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Abstract—For the current advanced technology nodes, an
accurate, yet fast reliability analysis is needed at design time,
to enable the comparison between different circuit architectures,
and thus a reliability-aware design and synthesis process. To
this end we propose a reliability assessment framework that
is able to estimate more accurately the circuit reliability and
which can be applied to large-scale circuit settings, by: (i) taking
into account the circuit topology (and implicitly its reconvergent
fanouts), the input vectors, the environmental conditions and
fault scenarios, (ii) employing a range of probabilities, i.e., a
Probability Density Function (PDF), instead of hitherto single
probability value, in order to quantify the circuit reliability, (iii)
employing variational inference, to derive the circuit primary
output PDFs, given its primary inputs PDFs, and (iv) adapting
the traditional variational inference approach to exploit the
peculiarities of the probabilistic model afferent to logic circuits,
for convergence speed improvements and thus applicability in
large scale circuits settings.

Index Terms—variational inference, probability density func-
tion, IC reliability.

I. INTRODUCTION

Traditionally, reliability begins to be evaluated late in the
Integrated Circuit (IC) life cycle [1] (i.e., shortly before man-
ufacturing release). However, in the realm of variability and
higher failure probabilities expected for emerging nanodevices
and their afferent interconnects, reliability should be also
addressed upstream, from the early design inception phase
to the in-field operation phase. Building architectures from
prohibitively unreliable emerging nano-devices, expected to
exhibit increased susceptibility to variations (e.g., manufactur-
ing, permanent, and transient failures), requires the inclusion
of reliability as an optimization goal (besides power, area, and
time) in the forthcoming EDA tools. Considering this context,
an accurate yet fast reliability analysis is needed at design
time, to allow for instance, a gate-level comparison of different
realizations of the same logic function and enable a reliability
driven synthesis process.

To this end, various probabilistic analytical approaches for
circuit reliability evaluation have been proposed, such as the
Probability Element (ProxEl) method [2], the Probabilistic
Transfer Matrices (PTM) formalism [3], the Probabilistic
Gate Model (PGM) [4], [5], [6], the single-pass reliability
analysis method [7], [8], the Signal Probability Reliability
Analysis (SPRA) method [9], [10]. Only recently, probabilistic
graphical models, have been applied in the context of IC
reliability evaluation. Most prominently, Bayesian Networks

(BNs) allows one to capture both temporal and spatial circuit
decencies in a comprehensive manner, providing an exact and
minimal probabilistic model for reasoning and inference in
causal logic networks. The BN formalism has been exploited
in [11], [12], [13] for reliability evaluation of small circuits.
The preponderant corpus of past approaches exhibit high
computational complexity for accurate reliability estimates,
which cautions on using them for reliability estimation of
medium and large circuits. Furthermore, hitherto reliability
evaluation approaches customary posit a single value for a
gate probability of failure. While benefiting from a relative
simplicity of implementation, the single-probability approach
may not suffice for accurate reliability assessment. Another
aspect is related to the fact that the majority of previous
approaches evaluate the reliability of a circuit starting from
the gate level and furthermore, most of them rely on the
assumption that all gates have the same reliability. However,
accurate computation of a circuit reliability at gate-level is of
foremost importance, since very small reliability estimation
errors at the gate-level can severely impact the reliability
evaluation of circuits comprising large numbers of gates [14],
[15].

In light of the above we aim to provide a probabilistic
inference framework for reliability assessment that is accu-
rate enough and suitable for fast, large-scale circuit settings.
Instead of using a single probability value to reflect a circuit
reliability, in our view, a promising avenue toward a more
appropriate approach to model the faulty circuits stochastic
behavior, would be to consider a range of failure probabilities,
i.e., a Probability Density Function (PDF). In this paper, we
propose a PDF-based circuit reliability assessment framework,
that yields a more accurate circuit reliability estimate by: (i)
capturing the circuit topology, and its temporal and spatial
correlations (e.g., reconvergent fan-outs), (ii) taking into ac-
count the reliability of individual gates, the workload (input
vectors), environmental conditions variations, and various fault
scenarios, (iii) employing variational inference, to derive the
PDFs of a circuit primary outputs, given its primary inputs
PDFs, and (iv) adapting the traditional variational inference
approach to exploit the peculiarities of the probabilistic model
afferent to logic circuits, for convergence speed improvements
and thus applicability in large scale circuits settings. Our
framework provides a kernel for fast and accurate reliability
evaluation, which is crucial in enabling effective reliability-



aware design and logic synthesis, or run-time reliability based
prediction/diagnosis analysis required in Dynamic Reliability
Management frameworks [16].

