threads are synchronized. The syn-
chronization function is supplied in CUDA to allow threads
in the same block to cooperate with each other. There are in
total m + n − 1 steps to finish the algorithm in the thread
block, which means there are m+ n− 1 synchronizations in
the implementation.

Although there is no data dependency among elements on
the same anti-diagonal, there are data dependencies among
elements on adjacent anti-diagonals. For example, when T1
calculate M1,2, D1,2 and I1,2, it needs the values of M1,1 and
D1,1 from T0. The data dependencies are realized by storing
data in the shared memory, which is read/written by all the
threads in the same block. We apply vectors in the shared
memory to store these value. The length of the vectors is equal
to the number of the threads. At the beginning of each step,
threads read data from the shared memory and at the end of

Fig. 4. Execution trace of the intra-task implementation (a) without passes
when the number of threads is bigger than or equal to the length of the read
(b) with passes when the number of threads is smaller than the length of the
read.

each step, threads write data into the shared memory. In this
way, threads in the same block are able to exchange data.

When the number of threads is bigger than the length of
the read, the threads are capable of fully processing the read.
However, when the number of threads is smaller than the
length of the read, we divide the calculation into several passes
and store the intermediate data between passes into the global
memory. Fig. 4(b) illustrates this implementation. We assume
the number of threads is 2 and the length of the read is 4.
Thus, there are two passes to implement this algorithm.

B. Warp-based Implementation

Since the synchronization function causes threads to stall
and wait for other threads in the same block, it leads to
lower GPU utilization efficiency. Thus, it is better to reduce
the number of synchronization function calls. This can be
addressed in two ways: warp-based implementation and tile-
based implementation. This section introduces the warp-based
implementation.

As mentioned in Section III-C, due to the SIMT execution
model, threads in the same warp need to execute the same
instruction at the same time. This means threads in the same
warp synchronize with each other without calling a synchro-
nization function. We can make use of this characteristics
by setting the block size to 32, which is called warp-based
implementation. In this way, there is no synchronization in
the warp-based implementation.

In the warp-based implementation, we utilize the shuffle
instructions to exchange data among threads instead of using
shared memory. Shuffle instructions enable thread to directly
read the registers of other threads in the same warp. Thus,
shared memory is not needed for data exchange.

Fig. 5. Execution trace of the intra-task implementation with tiling

As the block size of the warp-based implementation is
32, which is in many cases smaller than the length of the
read sequence, the warp-based implementation needs multiple
passes to process the read. In this implementation, we store
the intermediate results of each pass into the shared memory.

However, the warp-based implementation cannot fully uti-
lize the resources on GPUs due to the small block size.
One way to redeem this is to increase the block size and
make each 32 threads in the same warp implements PFA
independently, which we call improved warp-based imple-
mentation. For example, we set the block size to 128 and
there are 4 warps in each block, each of which implements
PFA independently. In this way, it can utilize more GPU
resources. The disadvantage is that this implementation has to
store the intermediate results into the global memory, which
causes large latency. In Section VI-C, we will discuss the
resource utilization and global memory latency of the warp-
based implementations.

C. Tile-based Implementation

In the inter-task method, we use the tiling technique to
reduce memory accesses. Here, we exploit the tiling technique
to reduce the number of synchronization function calls.

Fig. 5 shows the tile-based implementation of the intra-task
method. In the naive implementation, at each step, each thread
only calculates the value of one element in each column. In
contrast, in the tile-based implementation, at every k steps,
each thread calculate the value of elements in one tile in each
column. Take Fig. 5 for example, where tile size k is 2. At
the first 2 steps, T0 calculates the values of the first tile in the
first column; at the second 2 steps, T0 calculates the values of
the second tile in the first column and T1 calculates the values
of the first tile in the second column, etc.

There are m + dn/ke − 1 synchronizations in the tile-
based implementation with tile size equal to k. However, in
the tile-based implementation, we use more vectors in the
shared memory to store the data exchanged among threads. As
mentioned in Section III, shared memory is a scarce resource
on GPUs. The tile size cannot continue to increase.

Moreover, it increases the number of execution steps. For
example, in Fig. 5, we assume the length of the read and hap-
lotype to be 4 and 6, respectively. In the naive implementation,
it takes 9 steps to compute the result; while, it takes 12 steps
to compute the result in the tile-based implementation. This is
because the elements in each tile are calculated serially.

The tiling technique does not influence the execution steps
in the inter-task method because there are m × n steps in
the implementation with/without tiling. All the elements are
calculated serially in the implementation with/without tiling.

