
A Comparison of Seed-and-Extend Techniques in
Modern DNA Read Alignment Algorithms

Nauman Ahmed
Computer Engineering Lab

Delft University of Technology
2628CD Delft,The Netherlands

n.ahmed@tudelft.nl

Koen Bertels
Computer Engineering Lab

Delft University of Technology
2628CD Delft,The Netherlands

k.l.m.bertels@tudelft.nl

Zaid Al-Ars
Computer Engineering Lab

Delft University of Technology
2628CD Delft,The Netherlands

z.al-ars@tudelft.nl

Abstract—DNA read alignment is a major step in genome
analysis. However, as DNA reads continue to become longer, new
approaches need to be developed to effectively use these longer
reads in the alignment process. Modern aligners commonly use
a two-step approach for read alignment: 1. seeding, 2. extension.
In this paper, we have investigated various seeding and extension
techniques used in modern DNA read alignment algorithms to
find the best seeding and extension combinations. We developed
an open source generic DNA read aligner that can be used
to compare the alignment accuracy and total execution time
of different combinations of seeding and extension algorithms.
For extension, our results show that local alignment is the best
extension approach, achieving up to 3.6x more accuracy than
other extension techniques, for longer reads. For seeding, if
BLAST-like seed extension is used, the best seeding approach
is identifying all SMEMs in the DNA read (e.g., approach used
by BWA-MEM). This combination is up to 6x more accurate
than other seeding techniques, for longer reads. With local
alignment, we observed that the seeding technique does not
impact the alignment accuracy. Furthermore, we showed that
an optimized implementation of local alignment using vector
instructions, enabling 4.5x speedup, makes it the fastest of all
extension techniques. Overall, we show that using local alignment
with non-overlapping maximal exact matching seeds is the best
seeding-extension combination due to its high accuracy and
higher potential for optimization/acceleration for future DNA
reads.

I. INTRODUCTION

High throughput DNA sequencing techniques have caused
an enormous decrease in the cost of whole genome sequenc-
ing [1]. This decrease has ushered a new era of genome
analysis for a large number of applications like genetic disease
diagnosis, personalized medicine, agriculture and livestock
trait selection. To extract meaningful information from the se-
quenced genome, it has to pass through various DNA sequence
analysis stages. DNA read alignment or DNA read mapping is
the core stage in this analysis. The DNA sequencing machines
output the sequenced genome in the the form of millions
of short DNA sequences without giving any information
about their actual location in the genome. These short DNA
sequences are known as DNA reads or simply as reads. In
read alignment, the task is to find the actual location of these
DNA reads within a reference genome of the species to which
the sequenced genome belongs.

To align a DNA read of length m to a genome of length

TABLE I. Seeding and extension techniques used in modern
DNA read aligners

Aligner
Seeding Extension

all-
SMEM

nov-
SMEM

fix-len
(0)1

fix-len
(1)2

global local BLAST-
ext

BWA-MEM X X X
Bowtie2 X X X X

Novoalign X X
Cushaw2 X X

1 0 mismatch 2 at most 1 mismatch

n, a dynamic programming algorithm (e.g., Smith-Waterman,
Needleman-Wunsch or alike) will require O(nm) computation
steps. For a human reference genome, n ≈ 3 billion characters
(or bases) long, and therefore, a straight forward application
of a dynamic programming algorithm is impractically slow.
Moreover, in a typical DNA sequencing experiment, there are
hundreds of millions of DNA reads that need to be aligned
against the genome. Most modern DNA read aligners tackle
this problem by using the seed-and-extend approach. The
observation behind this approach is that two highly matching
sequences contain short substrings that are exactly (or nearly
exactly) matching. This approach, pioneered by BLAST [2],
aligns a DNA read in two steps: 1. seeding and 2. extension.
Figure 1 shows the seeding and extension phases in a DNA
read aligner. During seeding, the aligner first finds substrings
of a DNA read that are exactly matching (or nearly exactly) in
the genome at one or more than one places. These substrings
are known as seeds. During extension, the read is aligned
to the region around the location of the seed. Such aligners
are called seed-and-extend aligners. Many modern DNA read
aligners like Novoalign [3], BWA-MEM [4], Bowtie2 [5],
and Cushaw2 [6] are seed-and-extend aligners. Table I shows
the different seeding and extension strategies used by these
aligners (see Section III). In this work, we compare 4 seeding
and 3 extension algorithms found in contemporary DNA read
aligners.