The remaining of the paper is organized as follows: Section
II presents the general framework formalism. The proposed
reliability assessment framework is introduced in Section III.
Section IV concludes the paper with a summary of this work.

II. GENERAL FRAMEWORK FORMALISM

One common approach is to quantify the reliability of a
device/gate/circuit in terms of its primary output(s) probability
of failure (i.e., the probability of obtaining an erroneous
logic/voltage level for the primary output(s)). For a better
adherence to faulty circuit stochastic behavior, instead of
using a single probability value for reliability assessment, we
propose to employ a range of probabilities, i.e., a Probability
Density Function (PDF). In order to obtain an accurate circuit
reliability estimate, the reliability assessment methodology
should take into account several aspects, such as: (i) the
circuit topology and implicitly the temporal and spatial (e.g.,
reconvergent fan-outs) correlations, (ii) the reliability of indi-
vidual circuit gates, which may be implemented using different
logic styles, number of devices, and thus require individual
treatment, (iii) the input vectors applied to the circuit (e.g.,
the logic/voltage level and the afferent probability of being in
that level, for each primary input), as well as the correlations
between these inputs, and (iv) the environmental conditions
and the different fault types - with varying frequency of
occurrence - to which the circuit can be exposed at run-time.

In light of the above considerations, the problem statement
is formulated as follows: Given a circuit, with known topology
and possibly layout, its workload (e.g., known primary inputs
vectors logic/voltage levels and their associated PDFs), and
an aggression profile (e.g., temperature, supply voltage, fault
scenarios - fault types and their expected probabilities), one
is interested to determine the PDF of obtaining erroneous
logic/voltage levels for the circuit primary outputs.

To this end, we model the circuit as a directed acyclic
graph, specifically as a Bayesian network. The graph nodes
correspond to circuit gates and wires, and are represented by
continuous random variables (PDFs). The graph arcs represent
the causal relationships between the nodes, thus accounting
inherently for the circuit reconvergent fan-outs. For instance a
gate output is conditionally dependent on the values applied
at its input. Conversely, the absence of an arc between two
nodes, signifies their conditional independence (e.g., the state
of one node does not directly depend on the state of the other
node). To serve our purpose, we discriminate the graph nodes
into the following three sets:

• E, the set of evidence nodes, which are associated to the
PDFs of the circuit primary inputs;

• Y , the set of latent (hidden) nodes, which are associated
to the PDFs of the circuit primary outputs. These are the
PDFs that we would like to infer.

• X , the latent (hidden) intermediary nodes, which corre-
spond to the remaining nodes PDFs.

Thus, given the PDFs of the evidence nodes from E (circuit
primary inputs) and the prior PDFs of the intermediary nodes
from set X (i.e., the initial belief about the gates/wires PDFs
of failure), we are interested to infer the PDFs of the primary
output nodes from set Y . In the following we shall coarsely
describe the methodology to obtain the prior PDFs, followed
by an outline of the primary outputs PDFs inference approach.
These two steps augment the traditional synthesis approach
to achieve design-for-reliability closure [17], as graphically
illustrated in Figure 1. The prior PDFs reflect the initial belief
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Fig. 1. Design-for-Reliability Closure.

