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Abstract— CMOS/Molecular (CMOL) memory is one of the
emerging memory technologies that promises increased data
storage, reduced power consumption and minimized fabrication
complexity. The fabrication of these memories is based on the
stacking of non-CMOS-based memory cell array on the top
of CMOS-based peripheral circuits. Similarly to existing 3D
technology, vertical vias are utilized to connect the two compo-
nents. Because of their critical location and small in size, these
CMOS to Non-CMOS Vias (CNVs) are prone to fabrication
imperfection. A defective CNV may cause inaccessibility to
the memory cell array, which in turn decreases the overall
yield and/or reliability. This paper presents a modified CMOL
architecture that mitigates faults due to defective CNVs. It is
based on combining the Redundant Residue Number System
(RRNS) error correction code (ECC) and interleaving. The
number of banks interleaved in CMOL memories is determined
by the ECC capability. Simulation results show that by setting
an appropriate ECC capability with the associated number
of banks, 95% to 100% mitigation of defective CNVs can be
realized.

I. I NTRODUCTION

CMOS/molecular (CMOL) memories, proposed by Strukov
and Likharev, are an emerging memory technology to replace
existing solid-state memories as the main data storage [1]–
[4]. Such memories are fabricated by combining two different
device technologies, CMOS and non-CMOS devices, into
one circuit. The use of non-CMOS devices as the memory
cell array, which is stacked on top of the CMOS-based
peripheral circuits, enables the fabrication of CMOL mem-
ories with up to 1 terabit/cm2 data capacity [1], [2]. This
stacked (3D) architecture is realized by the deployment of
sharp-tip CMOS to Non-CMOS Vias (CNVs) that connect
the peripheral circuits and the memory cell array. Existing
field-emission arrays’ silicon tips and metal are the potential
candidates for the CNVs [3]. However, these tiny CNVs are
prone to fabrication deficiency such as open, short, deform,
misalignment, crack, etc [4]–[6]. Consequently, these defects
might introduce permanent and intermittent faults, which in
turn result in low yield and reliability of such memories.

Existing research has addressed defect and fault tolerance
in CMOL memories with schemes like error correction
codes (ECCs), sparing, and reconfiguration [1]–[4], [7]–
[12]. However, using sparing requires the spare memory
cells to be totally fault-free, which are hard to achieve in
CMOL memories. Additionally, reconfiguration is a time-
consuming process that needs testing circuitry and/or de-
fect map to indicate the faulty memory cells. Furthermore,
using well-known ECCs (e.g., Hamming, Bose-Chaudhuri-
Hocquenghem (BCH), Reed Solomon (RS) or Redundant

Residue Number System (RRNS)) alone cannot correct er-
rors originated from CNVs. Therefore, other fault tolerance
schemes to combine with suitable ECC is required to miti-
gate defective CNVs. Besides, the existing research mainly
addresses faults occurred in the memory cell array but no one
has addressed faults due to defective CNVs.

This paper presents a new CMOL memory architecture
that aims to mitigate the faults due to defective CNVs.
The architecture is based on a combination of two fault
tolerance schemes, namely Redundant Residue Number Sys-
tem (RRNS) code and interleaving. In this architecture, the
encoded input data (RRNS codeword) is interleaved before
storing it in the multi-bank organization of CMOL memories.
By doing this, the input data are dispersed to different
memory banks. The defective CNVs that impact multiple
interleaved stored data in one memory bank will only cause a
low number of faults to the read data, which can be corrected
by the decoder. The experiment simulations show that the
proposed architecture achieves better mitigation performance
of defective CNVs as compared to conventional architecture
[1] at no extra cost.

The rest of the paper is organized as follows. Section II
describes the structure, operation and defect types of CMOL
memories. Section III reviews the basic theory of RRNS code
and interleaving. Section IV explains the proposed defect-
tolerant architecture for CMOL memories. Section V presents
the experimental evaluation and the hardware implementation
of the proposed architecture including a comparison with the
conventional architecture. Section VI gives the conclusion.