This paper has the following contributions:
• We developed an open source, generic DNA read aligner

that can be used with different seeding and extension
techniques [7].

• We compared different combinations of seeding and ex-
tension techniques for short as well as long read lengths in
terms of accuracy and speed to find the best combinations.

Fig. 1. Seeding followed by extension of short DNA reads
against a reference genome

• We optimized the code of the local alignment extension
technique to achieve the shortest runtime and one of the
highest accuracy combination for longer reads

The rest of the paper is organized as follows: Section II
describes the motivation for this paper. Section III and IV
introduce different seeding and extension techniques used in
the comparison, respectively. Section V presents the details of
the DNA read aligner that we have implemented for the com-
parison. Results of the comparison are shown in Section VI.
Finally, we conclude the paper in Section VII.

II. MOTIVATION

Aligners need to be fast and accurate, and have to rely
on various heuristics to find a good balance between speed
and accuracy. Seeding followed by extension is a heuristic
used by many modern DNA read aligners. With the growing
importance of genome analysis, many fast and accurate seed-
and-extend DNA read aligners have been proposed in recent
times, each having its own seed-and-extend method. The
accuracy and execution time of a DNA read aligner heavily
depends upon the type of seeding and extension technique
used.

There are many comparisons of DNA read aligners in the
literature. A more recent one is given in [8]. There is also a
web based tool for comparing the accuracy of different read
aligners [9]. These comparisons evaluate the complete DNA
read aligner without focusing on the individual stages of a
DNA read aligner. Li and Homer [10] describe different read
alignment techniques used by read aligners. They also give an
overview of different seeding techniques without discussing
their effect on execution time and accuracy on DNA read
alignment. A comparison of different kinds of fixed length
seeds is given in [11]. The effect of these fixed length seeds
on the mapping accuracy and execution time of the DNA read
alignment is not discussed. Maximal exact matching seeds are
not part of the discussion of any previous comparison. In addi-
tion, no previous research has discussed the effect of different
extension algorithms on the mapping accuracy and time of

Fig. 2. Simple seeding example (a) seed length = seed interval
(b) seed length > seed interval (c) seed length < seed interval

the DNA read alignment. Hence, all earlier comparisons in
the literature lack the measurement of the contribution of the
algorithms used in the seeding and extension phase of the
aligner on the accuracy and total execution time of the DNA
read alignment. In this paper we will perform such analysis.

The decreasing cost of DNA sequencing will make
computer-based analysis more viable for different application
domains. Due to this reason one can foresee the emergence
of more DNA read alignment algorithms in the future. This
paper will serve as a guideline for developers of DNA read
aligners in selecting an appropriate algorithm in the seeding
and extension phases of the read alignment process.

III. SEEDING TECHNIQUES

A seed is a substring of the DNA read that is exactly
(or nearly exactly) matching in the genome at one or more
than one places. Modern DNA read aligners use two kind of
seeds: (i) fixed length seeds, and (ii) maximal exact matching
seeds. As listed in Table I, Novoalign and Bowtie2 use fixed
length seeds while BWA-MEM and Cushaw2 use maximal
exact matching seeds.

A. Types of Seeds

1) Fixed length seeds: In this seeding scheme all the seeds
have the same fixed length. They are simply overlapping or
non-overlapping substrings of the read, all having the same
length. Two parameters control the number of seeds generated
from a DNA read. The seed length and seed interval. The
seed interval is the number of the DNA read symbols between
starting point of two consecutive seeds. Figure 2 shows seeds
of DNA read for different relationships between seed length
and seed interval. Decreasing the seed length and/or seed
interval increases the number of the seeds which increases
the sensitivity but at the same time increases the number of
candidate seeds to be extended in the extension phase of the
read alignment resulting in an increase in the computation
time. It is also possible to allow mismatches in a seed. Such
seeds are known as spaced seeds. Novoalign uses fixed length
exact matching seeds. Bowtie2 allows the user to choose
between fixed length exact matching seeds and fixed length
seeds with at most 1 mismatch.