regarding the PDF of failure for the case of the considered
circuit aggression profile (i.e., for given fault scenario - fault
types and probabilities of occurrence, and environmental con-
ditions - temperature, supply voltage). These prior PDFs are
obtained during the pre-design reliability characterization step,
which consists of standard cells reliability characterization.
Specifically, for several physical and electrical parameters
variation (e.g., gate oxide thickness, threshold voltage, supply
voltage, temperature), and failure models (e.g., stuck-at-fault,
transient), which can transcend different architectural levels,
the standard cell ancillary reliability information is obtained
by spanning the probability failure space via a Monte Carlo
analysis [18]. This pre-design step is performed only once
for a specific technology. At design-time a gate prior PDF,
is selected from the ensemble of ancillary PDFs attached to
the gate under consideration during the pre-design reliability
characterization step. The PDF selection is made based on
the resemblance of the pre-design aggression profile (environ-
mental, fault scenarios) to the current design-time aggression
profile.
An outline of the proposed circuit reliability assessment -
which is performed at design-time during the second step
from Figure 1) - may now be given. Given the evidence
nodes PDFs and the prior PDFs for the remaining nodes, we
are interested in inferring the posterior PDFs of the output
nodes Y . As concerns the probabilistic inference method, we
opt for variational inference [19] [20], since it serves better
for developing fast, potentially on-line algorithms in large-
scale settings. The general idea of variational inference is to



recast the probabilistic inference problem into an optimization-
based formulation, and express the posterior distribution of
interest as the optimization problem solution. In order to
provide a means of approximating the posterior distribution
of interest (i.e., the PDF of the circuit primary outputs),
the optimization problem is relaxed. Such relaxations can
be carried out in various ways, either by approximating
the function to be optimized, or by approximating the set
over which the optimization is performed [20]. One common
approach is to approximate the posterior distribution of interest
(i.e., the true posterior) with a family of distributions from
which the distribution that is closest to the true posterior is
seeked. The measure of closeness between two distributions
is commonly the Kullback-Leibler (KL) divergence [20]. As
the true posterior is unknown, and in consequence also the
KL divergence, the optimization of the KL divergence is then
usually cast as an optimization of another quantity (i.e., the
evidence lower bound, that is the lower bound on the logarithm
of the marginal probability of the observations), which does
not directly depend on the true posterior. The resulting op-
timized distribution constitutes the approximated posterior of
interest. Figure 2 coarsely illustrates the variational inference
basic principle.
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Fig. 2. Variational Inference Concept.

III. RELIABILITY ASSESSMENT FRAMEWORK VIA
VARIATIONAL INFERENCE

In Subsection III-A, the optimization objective, i.e., the
evidence lower bound, is derived. The commonly employed
evidence lower bound bound in variational inference, denoted
as LXY (q), is a function of both sets of hidden variables
(the intermediary nodes X and output nodes Y ). However,
for our circuit settings, this bound is not suitable, because
of its associated convergence speed drawbacks and its strong
simplifying assumptions (specifically, it neglects the correla-
tions between the intermediary nodes X and the output nodes
Y ). For our purpose, we analytically integrate one set of
hidden variables (e.g., Y ), and thus obtain the bound as a
function of only one set of variables LX(q). The benefits of
this approach are improved convergence speed and a more
accurate estimate of the true posterior, as the bound to be
optimized in this case, LX(q), is tighter than the classical
LXY (q) [21], [22]. As simplifying assumption, we suppose
that the output nodes Y are conditionally independent among
them, given the PDFs of the evidence nodes E, and the PDFs
of the inferred nodes Y . We note that for circuit specific

scenarios, this assumption is always satisfied, as each circuit
output has its own cone of influence and can be computed
independently from the rest of the circuit outputs, given
all primary inputs, and all intermediary nodes. Subsection
III-B and III-C address the optimization algorithm, i.e., a
nonlinear Conjugate Gradient (CG) method, which exploits
the geometry of the curved q distributions space. Specifically,
(i) instead of the classical gradient, the natural gradient is
employed, as it gives the direction of the highest increase in
the optimization objective LX(q), and (ii) the CG method is
performed along curves, instead of straight lines. As the space
of all q distributions is curved, the commonly employed flat
space Euclidian approach can result in a sequence of updates
which significantly deviate from the true curve whose end-
point is the seeked optimization solution. The employed CG
method exhibits a global convergence property and superlinear
convergence speed. The optimization solution yields the best
estimate of the posterior, and thus the circuit primary outputs
reliability.