D. Intra-task drawback

The drawback of the intra-task method is that it cannot fully
utilize the GPU computation resources. This is because not all
the threads in the block keep busy. In Fig. 4(a), for example,
at the first 3 steps and at the last 3 steps, some threads are
idle. Only at step 4 all threads are busy. Full utilization is
only achieved while calculating the ”widest” diagonals of the
matrices.

V. GPU-SPECIFIC OPTIMIZATIONS

a) Coalesced Memory Access: On GPUs, coalesced
global memory accesses can reduce the global memory trans-
actions and make good use of the global memory bandwidth.
Thus, global memory accesses are coalesced as much as
possible in all the implementations.

b) Intrinsic Instructions: CUDA supplies intrinsic in-
structions, which work faster than native instructions. For
example, fmaf rn() computes the value of x × y + z as
a single ternary operation instead of two dualism operations.
Thus, the floating-point operations in all the implementations
employ intrinsic instructions.

VI. EXPERIMENTAL RESULTS AND DISCUSSION

A. Experimental Setup

All the experiments are performed on IBM Power System
S824L (82478-42L). This system has two IBM Power8 pro-
cessors (10 cores each) running at 3.42 GHz with 258 GB
of DDR3 memory, and an NVIDIA Tesla K40 card, with
2880 cores, running at up to 745 MHz and offering compute
capability 3.5.

The performance measure of cell updates per second
(CUPS) is widely used in bioinformatics. A CUPS represents
the time for a complete computation of one cell in the matrix,
including all memory operations and corresponding overhead.
The number of cells in a matrix can be calculated by m× n,
where m and n are the length of two sequences (here, read
and haplotype). Given a chunk of read-haplotype pairs, the
GCUPS (Giga cell updates per second) value is calculated by:

∑s
i=1mi × ni
t× 109

(4)

where s is the size of read-haplotype pairs in the chunk, mi

and ni are length of ith read and ith haplotype, and t is the
runtime in seconds. In this paper, except Section VI-E, the
runtime t is the calculation time of the pair-HMMs forward
algorithm on GPUs, which does not include the time to transfer
data between host and GPU.

We firstly use synthetic datasets to compare the performance
of implementations of the inter-task and intra-task methods.
We then use a real dataset to compare the performance of
the GPU-based implementations with the software implemen-
tations.

We generated 8 types of synthetic datasets, which are shown
in Table I. Each one of the 8 datasets is built using read-
haplotype pairs with a specific length. These read-haplotype
pairs are chosen from chromosome 10 of the whole human
genome dataset G15512.HCC1954.1 [14].

TABLE I
SYNTHETIC DATASETS WITH VARIOUS READ-HAPLOTYPE LENGTHS

Dataset 1 2 3 4 5 6 7 8
Read length 27 60 96 101 101 101 101 128
Haplotype length 32 64 96 128 160 192 224 256

B. Implementations of Inter-task Method

Fig. 6 shows the performance of various implementations of
the inter-task method. We set the number of the read-haplotype
pairs in each dataset to 106. Fig. 6 shows that the throughput
of each implementation for all the datasets is comparable. For
example, the throughput of the inter-task implementation with
tile=2 remains around 13 GCUPS for all datasets.

For all the datasets, the throughput of the naive implemen-
tation is much lower than other implementations with tiling.
It indicates that the tiling technique improves performance in
the inter-task method.

The implementation with tile=4 achieves highest throughput
over other implementations with tiling. It explains that the
tile size cannot continue to increase to bigger values. This is
because although the implementations with bigger tile sizes
reduce global memory accesses, they increase the usage of
shared memory and registers, which in turn decreases the
number of active warps and active blocks running on each
SM.

C. Implementations of Intra-task Method

Fig. 7 shows the performance of the implementations in the
intra-task method. The number of the read-haplotype pairs in
each dataset is 106. Unlike the implementations in the inter-
task method, the throughput of the implements in the intra-task
method increases when the length of the read and haplotype
increases, except for the warp-based implementations. For
example, the throughput of the naive implementation for the
different datasets increases from 4.23 GCUPS up to 23.56
GCUPS as the sequence sizes increase.

1 2 3 4 5 6 7 8

Dataset

0

5

10

15

20

25
G

C
U

P
S

naive tile=2 tile=4 tile=6 tile=8 tile=10 tile=12

Fig. 6. Inter-task implementation performance comparison on different
datasets

1 2 3 4 5 6 7 8

Dataset

0

5

10

15

20

25

G
C

U
P

S

intra-task tile=1

intra-task tile=2

intra-task tile=4

original warp-based

improved warp-based

Fig. 7. Intra-task implementation performance comparison on different
datasets

1 2 3 4 5 6 7 8

Dataset

0

5

10

15

20

25

G
C

U
P

S

100 intra-task

1000 intra-task

10000 intra-task

100 inter-task

1000 inter-task

10000 inter-task

Fig. 8. Inter-task/intra-task implementation performance comparison on
different datasets

This is because the computation complexity of the im-
plementations in the intra-task method is O(m + n), which
means that the execution time increases linearly with length.
However, the total number of cells computed is 106 ×m× n
for all the synthetic datasets, which increases quadratically
with length. Thus, according to Equation (4), the throughput
increases linearly with length.