2) Maximal exact matches: A maximal exact match (MEM)
is the longest exact match that cannot be further enlarged
in either direction. Let P and T be the DNA read and
reference string, respectively. Let P [i, j] and T [i, j] be defined
as substring of P and T , respectively, starting from the ith

symbol and ending at jth symbol. Then a MEM of the read
can be defined as a tuple (P [q, r], T [m,n]) such that

P [p] = T [t] ∀p q ≤ p ≤ r

∀t m ≤ t ≤ n

and

P [q − 1] 6= T [m− 1]

P [r + 1] 6= T [n+ 1]

A more refined form of the MEM is proposed in [12] and
is called as super maximal exact match (SMEM). A MEM
which is not contained in any other MEM of the read is known
as SMEM. Let there be k MEMs of a DNA read: MEM1=
(P [q1, r1], T [m1, n1]), MEM2= (P [q2, r2], T [m2, n2]) . . .
MEMk= (P [qk, rk], T [mk, nk]). Then MEMi for i = 1 . . . k
is an SMEM if and only if:

(qi < qj or ri > rj) and (mi < mj or ni > nj)
∀j j = 1, 2, . . . i− 1, i+ 1 . . . k − 1, k

In this work, a seeding technique which finds all the over-
lapping and non-overlapping SMEMs in a read will be called
as all-SMEM, whereas the scheme in which only the non-
overlapping SMEMs are generated will be called as nov-
SMEM. As an example, consider the following genome:

CCAATGTCTCATGGTGTCTCAGCTCTCAGAATTCAGATC

and a DNA read:

CAATGTCTCAGATAA

The all-SMEM seeds of the this read are CAATGTCTCA,
TGTCTCAG, TCAGAT and AA. The nov-SMEM seeds
are CAATGTCTCA , GAT and AA. For the same seed
setting (i.e., minimum required seed length) all-SMEM is more
sensitive than nov-SMEM but nov-SMEM is faster.

B. Seed Computation

Seed computation refers to finding the seed sequence and
computing its starting position(s) in the reference genome.
As described above seeds are substrings of the read that are
exactly (or nearly exactly) matching at one or more than
one places in the reference genome. Computation of a seed
requires a pre-built index of the reference genome. Different
kinds of genome indexes can be built. Here we will only
focus on those which are found in modern DNA read aligners.
Contemporary DNA read aligners compute seeds by either
using hash table index (e.g., as in Novoalign) or using FM-
index [13] (e.g., as in BWA-MEM, Bowtie2 and Cushaw2).

1) FM-index: FM-index [13] is a memory efficient index of
the reference genome. It is a representation of the suffix/prefix
trie of the reference genome. Other representations also exist
like suffix array [14] and enhanced suffix array [15], but
FM-index has the smallest memory footprint. The FM-index
consists of three arrays: (1) The count array C, (2) the BWT

Algorithm 1: Backward Search using FM-index
Input: String W and length of reference genome |T |. B and C array are

assumed to be known
Output: Set of suffix array intervals [Il, Iu] of W and the match length

1 Function BACKWARDSEARCH(W, |T |) begin
2 Initialize [Il, Iu] as [0, |T | − 1]
3 i← |W | − 1
4 // match_len is used to compute nov-SMEM
5 // match_len← 1
6 while Il ≤ Iu and i > −1 do
7 Il ← C[W [i]] + Occ(W [i], Il − 1)
8 Iu ← C[W [i]] + Occ(W [i], Iu)− 1
9 i← i− 1

10 match len← match len + 1

11 // Uncomment the following line to find nov-SMEM
12 // return ([Il, Iu],match_len)
13 if i = −1 and Il ≤ Iu then
14 return ([Il, Iu])