A. The evidence lower bound

Subsequently, we shall employ the following notations:
• Eg(x) [f(x)] =

∫
g(x)f(x) dx denotes the expectation of

distribution f under distribution g;

• KL [f(x)||g(x)] = −
∫
f(x) log

g(x)

f(x)
dx denotes the

KL divergence between the distributions f and g.
In variational inference, we would like to minimize the KL
divergence from the approximated distribution (i.e., the varia-
tional distribution over the latent variables/parameters X and
Y ), q(X,Y ) and the true posterior, p(X,Y |E). To this end, a
lower bound on the logarithm of the marginal likelihood (i.e.,
the model evidence E), log p(E) is derived, by employing
Jensen’s inequality (logEg [f(a)] ≥ Eg [log f(a)], ∀a random
variable, f and g distributions), as follows:

log p(E) = log

∫
p(E,X, Y ) dX dY

= log

∫
p(E,X, Y )

q(X,Y )

q(X,Y )
dX dY

≥
∫
q(X,Y ) log

p(E,X, Y )

q(X,Y )
dX dY

= Eq(X,Y ) [log p(E,X, Y )]− Eq(X,Y ) [log q(X,Y )]

, LXY (q). (1)

Since log p(E) = LXY (q)+KL [q(X,Y ) || p(X,Y |E)], min-
imizing the KL divergence (which is ≥ 0) is equivalent to
maximizing the lower bound LXY (q), as illustrated in Figure
3. In the commonly and most straightforward variational
inference (Variational Bayes (VB)) framework, the family of
approximate distributions are restricted to a tractable family,
by positing that the variational distribution q factorizes over
the latent variables, e.g., q(X,Y ) = q(X) q(Y ), i.e., X and
Y are conditionally independent, where each factor of q has a
free functional form. The objective is to determine the varia-
tional distribution which maximizes the evidence lower bound
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LXY (q). The obtained optimized distribution q∗ constitutes
the approximation of the true posterior distribution p over the
latent variables/parameters. This approach convergence speed
can be very slow, prohibiting its utilization in large scale
settings. Furthermore, the strong independence assumptions
between the latent variables may place unrealistic or question-
able factorizations, disregarding important correlations among
the graph nodes, and as a consequence resulting in a significant
bias of the posterior distribution estimate.
Rather than assuming the factorization of q over the latent
variables, an approach for a closer adherence to reality would
be to analytically marginalize (i.e., to integrate out) a subset of
the latent variables, and thus to perform the optimization of the
evidence lower bound only with respect to the remaining latent
variables. Besides the improvement in convergence speed, this
approach also provides a more accurate estimate of the true
posterior distribution with a tighter lower bound, as achieved
in several other probabilistic models contexts [22], [21], [23].
Integrating analytically the latent variables Y , a lower bound
on the model evidence with respect to the variables X can be
derived by applying the Jensen inequality, in a similar manner
to the derivation in (1):

log p(E) ≥
∫
q(X) log

∫
p(E,X, Y ) dY

q(X)
dX

=

∫
q(X) log

∫
p(E,X|Y )p(Y ) dY

q(X)
dX

=

∫
q(X) log

Ep(Y ) [p(E,X|Y )]

q(X)
dX

= Eq(X)

[
logEp(Y ) [p(E,X|Y )]

]
− Eq(X) [log q(X)]

, LX(q). (2)

For tractability reasons, a first-order (linear) approximation
[21] of Eq(Y ) [g(X)] with g(Eq(Y ) [X]) is applied to (2),
yielding the following expression for the bound LX(q):

LX(q) = logEp(Y )

[
eEq(X)[log p(E,X|Y )

q(X) ]
]
. (3)

The expression of the optimal approximated posterior is then
given by:

q∗(Y ) =
e
∫
q(X) log

p(E,X|Y ) p(Y )
q(X)

dX

C

=
p(Y ) eEq(X)[log p(E,X|Y )

q(X) ]

C
, (4)