II. CMOL M EMORIES AND DEFECTTYPES

Figure 1 illustrates the structure of CMOL memories and
the enlarged view of their crossbar-based non-CMOS memory
cell array [1], [3]. The non-CMOS circuit consists of two
crossbar planes of nanowires (or carbon nanotubes) and
molecular non-CMOS devices (e.g., organic molecule, single
electron junction and phase change material [1], [3]) at each
crossbars’ junction. While the nanowire crossbars build up
a matrix-like local interconnect of memory cell array, the
molecular non-CMOS devices function as single memory
cells. Because the state-of-the-art non-CMOS devices are
still in their infancy stage to provide logical operations like
inversion and amplification, scaled CMOS devices are used
instead. The CMOS-based peripheral circuits like encoder,
decoder, etc. are connected to the non-CMOS-based memory
cell array through vertical sharp-tip CNV. The short CNVs
connect a set of CMOS lines to the bottom layer of nanowires,



whereas the long CNVs connect another sets of CMOS lines
to the top layer of nanowires.
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Fig. 1. The structure of CMOS/Molecular memories.

Since CMOL memories are extremely dense and the de-
vices used to build up the circuits are incredibly tiny, they
are prone to defects. The focus of this paper will be defects
in CNVs; such defects may have different origins [1]–[5].

• The fabrication process variabilities (e.g., during polish-
ing, bonding, via formation) of the CNVs might cause
defects like open, short, deform, misalignment and crack.
Such defects may cause permanent or intermittent faults
are the consequences of these defects.

• High current density and high temperature give rise
to electromigration to metal-based CNVs. Such defects
may cause intermittent and eventually permanent faults
are the results of this defect.

Figure 2 depicts the electrical equivalent circuit of the
crossbar-based non-CMOS memory cell array shown in Fig.
1. These nanowire crossbars hold a group of molecular non-
CMOS nanodevices (symbolized as resistive memory cells)
representing a single CMOL memory word. The nanowires
are connected to their corresponding CMOS lines through
the CNVs. If one of the long CNVs is defective, then the
corresponding memory cell cannot be accessed. This becomes
worse if more than one long CNVs are defective where they
may cause multiple faults that impact the memory word. The
problem becomes even worse if the short CNV is defective;
when this happens, the entire single memory word will be
affected. Thus, the short CNVs are more critical than the
long CNVs.
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Fig. 2. Electrical equivalent circuit of one memory word in CMOL.

III. B ACKGROUND

This section reviews the fault tolerance schemes used
in this work. First, it present the RRNS ECC, thereafter
interleaving scheme.

A. Redundant Residue Number System Code

A Redundant Residue Number System (RRNS)(n, k) code
is formed by a group of codewords. An RRNS codeword con-
sists of a group ofk-symbol dataword (callednon-redundant
residues xi), and a group of(n–k)-symbol checkword (called
redundant residues xj) where 1≤i≤k and k+1≤j≤n as
shown in Fig. 3 [14]. The number of residues appended as the
checkword determines the number of erroneous residues that
can be corrected; this defines as error correction capability
t= (n−k)

2 . RRNS code is suitable to correct cluster faults.
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Fig. 3. The structure of RRNS codes.

RRNS encoding is a modulo operation of the input data to
predefined moduli [14]. RRNS decoding is a single or two
steps process:detection andcorrection. The detection process
reads stored data (n residues) and compares to a predefined
legitimate range. If the data is less than the legitimate range,
then it is valid; hence, it is read out of the memory without
any correction. Conversely, if the data is equal or more than
the legitimate range due to faults, then the correction is
eventually executed. The correction step performs an iterative
operation similar to detection, yet using the remaining(n−t)
residues of the read data. Any corrected data within the
legitimate range is regarded as the valid data and is read out
of the memory.