15 else
16 // return empty interval
17 return ∅

18 Function OCC(a, j) begin
19 x← 0
20 y ← 0
21 while x ≤ j do
22 if B[x] = a then
23 y ← y + 1

24 x← x + 1

25 return y

Algorithm 2: Computing the starting position for a given
suffix array index

Input: Suffix array index k. Suffix array sampling rate r; B , C and SSA array
are assumed to be known

Output: Starting position corresponding to k

1 Function CALCSTART(k) begin
2 i← 0
3 while k mod r 6= 0 do
4 k ← C[B[k]] + Occ(B[k], k − 1)

5 return SSA[k]

array B, and (3) the suffix array SA. The count array has four
entries, one for each of the four DNA base symbols (i.e., A, C,
T and G). An entry for symbol e stores the number of symbols
in the reference DNA that are lexicographically smaller than
e. The BWT array is the Burrows-Wheeler transform of the
reference DNA. The suffix array holds the starting positions
of the suffixes of the reference DNA. Computing a seed using
FM-index is a two step process:
Step 1—Computing suffix array interval: Given a seed W of
length |W | and the FM-index of the reference DNA T , the
suffix array interval of W can be computed using Algorithm 1.
The proof of the algorithm is given in [13].

The algorithm returns the suffix array interval of W written
as [Il, Iu] where:

Il(W) = min{i : W is the prefix of SA(i)}
Iu(W) = max{i : W is the prefix of SA(i)}

From Il to Iu are the suffix array indexes of all those suffixes
of T in which W is the prefix. The algorithm returns an
empty interval if W is not present in the reference DNA.

Algorithm 1 is known as backward search as it starts from the
last symbol of W and then builds the string in the backward
direction. Each iteration of the while loop enlarges the
string by one symbol and may be called as a search step. Each
search step returns the suffix array interval of the enlarged
string. If Il ≤ Iu, the enlarged string exits in T otherwise not.
Algorithm 1 is used to find the suffix array interval of a fixed
length seed. To find the suffix array interval of all the fixed
length seeds in a DNA read, the BACKWARDSEARCH function
is called with W set equal to the seed sequence. To find the
suffix array interval of nov-SMEM, uncomment line 12. To
find the first nov-SMEM, call the BACKWARDSEARCH with
W = P , where P is the DNA read sequence. The function
will return match len along with the suffix array interval. If
match len = |P |, we are done, otherwise call the function
again to find the second nov-SMEM with W = P1 where
P1 = P [match len, |P |]. Similarly, if match len = |P1|,
the algorithm completes successfully, otherwise the function
is called again to find the third nov-SMEM with W = P2

where P2 = P1[match len, |P |], and so on. The algorithm
to compute the suffix array interval of all-SMEMs is given
in [12].

Step 2—Computing start position: Once the suffix ar-
ray intervals of the seeds are computed, the suffix array
can be used to find the starting position of a seed (if
present). Usually, to reduce memory a sampled suffix array
SSA is used. A SSA with a sampling rate of r is the
set {SA(k) : k is divisible by r}. Algorithm 2 computes the
starting position of a seed with SSA for a given suffix
array index value. Each suffix array index value from Il to
Iu corresponds to one occurrence of the seed. Hence, the
CALCSTART function is called for k = Il, . . . Iu.

The advantage of using FM-index is its memory efficiency.
The complete FM-index for the the human reference genome
occupies only 1.5 Gbytes of memory. The time required to
compute a seed of length n is O(n + mr) where m = Iu−Il+1
i.e. the number of occurrences of the seed. In practice,
computing seeds with FM-index consume a lot of time due
to pseudo-random accesses to the large B array which is
nearly 1 GB. Such a large array cannot reside in the cache. As
shown in Algorithm 1 during every search step the algorithm
accesses the B array. Similarly B array is also accessed in
every iteration of the loop in Algorithm 2. In [16] the memory
access patterns of B array are studied. The study shows that
these accesses are quite random resulting in a large number
of data cache and data TLB misses due to poor temporal and
spatial locality of the accesses. These large D-cache and D-
TLB misses cause the algorithm to almost always be waiting
for the memory, substantially slowing down the algorithm.