where C is the normalization constant, and is obtained by
integrating the denominator in (4) with respect to Y .
We index the distribution q(X) by a set of variational pa-
rameters θ, and seek the configuration of θ which optimizes
the lower bound LX(q), rendering therefore q∗ which is the
closest to the true posterior p.
The convergence of the algorithm can be monitored by evalu-
ating if the difference between the previous lower bound (for
the previous θ) and its current value (for the current update
of θ) is sufficiently small. The optimal distribution q∗ for the
parameters θ at bound convergence is given by (4), with p(Y ),
the prior distribution of Y . We note that, the lower bound
LXY (q), depends on two sets of variables, whose updates
are interlocked (the bound optimization with respect to each
set is performed while holding the other set fixed). In our
case however, the lower bound LX(q), is expressed only as
a function of one set (the variational parameters) and as such
the lower bound optimization is performed only with respect
to one set of variables. One may further note that the only
assumed factorization in this approach is among the output
latent nodes Y , conditioned by the evidence nodes E and
the approximated nodes X . This can be easily determined
using an independence criterium. The d-separation topological
criterium [24] determines whether a set of nodes A are
conditionally independent of another set of nodes B given a
set of evidence nodes V . In particular the set of nodes A is d-
separated from the set of nodes B by the set V iff at least one
of the following three axioms holds true: (i) every undirected
path contains a sequential node in V (−→ Vi −→), (ii) every
undirected path contains a divergent node in V (←− Vj −→),
and (iii) every undirected path contains a convergent node
(−→ Tk ←−) such that neither the convergent node, nor any
of its descendants are in V . One can observe that for circuit
specific scenarios, as is our case, the independence among the
output nodes conditioned by the rest of the circuit nodes (input
nodes - E, and the inferred nodes X) is always satisfied, since
case (i) always holds true.

B. The gradient of the lower bound LX(q)

Subsequently, we concern ourselves with finding the best
configuration of the variational parameters θ which optimizes
the objective function LX(q). In [25], the authors proved that
the coordinate ascent algorithm is equivalent to the natural
gradient method. Therefore, an update via taking a step in
the steepest direction in the space of variational parameters
θ, using a Riemannian metric (e.g., the natural gradient [26]
which accounts for the space information geometry), is equiv-
alent to performing a coordinate ascent update. To this end,
we evaluate the gradient of the lower bound with respect to
the variational parameters, which gives us the direction of the
coordinate ascent update for the variational parameters θ.

The space of all probability distributions S = {q(X|θ)} is
not Euclidian with an orthonormal coordinate system θ, but a
curved space, namely a Riemannian manifold. In such spaces,



the shortest distance between two points does not correspond
anymore to an Euclidian line, but to a geodesic (i.e., a curve)
following the space curvature. The immediate consequence is
that the steepest descent direction along a manifold path (as
given by the iterative updates of the parameters θ) is different
than the steepest descent direction in the classical Euclidian
parameter space. Specifically, in the case of statistical mani-
folds, the natural gradient corresponds to the direction which
maximizes the objective function LX(θ), such that the KL
divergence KL [q(X|θ) || q(X|θ + δθ)] is not changed through
the optimization (otherwise stated, the natural gradient gives
the direction of the highest increase in the objective function,
for the smallest change in the KL divergence):

∇̃LX(q(θ)) = argmax
δθ

LX(q(X|θ + δθ))

s.t. KL [q(X|θ) || q(X|θ + δθ)] ≤ ε. (5)

It follows then, the expression of the natural gradient:

∇̃LX(q(X|θ)) =W−1(θ) · ∇LX(q(X|θ)), (6)

where W is the Fisher information matrix with wij(θ) =

Eq
[
∇θi log q(X|θ) · ∇Tθj log q(X|θ)

]
. A chief advantage is

the KL-invariance with respect to the re-parametrization of
the family of variational distributions q(X|θ), i.e., the update
direction depends only on q(X|θ), and not on a particular
transformation of the θ parameters; the followed optimization
trajectory in the parameters space is the same, regardless of the
re-parametrization of θ. As a result, as opposed to the vanilla
gradient, the natural gradient exhibits fast isotropic conver-
gence properties. Additionally, it circumvents the slow or early
convergence proneness of the vanilla gradient, avoiding over-
aggressive steps on ridges and too small steps on plateaus, and
hence being able to cope in an efficient manner with ill-shaped
LX(θ).