Fig. 7 shows that the throughput of the naive implementation
is bigger than the tile-based implementations. This is because
the tiling technique in the intra-task method increases the num-
ber of execution steps that seems to outweigh the reduction in
the number of synchronization calls.

The warp-based implementations achieve higher throughput
than the naive implementation for the datasets with short
sequence lengths. However, the throughput of the warp-based
implementations become lower for the datasets with large
sequence lengths. For the original warp-based implementation,
the reason is that the number of the active warps on each SM
is 16, which causes that GPU resource utilization is low. When
sequence lengths are small, the advantage brought by reducing
synchronization and shuffle instructions outweigh the resource
under-utilization; however, when the sequence lengths are
large, the situation is the opposite. For the improved warp-
based implementation, the reason is that when the sequence
length is bigger than 32 (warp size), it needs to put the
intermediate result into the global memory. When sequence
lengths are small, the total latency of global memory accesses
is small, which does not outweigh the advantage brought by
reducing synchronization and shuffle instructions; however,
when sequence lengths are large, the situation is the opposite.

D. Intra-task vs Inter-task

This section compares the performance of the best imple-
mentations from these two methods. For the inter-task method,
we use the implementation with tile=4; for intra-task method,
we use the naive implementation. We use 8 types of datasets
to measure the performance. The number of read-haplotype
pairs in each type of datasets is set to 100, 1000 and 10000,
respectively. Fig. 8 shows that the throughput of these two
implementations increases when the number of pairs increases.

As shown in Fig. 8, the throughput of the inter-task imple-
mentation remains nearly the same for all datasets. However,
the throughput of the warp-based implementation increases
with increasing sequence lengths.

Moreover, the intra-task implementation achieves higher
throughput when the number of read-haplotype pairs is 100
and 1000. The main reason is that when the number of
read-haplotype pairs in the dataset is small, the intra-task
implementation utilizes more resources than the inter-task
method. In the inter-task method, each thread calculates the
overall alignment probability of one read-haplotype pair. If
the number of pairs in the dataset is 100, only 100 cores
are utilized, while there are 2880 cores on the GPU card.
With regards to the intra-task method, each block calculates
the overall alignment probability of one read-haplotype pair.
If there are 100 pairs in the dataset and each block has only

32 threads (the worst situation), all the cores on the GPU card
would participate in the calculation theoretically.

E. Real dataset

The real dataset is produced by the GATK Haplotype-
Caller version 3.6 from chromosome 10 of the whole human
genome dataset G15512.HCCI954.1. There are two software
implementations to compare the performance with. One is
programmed in C++ using vector instructions, compiled with
O3 optimization, and profiled on one POWER8 core; the other
is a multicore implementation based on the first one using
OpenMP and it is profiled on two POWER8 processors (20
cores in total).

The real dataset produced by the GATK HaplotypeCaller
is divided into small chunks, which have different number
of read-haplotype pairs ranging from 4 to 38912. As dis-
cussed before, the GPU-based implementation achieves higher
throughput with bigger datasets. We reorganized the dataset
and set the number of read-haplotype pairs in each chunk to
106.

We use the naive implementation of intra-task method and
the tile=4 implementation of inter-task method to run real
dataset. Here, the runtime t used to calculate GCUPS includes
the calculation time of PFA on GPUs and the time used to
transfer data between host and GPU.

TABLE II
PERFORMANCE OF IMPLEMENTATIONS WITH REAL DATASET

Implementations Time (s) Throughput (GCUPS)
Intra-task (original dataset) 47.82 5.28
Intra-task (reorganized dataset) 21.85 11.56
Inter-task (original dataset) 359.25 0.70
Inter-task (reorganized dataset) 19.75 12.79
Software-based (1 core) 1161 0.22
Software-based (OpenMP) 95.16 2.65

Table II shows the results of the six implementations. The
inter-task implementation with reorganized dataset achieved
the biggest throughput, which is 12.79 GCUPS. It is 58.78x
faster than the vectorized implementation on one POWER8
core. It is also 4.82x faster than the vectorized implementation
on a 20-core system. Moreover, the inter-task implementation
with reorganized dataset is 18.19x faster than with original
dataset.