B. Interleaving

Interleaving is a scheme to spread adjacent data in a code-
word across different codewords [15]. This scheme effectively
mitigate cluster fault that impact multiple adjacent data in
an interleaved codeword. This is because they belong to
different original codewords. By combining interleaving with
other fault tolerance scheme (e.g., ECC), these erroneous bits
can be corrected. E.g., four (4,2) RRNS codewordsC are
interleaved resulting into an interleaved stored dataC’ as
follows. Note that, these codewords consist ofn=4 andk=2;
thus they can correct one erroneous residue.

C =







a1 a2 a3 a4

b1 b2 b3 b4

c1 c2 c3 c4

d1 d2 d3 d4






C

′ =







a1 b2 c3 d4

b1 c2 d3 a4

c1 d2 a3 b4

d1 a2 b3 c4







With the interleaving scheme, up to four erroneous residues
can be corrected if they occur in a singleC’ codeword
while the other threeC’ codewords are error-free. E.g., if
all residues of the first interleaved codewordC’1 (i.e., a1,
b2, c3, d4) are erroneous, they are still correctable. This is
because before decoding, the residues are de-interleaved into



C organization where the erroneous residues are re-organized
into a diagonal direction from the top left (the highlighted
cells). At that point, eachC codeword has only one erroneous
residue, which is correctable by the RRNS (4,2) decoder.

IV. PROPOSEDCMOL MEMORIESARCHITECTURE

This section describes the proposed architecture of CMOL
memories based on the two schemes given in Section III.
First, it explains the organization of conventional architecture
followed by the proposed architecture.

A. Conventional Architecture

Figure 4 illustrates the architecture of the conventional
CMOL memories storing RRNS codewords; this architecture
is referred to asconventional RRNS (C-RRNS) [1]. For sim-
plicity and coherency to the explanation given in Section III-
B, only four memory banks that store four RRNS codewords
are shown. Each codeword consists of two non-redundant
residues (i.e.,k=2) and two redundant residues (i.e.,(n–
k)=2), which render to a single residue correction capability
(i.e., t=4−2

2 =1). These four RRNS codewords, i.e.,ax, bx,
cx, and dx where 1≤x≤4 are accessed simultaneously by
asserting the appropriate address. They are written through
the RRNS encoder and read through the RRNS decoder.
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Fig. 4. Conventional CMOL memory architecture.

The shortcoming of this architecture is its low error cor-
rection capability for faults due to defective CNVs. E.g.,
assume that more than one long CNVs (see Fig. 2) of Bank
A are defectives; this may results in more than one erroneous
residues of codewordax. Since the the RRNS code in this
example can only correct one residue, the correct codeword
cannot be recovered.

B. Proposed Architecture

Figure 5 shows the proposed defect-tolerance architecture
for CMOL memories storing interleaved RRNS codewords;
this architecture is referred to asInterleaved RRNS (I-RRNS).
For readability, only the interleaved connections for the first
codeword, i.e.,ax are shown. Interleaver and de-interleaver
units are added after the encoder and before the decoder,
respectively. This implies that the encoded data (RRNS
codewords) are interleaved prior to be stored in the memory
banks. Similarly, the RRNS codewords (stored data) are de-
interleaved before decoding them. It is worth to note that
the interleaving of codewords has to be in such a way that
the stored residues in each bank fits within the word size of
the bank. E.g., since‖ax‖=‖bx‖=‖cx‖=‖dx‖ where ‖ax‖
denotes the number of bits in codewordax, the size of
{a1, a2, a3, a4} (in Bank A of Fig. 4) is the same as that
of {a1, b2, c3, d4} (in Bank A of Fig. 5).
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Fig. 5. Proposed CMOL memory architecture.

The proposed architecture has the advantage of being able
to improve the error correction capability even for cluster
faults, which are expected to be more dominant for CMOL
memories [1], [13]. E.g., if one or more long CNVs in Bank
A are defectives, then the proposed architecture will stillbe
able to provide the correct read data. This is because each
defective long CNV can impact at most one residue of a
codeword, which is still within the error correction capability
of used RRNS code. Even if a critical short CNV in Bank
A is defective, the architecture will still recover the correct
data. Again, this is because in the proposed architecture, only
one residue is shared per memory bank.