2) Hash table index: Fast computation of fixed length seeds
can be performed using a hash table. Hash table stores the
starting position of n-mers of the reference genome, where n
is the length of the seed. To find the starting position of a fixed
length seed just index the hash table with the seed sequence.
Hence, they require O(1) time to compute a seed. Hash tables

are sensitive to the value of n and the sampling frequency s
of the genome. Sampling frequency is the distance (in no.
of bases) between the starting position of two consecutive
n-mers of the genome. For n > 15 the hash table size
becomes excessively large. Novoalign has a hash table index
that occupies 17 GB of RAM with n = 15 and s = 3
for the human genome. Hence, a hash table index, although
fast, is memory demanding. The index has to be rebuilt if
the seed length is changed. Hash tables cannot be directly
used to compute maximal exact matches. To find maximal
exact matching seeds with hash table index, first find the start
position of a substring of the read with a hash table and then
enlarge it on both sides by a direct comparison between the
read and the reference genome. A similar approach has been
adopted by the HPG DNA read aligner [17].

IV. EXTENSION TECHNIQUES

Flanking bases of the reference genome around the seed
are fetched to perform the extension step. Three types of seed
extension techniques are used in modern DNA read align-
ers: (1) Global alignment (Needleman-Wunsch algorithm),
(2) Local alignment (Smith-Waterman algorithm), and (3)
BLAST-like seed extension. All these three techniques are
implemented using dynamic programming with affine gap
penalties. Cushaw2 performs local alignment, Bowtie2 allows
the user to choose between local and global alignment, while
BWA-MEM performs BLAST-like seed extension.

A. Global and local alignment

In global and local alignment, the bases around the seed in
the reference genome are fetched to form a target sequence that
contains the surrounding bases as well as the seed. In global
alignment the goal is to find the highest scoring alignment
of the full read against the target sequence. In practice the
target sequence is longer than the read. Therefore, a semi-
global alignment is performed in which gaps on both ends of
the read are ignored. In local alignment the goal is only to
achieve the highest scoring alignment and thus the resulting
alignment may not contain the full read sequence. Global and
local alignment algorithm are explained in detail in textbooks.
Readers may refer to [18] for more in depth coverage of local
and global alignment algorithms.

B. BLAST-like seed extension

BLAST-like seed extension is a fast extension technique
that is performed in two steps by calling Algorithm 3 twice,
which shows the BLAST-like seed extension algorithm. First
step: seq1 = read bases on the left side of the seed, seq2
= reference bases on the left side of the seed, start score =
seed score. Second step: seq1 = read bases on the right side
of the seed, seq2 = reference bases on the right side of the
seed, start score = seed score + alignment score of first step.
The BLAST-like seed extension algorithm is similar to local
alignment with the following differences:
1. Non-zero start score.
2. A standard local alignment algorithm computes all the

local alignments between two sequences. BLAST-like seed
extension is faster as it only computes one local alignment that
must contain the seed as a substring. The pseudo-code framed
in the first box (i.e., lines 25-26) in Algorithm 3 ensures that
this requirement is met. Further speedup is achieved due to
the pseudo-code framed in the second box (i.e., lines 31-44)
which prunes the Dynamic Programming (DP) matrix entries
that cannot result in a final alignment containing the seed.
Hence, BLAST-like seed extension does not compute all the
the entries of the DP matrix making it faster than local and
global alignment techniques.
3. The starting positions of the alignment are always known,
so no traceback is required, thereby reducing run time.

C. Optimized seed extension

The dynamic programming based extension stage is com-
pute bound. Therefore, to reduce the total DNA read alignment
execution time, extension schemes can be optimized. Striped
Smith-Waterman (SSW) is a SIMD optimization of local align-
ment [19]. The implementation of SSW is also available in the
form of a C/C++ library [20]. SIMD optimized DP allows
concurrent computation of many DP matrix cells. Another
optimization is banded DP, which limits the number of DP
matrix cell to be calculated to a narrow band along the main
diagonal [21]. Banded DP works well in situations where the
two sequences to be aligned are homologous as the case of
DNA read alignment.