The intra-task implementation with reorganized dataset
is 53.14x faster than the software implementation on one
POWER8 core. It is also 4.36x faster than the parallelized
software implementation with OpenMP on 20 POWER8 cores.
Reorganizing the dataset makes intra-task implementation
2.19x faster.

The GPU implementations with reorganized dataset achieve
larger throughput than with original dataset. However, in most
cases, reorganizing dataset involves the modification of the
source codes of applications. With original dataset, it is better
to use intra-task implementation. Shown in Table II, the intra-
task implementation with original dataset is 7.5x faster than
the inter-task implementation with original dataset.

VII. CONCLUSION

In this paper, we evaluated two methods to map the pair-
HMMs forward algorithm on GPUs and present several im-
plementations for each method. A number of architectural
features have been employed to improve the performance, such
as the tiling technique, warp-based, shuffle instructions and
intrinsic instructions. We realized all the implementations on
an NVIDIA Tesla K40 card. Experimental results show that
intra-task implementation achieves the highest throughput over
other implementations, achieving pure computational through-
put as high as 23.56 GCUPS for synthetic datasets. By using a
real dataset, the intra-task implementation is 4.82x faster than
the vectorized implementation on a 20-core POWER8 system.

In the future, we plan to integrate the GPU-based implemen-
tation of the pair-HMMs forward algorithm into the GATK
HaplotypeCaller to improve the overall performance of the
tool.

REFERENCES

[1] Jay Shendure and Hanlee Ji, Next-generation DNA sequencing. Nature.
Biotechnology 26, 2008, 1135-1145.

[2] Y. Liu, A. Wirawan and B. Schmidt, ”Cudasw++ 3.0: accelerating
smith-waterman protein database search by coupling cpu and gpu simd
instructions”, BMC bioinformatics, vol. 14, no. 1, pp. 117, 2013.

[3] Genome Analysis Toolkit, https://software.broadinstitute.org/gatk/
[4] GCAT: Genome Comparison and Analytic Testing,

http://www.bioplanet.com/gcat
[5] Li TI, Shum W, Truong K: 160-fold acceleration of the Smith-Waterman

algorithm using a field programmable gate array (FPGA). BMC Bioin-
formatics. 2007, 8: I85-10.1186/1471-2105-8-85.

[6] Bjarne Knudsen, Michael M. Miyamoto, Sequence Alignments and Pair
Hidden Markov Models Using Evolutionary History. J. Mol. Biol., 2003,
333, 453-460.

[7] DePristo M, et al., A framework for variation discovery and genotyping
using next-generation DNA sequencing data. 2011 NATURE GENETICS
43:491-498

[8] Xiaoqiang Li, Wenting Han, Gu Liu, Hong An, Mu Xu, Wei Zhou, Qi Li ,
A Speculative HMMER Search Implementation on GPU, 2012 IEEE 26th
International Parallel and Distributed Processing Symposium Workshops
and PhD Forum, CHINA, 2012

[9] Jiang H, Ganesan N. CUDAMPF: a multi-tiered parallel framework for
accelerating protein sequence search in HMMER on CUDA-enabled
GPU. BMC Bioinformatics 2016;17:106.

[10] A. Bustamam, G. Ardaneswari, and D. Lestari. Implementation of cuda
gpu-based parallel computing on smith-waterman algorithm to sequence
database searches. In Advanced 17 CILAMCE 2014 Computer Science
and Information Systems (ICACSIS), 2013 International Conference on,
pages 137142, Sept 2013.

[11] https://www.biostars.org/p/96431/
[12] http://gatkforums.broadinstitute.org/gatk/discussion/4833/speed-up-

haplotypecaller-on-ibm-power8-systems
[13] Ren, Shanshan, Sima, Vlad-Mihai and Al-Ars, Zaid. FPGA acceleration

of the pair-HMMs forward algorithm for DNA sequence analysis, IEEE
International Conference on Bioinformatics and Biomedicine (BIBM),
1465-1470, 2015.

[14] Ito, Megumi and Ohara, Moriyoshi. A power-efficient FPGA accelerator:
Systolic array with cache-coherent interface for pair-HMM algorithm.
2016 IEEE Symposium in Low-Power and High-Speed Chips (COOL
CHIPS XIX), 1-3, 2016.

[15] D. Hains, Z. Cashero, M. Ottenberg, W. Bohm, and S. Rajopadhye,
Improving CUDASW, a parallelization of smith-waterman for CUDA
enabled devices, in Proceedings of the 25th IEEE International Parallel
and Distributed Processing Symposium, Workshops and Phd Forum
(IPDPSW’ 11), pp. 490501, May 2011