In addition to cluster faults, the proposed architecture can
also mitigate random faults as long as the defective CNVs
do not impact two residues belonging to the same codeword.
E.g. in Fig. 5, if the defective CNVs impact residuesa1 in
Bank A and residuec2 in Bank B, the read codewordax and
cx are still correctable. This is because each codeword has
only one erroneous residue, which is within the correction
capability of used RRNS.

V. EXPERIMENTAL EVALUATION AND HARDWARE

IMPLEMENTATION

This section presents the important attributes in assessing
defect/fault tolerance schemes, namely error correction per-
formance, area and time overhead.

All designs including the encoder and decoder of the RRNS
code, interleaver, de-interleaver, memories and fault injection
were described using MATLAB script. The RRNS code is
based on the moduli set{2

d

2
+1−1, 2

d

2
+1, 2

d

2
+1+1, 2

d

2
+2+1}

where d=64 [11], [12]. In the experiment, defective CNVs
were assumed to be completely open. Hence, the cells asso-
ciated with the defective CNVs were assumed to be faulty.
Faults were randomly injected; and the fault rate can be up
to 10% of the memory. The experiment is performed for two
cases:

• Case 1: Defective short CNVs leading to the bottom
layer of nanowires.

• Case 2: Defective long CNVs leading to the top layer
of nanowires.

Figure 6 shows the simulation results of the error correction
performance for C-RRNS and I-RRNS architectures both for
the two cases mentioned above. Overall, I-RRNS outperforms
C-RRNS for both defective CNV cases. Specifically for the
defective short CNVs (i.e., Case 1), I-RRNS ensures 100%
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Fig. 6. Simulation results of C-RRNS and I-RRNS on 64-bit memory.

error correction performance for all fault rates. However,
it is not the case for C-RRNS; the correction performance
decreases linearly with the fault rate approaching 90% at 10%
fault rate. For defective long CNVs (i.e., Case 2), I-RRNS is
still better than C-RRNS. Interesting enough, the difference
between the two architecture becomes more visible as the
fault rate increases; e.g., I-RRNS performs about 1% better
than C-RRNS at 5% fault rate, while it is about 2.5% at 10%
fault rate.

I-RRNS is able to provide better error correction perfor-
mance as compared to C-RRNS for both cases because:

• Case 1: Defective short CNVs may impact all four
residues of I-RRNS codewords, however, the residues
belong to different memory words. During decoding
the erroneous residue can be corrected by the I-RRNS
decoder. Contrarily, the erroneous four residues that form
the C-RRNS codeword belong to the same memeory
word; thus, they always beyond the error correction
capability of the C-RRNS decoder.

• Case 2: Defective long CNVs may impact corrupted
single, double, triple or even all four residues that form
I-RRNS and C-RRNS codewords. As in the first case,
I-RRNS decoder can correct these erroneous residues,
but it is not the case for C-RRNS decoder.

To estimate the area and speed of the encoder and decoder
of both C-RRNS and I-RRNS, the circuits were designed
and synthesized at 90nm CMOS technology using Xilinx and
Synopsys design tools. The synthesized circuits is further
estimated based on 32nm CMOS technology [7]. Similar
results were obtained for both C-RRNS and I-RRNS as shown
in Table I. The table shows that the total area overhead of the
encoder and decoder is<< 1% of 1cm2 CMOL memories
[4]. In addition, their speed realized by both encoder and
decoder is by far below the typical access time of CMOL
memories, which can be 30ns [4]. It must be noted that, the
interconenction delay might incurred in I-RRNS architecture.
However, the delay is insignificant and is ignored in this
paper.

TABLE I

SYNTHESIZED AND ESTIMATED OVERHEAD FOR64-BIT

ENCODER/DECODER FOR BOTHC-RRNSAND I-RRNS.