C. The optimization algorithm

As concerns the nonlinear optimization techniques, we opt
to employ the nonlinear Conjugate Gradient (CG) method,
due to its algorithmic simplicity, superlinear (at least quadrati-
cally) convergence, and suitability for large scale optimization
scenarios. In this method, one determines first the search
direction, Hk, then computes a step size, α (as a result of
a line search, or set adaptively), and finally one updates the
parameters in the search direction using θk = θk−1 + αHk.
In the flat Euclidean space, evaluating the search direction
amounts to computing:

Hk = −Gk + γkHk−1, (7)

with Gk = ∇̃LX(q(θk)), denoting the Riemannian gradient
of the objective function, and with commonly employed γk
variants such as Fletcher-Reeves, Polak-Ribiere, and Hestenes-
Stiefel [27]. The majority of previous gradient-based statistical
inference approaches employ the flat space approximation of
the conjugate gradient [28][29] [30], based on the rationale
that the minimization of functions on a Riemannian manifold
is locally equivalent to the minimization on an Euclidian

space (since every Riemannian manifold can be isometrically
embedded in an Euclidean space). However, as the statistical
space is a curved manifold, most of the Euclidean space
operations become undefined. For instance, the minimization
of L is not performed any longer along straight lines but along
geodesics (i.e., the shortest curves which connect two points on
the manifold). Another example is the additive rule employed
for updating the search direction, which makes no longer sense
in the Riemannian manifold (it has no geometrical meaning),
and as a consequence, the resulting sequence of parameters
updates can significantly deviate from the true geodesic whose
end-point is the optimal solution. Since Hk−1 does not reside
in the same tangent space as Gk, it follows that it needs to be
transported to the tangent space of θk to enable the addition of
the two vectors. This transport operation is known as parallel
translation, or as vector transport, which is basically a com-
putationally efficient relaxation of parallel translation. Figure
4 a) illustrates the CG algorithm in Euclidean space, and
Figure 4 b) depicts its counterpart in Riemannian space. When

a) b)

M

τ(Hk-1)

HkGk
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Fig. 4. The CG in: a) flat (Euclidean) space, and in b) curved (Riemannian)
space.

compared to the flat space approximation, the Riemannian
conjugate gradient provides significant advantages in terms of
convergence speed and accuracy of solution.
In the case of statistical Riemannian manifolds, (7) is gener-
alized to:

Hk = −Gk + γk τ(Hk−1), (8)

where τ(Hk−1) defines the parallel translation of Hk−1 (see
Figure 4 b)). One iteration of the CG algorithm can be
outlined as follows: at iteration k, the Riemannian gradient
Gk of the objective function is evaluated, and the new search
direction Hk for geodesic minimization is conjugate to the
gradient and is evaluated to be a combination of the previous
search direction Hk−1 and the current Riemannian gradient
at step Gk; finally a step is made in the direction of Hk to
obtain θk+1, which is the minimum of the objective function
in the direction of Hk−1. In Algorithm 1, we present the
formalism of the CG method on Riemannian manifolds. In
Algorithm 1, ταkHk

(Hk) is the vector transport associated
with the differentiated retraction R [31], which is scaled when
the norm of the previous search direction is increased [32]
(since a parallel translation of a vector should preserve its
norm). The step size αk is chosen such that it obeys the strong
Wolfe conditions [27] [33], which prevent the step length to
be excessively short.



Algorithm 1 Riemannian conjugate gradient method for op-
timizing the lower bound L
Input: the objective function L :M−→ R
Output: global minimizer of L

Set an initial point θ0 on M
Set the initial search direction H0 = −G0

k = 0
repeat
• Calculate the step length αk > 0
• Take a minimizing step by setting:
θk+1 = Rxk

(αkHk)
• Calculate γk+1

• Compute the new search direction:
Hk+1 = −Gk+1 + γk+1τ

R
αkHk

(Hk)

until θk+1 sufficiently minimizes the objective L

The global convergence of the Riemannian conjugate gradient
was proved in [33]. As concerns the speed of convergence,
using the rescaled vector transport proposed in [32], result in
superlinear convergence of the sequence {θk} to the global
minimizer.

IV. CONCLUSIONS

In this paper we proposed a PDF based IC reliability
assessment framework. For a closer adherence to a faulty
circuit stochastic behavior, we employed a distribution of
probabilities, instead of relying on a single probabilistic value
to reflect the reliability status of an IC. The framework is based
on a variational inference method, and exploits the geometry of
the statistical manifold to yield a fast and scalable reliability
assessment approach, which can be potentially integrated in
reliability aware synthesis tools. The numerical assessment of
the proposed approach for medium and large scale combina-
tional circuits is under progress, and the final manuscript will
include its results.
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