V. GASE GENERIC ALIGNER

For the comparison of different seeding and extension
techniques, we built GASE (Generic Aligner for Seed-and-
Extend) that can be used with different seeding and extension
techniques. The idea is to use GASE to measure the cor-
responding alignment accuracy and total execution time for
different combinations of seeding and extension. GASE is a
minimalistic aligners that mainly depends on the seeding and
extension technique being used to identify the read alignment,
with little added heuristics coded in the aligner. This results
in an aligner with an alignment accuracy that is mainly
determined by the seeding and extension technique being used.
The different components of our read aligner are outlined
below.

1) Index: The FM-index used in our aligner is same as
the one generated in BWA-MEM. BWA-MEM builds the FM-
Index of T ⊕ T , where T is the reference genome string , T
is Watson-Crick reverse complement of T and ⊕ is the string
concatenation operator. The advantages of such kind of index
are: 1) Apart from backward search, shown in Algorithm 1,
where the string is enlarged from right to left in the reverse
direction, a forward search is also possible in which the string
can also be enlarged from left to right in forward direction 2)
A read P is only aligned against T ⊕ T , rather than aligning
P and its Watson-Crick reverse complement P against T
separately. This roughly doubles the speed of the aligner at
the cost of memory.

Algorithm 3: BLAST-like seed extension
Input: The two sequences to be aligned seq1, seq2 and the start score

start score. Penalty of gap open gapo and gap extension gape are
assumed to be known values

Output: Maximum score score and its position of achievement on read
sequence read end and on the reference ref end

1 Function BLASTSEEDEXTENSION(seq1, seq2, start score) begin
2 Initialize H , E and F arrays of size of (|seq1|+ 1) ∗ (|seq2|+ 1)

containing zeros
3 H[0][0]← start score
4 H[0][1]← max{start score− gapo− gape, 0}
5 for j ← 2 to |seq1| do
6 H[0][j]← max{H[0][j − 1]− gape, 0}

7 H[1][0]← max{start score− gapo− gape, 0}
8 for j ← 2 to |seq2| do
9 H[j][0]← max{H[j − 1][0]− gape, 0}

10 max score← start score
11 read end← ∅
12 ref end← ∅
13 beg ← 1
14 end← |seq1|
15 for i← 1 to |seq2| do
16 row max← 0
17 max j ← ∅
18 for j ← beg to end do
19 E[i][j]←

max{H[i− 1][j]− gapo− gape, , E[i− 1][j]− gape, 0}
20 F [i][j]←

max{H[i][j− 1]− gapo− gape, , F [i][j− 1]− gape, 0}
21 H[i][j]← max{H[i− 1][j − 1] + S(seq1[j −

1], seq2[j − 1]), E[i][j], F [i][j], 0}
22 if H[i][j] > row max then
23 row max = H[i][j]
24 max j = j

25 if row max = 0 then
26 return {max score, read end, ref end}

27 if row max > max score then
28 max score = row max
29 read end = max j
30 ref end = i

31 j ← beg
32 while j < end do
33 if H[i− 1][j − 1] = 0 and H[i− 1][j] = 0 and

E[i− 1][j] = 0 then
34 j ← j + 1

35 else
36 break

37 beg ← j
38 j ← end
39 while j >= beg do
40 if H[i− 1][j − 1] = 0 and H[i− 1][j] = 0 and

E[i− 1][j] = 0 then
41 j ← j − 1

42 else
43 break

44 end← j

45 return {max score, read end, ref end}

2) Seeding: Seeds are computed depending upon the seed-
ing technique under test. We have compared four seeding
methodologies used in contemporary read aligners. 1) Fixed
length seeds without mismatch: we varied the seed length from
15 to 50 in steps of 5 2) Fixed length seeds with at most one

mismatch allowed: we varied the seed length from 15 to 90
in steps of 5 3) all-SMEMs: we varied the minimum required
seed length from 15 to 50 in steps of 5 4) nov-SMEMs: we
varied the minimum required seed length from 15 to 50 in
steps of 5. For all the above seeds, the seed interval is varied
as 1, 5, 10, 15, . . . , seed length. If a seed is located at more
than 500 positions in the reference genome, it is not extended.