CMOS Technology Circuit Area (µm
2) Speed(ns)

90nm Encoder 3172.38 1.61
(Synthesized) Decoder 20527.32 4.93

32nm Encoder 198.27 0.16
(Estimated) Decoder 1282.96 0.49

VI. CONCLUSION

This paper has presented a modified CMOS/Molecular
(CMOL) memory architecture that mitigate faults due to
defective CMOS to Non-CMOS Vias (CNVs). The architec-
ture is based on combining the interleaving organization of
CMOL’s memory banks and to the error correction capability
of Redundant Residue Number System. Depending on the
appropriate setting of these two parameters, 95% to 100%
mitigation of defective CNVs can be acheived. Furthermore,
the proposed architecture incurs the same area and time
overhead as compared to the conventional one. Future work
is to investigate the feasibility of using redundant CNVs in
CMOL memories.

REFERENCES

[1] D. B. Strukov and K. K. Likharev, “Prospects for terabit-scale nano-
electronic memories”,Nanotechnology, vol. 16, no. 1, pp. 137–148,
2005.

[2] J. E. Green, C. J. Wook, A. Boukai, Y. Bunimovich, E. J. Halperin, et
al., “A 160-kilobit molecular electronic memory patterned at 101

1 bits
per square centimeter”,Nature, vol. 445, pp. 414–417, 2007.

[3] K. K. Likharev, “Hybrid CMOS/Nanoelectronic Circuits:Opportunities
and Challenges”,J. of Nanoelectronics and Optoelectronics, vol. 3, no.
3, pp. 203–230, 2008.

[4] D. B. Strukov and K. K. Likharev, “Defect-Tolerant Architectures for
nanoelectronic crossbar memories”,Nanotechnology, vol. 7, no. 1, pp.
151–167, 2007.

[5] D. Tu, M. Liu, S. Haruehanroengra and W. Wang, “3D CMOL Based
on CMOS/Nanomaterial Hybrid Technology”,Proc. of the 7th IEEE
International Conference on Nanotechnology, pp. 879–882, 2007.

[6] G. S. Snider and R. S. Williams, “Nano/CMOS architecture using a
field-programmable nanowire interconnect”,Nanotechnology, vol. 18,
no. 3, pp. 1–11, 2007.

[7] F. Sun and T. Zhang, “Defect and Transient Fault-Tolerant System
Design for Hybrid CMOS/Nanodevice Digital Memories”,IEEE Trans.
on Nanotechnology, vol. 6, no.3, pp. 341–351, 2007.

[8] C. M. Jeffery and R. J. O. Figueiredo, “Hierarchical Fault Tolerance
for Nanoscale Memories”,IEEE Trans. on Nanotechnology, vol. 5, no.
4, pp. 407–414, 2006.

[9] H. Naeimi and A. DeHon, “Fault Secure Encoder and Decoder for
NanoMemory Applications”,IEEE Trans. on Very Large Scale Inte-
gration (VLSI) Systems, vol. 17, no. 4, pp. 473–486, 2009.

[10] S. Biswas, T. S. Metodi, F. T. Chong and R. Kastner, “A Pageable,
Defect-Tolerant Nanoscale Memory System”,in Proc. of IEEE Int’l
Symposium on Nanoscale Architecture, pp. 85–92, 2007.

[11] N. Z. Haron and S. Hamdioui, “Using RRNS Codes for ClusterFaults
Tolerance in Hybrid Memories”, inProc. of IEEE Int’l Symposium on
Defect and Fault Tolerance of VLSI Systems,pp. 85–93, 2009.

[12] N. Z. Haron and S. Hamdioui, “Residue-based Code for Reliable
Hybrid Memories”, in Proc. of IEEE/ACM International Symposium
on Nanoscale Architectures, pp. 27–32, 2009.

[13] M. Mishra and S. C. Goldstein, “Defect tolerance at the end of the
Roadmap”, inProc. of International Test Conference, vol. 1, pp. 1201–
1211, 2003.

[14] F. Barsi and P. Maestrini, “Error correcting properties of redundant
residue number systems”,IEEE Transactions of Computers, vol. 2, no.
2, pp. 915–923, 1973.

[15] A.J. van de Goor.Testing Semiconductor Memories, Theory and
Practice. COMTEX Publishing. Gouda. 1998.