3) Chaining: The seeds which lie nearby on the reference
genome are chained together. The chains are sorted in de-
scending order on the basis of the weight of the chain. The
weight of a chain is the number of reference genome bases
covered by the seeds in a chain. A chain is filtered out if it is
overlapping with the next higher weight chain by more than
50%.

4) Extension: The seeds in a chain are sorted on the basis
of their length. The longest seeds is extended first using one
of the three extension techniques being studied. The next seed
in the sorted list of seeds is then extended if it is not already
covered in the extension of the previous seed and so on. The
process is repeated for all the chains. Three different extension
techniques have been tested: global alignment, local alignment
and BLAST-like seed extension. The output is written in SAM
(Sequence Alignment/Map) format [22].

VI. EXPERIMENTAL RESULTS

We measured the error in alignment as:

error = No. of incorrectly mapped reads
No. of mapped reads

We tested all the 12 possible combinations of seeding and
extension techniques. A read aligned within ±20 base pairs of
the true position is considered correct. For each combination
of seeding and extension technique, the seed length and seed
interval (if applicable) is varied over a range discussed in
Section V-2. Only those seed settings have been considered
in the comparison in which the number of mapped reads ≥
99.5% of the total number of reads.

A. Input data set

5 Mega bases of the chromosome 21 of human genome
(UCSC hg19) are used as a reference. 1 million single ended
reads were generated using Wgsim read simulator [23]. Ten
reads are aligned in parallel by running ten threads on Intel
Xeon E5-2670 2.5 GHz processor. The reads have a mutation
rate of 0.4% where 25% of these mutations are indels. 70% of
the indels are extended (length greater than 1). This mutation
rate in the simulated reads represents the upper limit in human
genome variation [24]. Similarly this percentage of indels
and their extension rate in the simulated reads correspond to
observed values in the human genome [25]. The reads have
2% sequencing errors as well.

B. Selecting seeding parameters

Table II shows the results of measuring the mapping error
and the total execution time of DNA read aligner for different
seeding and extension techniques with varying read lengths.
The read length is specified in base pairs (bp). As described in

Section V-2 a number of parameters of the seed are varied over
a wide range. Each seed setting results in a different mapping
error and execution time. The values in Table II represent a
tradeoff between error and time. For each setting we measured
the corresponding error and time. If the difference in error
between the most accurate seed setting and another seed
setting is at most 9 incorrectly mapped reads and achieving at
least 30% faster execution time than the most accurate seed
setting, then the other seed setting is selected.

C. Comparison of seeding techniques

Table II shows that fixed length seeds with no mismatch
are not a good choice in any case. They result in more
error in the mapping and larger total execution time with all
kinds of extension techniques as compared to SMEM seeds
and fixed length seed with at most 1 mismatch for all read
lengths. In some cases of fixed length seeds with no mismatch,
we have not tested some smaller seed lengths due to orders
of magnitude higher total execution time as compared to
other seeding techniques, and hence useless to consider. With
BLAST-like seed extension, all-SMEM is the best approach
due to its higher accuracy and lower execution time. For
example with 600 bp read length, it is 1.34, 6 and 2 times more
accurate than nov-SMEM, fixed length (0 mismatch) and fixed
length (at most 1 mismatch) seeds, respectively. Similarly for
600 bp read length, the execution time is 1.37 and 2 times
less than fixed length (0 mismatch) and fixed length (at most
1 mismatch) seeds, respectively, and comparable with nov-
SMEM. For local alignment all-SMEM, nov-SMEM and fixed
length seeds (at most 1 mismatch) have comparable mapping
error. For global alignment all-SMEM is the most accurate.
With local alignment all-SMEM is faster than nov-SMEM and
fixed length seeds (at most 1 mismatch). For global alignment
nov-SMEM is the fastest.

D. Comparison of extension techniques

Table II shows that the local alignment is the most ac-
curate for all kinds of seeding techniques. The local align-
ment becomes more accurate as compared to the global and
BLAST-like seed extension techniques with increasing read
lengths. For 600 bp read length it is 3.6 times and 1.6 times
more accurate than BLAST-like seed extension and global
alignment, respectively. The results also show that BLAST-
like seed extension should only be used with all-SMEM as
its accuracy drops significantly as compared to local and
global alignment with other three seeding techniques (i.e. nov-
SMEM, fixed length with no mismatch and fixed length with at
most 1 mismatch). Global alignment is less accurate than local
alignment but more accurate than BLAST-like seed extension
for all kinds of seeding techniques. With regard to speed of
the unoptimized techniques, BLAST-like seed extension is the
fastest and it becomes faster with increasing read lengths
as compared to other two extension techniques. With all-
SMEM seeding it is 2.2 to 3.4 times faster than unoptimized
local and global alignment for 600 bp read length. Although
global alignment is more accurate than BLAST-like seed

TABLE II. Mapping error and total execution time of our DNA read aligner GASE with different combinations of seeding and extension
techniques. The values before the slash (/) in the time column represent the execution time with unoptimized extension stage, whereas
the values after slash are obtained with optimized extension stage.

Read
len.

all-SMEM nov-SMEM fix-len.
(0-mismatch)

fix-len.
(1-mismatch)

error time
(sec.)

error time
(sec.)

error time
(sec.)

error time
(sec.)

global

150 1.24e-3 93/27 1.3e-3 74/23 1.39e-3 1704/340 1.21e-3 209/120
250 3.35e-4 173/60 3.81e-4 151/56 4.66e-4 2949/405 3.73e-4 185/96
400 8.3e-5 370/129 9.4e-5 427/130 2.15e-4 11637/1177 1.2e-4 710/518
600 4e-5 890/273 4.9e-5 742/255 2.7e-4 43021/3152 1.07e-4 1194/413

local

150 1.22e-3 59/26 1.3e-3 74/24 1.262e-3 1138/144 1.21e-3 183/113
250 3.28e-4 180/61 3.68e-4 159/58 3.68e-4 554/127 3.45e-4 284/99
400 6.8e-5 354/126 7e-5 507/128 6.9e-5 5864/520 5.6e-5 419/200
600 2.5e-5 805/260 3e-5 1241/272 5.5e-5 3866/428 3.2e-5 824/392

BLAST-
like seed
extension

150 1.25e-3 28/27 1.37e-3 24/22 1.80e-3 120/119 1.34e-3 42/43
250 4.16e-4 64/59 4.8e-4 60/58 1.05e-3 65/63 4.77e-4 262/283
400 1.36e-4 148/134 1.97e-4 136/125 6.91e-4 193/179 2.57e-4 216/219
600 9.4e-5 305/260 1.26e-4 276/240 5.05e-4 364/327 1.88e-4 419/390

extension, it is not suitable for aligning split reads (also known
as chimeric reads). Split reads are generated due to large
structural variations in the genome. The speed of optimized
Blast-like and local alignment techniques is comparable.

E. Selecting the best seeding-extension combination

From Table II we can conclude that:
• Blast-like seed extension is the fastest and should at least

be combined with all-SMEM
• Local alignment is the most accurate and its accuracy is

nearly the same with all-SMEM, nov-SMEM and fixed
length (at most 1 mismatch) seeds

To come up with the best seeding-extension combination
we must first decide the best seeding technique to be used
with local alignment. To do this we will compare the execution
times of optimized DNA read aligners. The speed optimization
performed here does not affect the mapping error. These
optimization speed up the extension stage of the DNA read
aligner with techniques described in Section IV-C. We only
focus on optimizing the extension rather than the seeding due
to the memory bound nature of seed computation using FM-
index, which makes it hard to optimize/accelerate. Hash table
index is a fast seeding mechanism (as compared to the FM-
index) for finding fixed length seeds, but it cannot be used in
our case as the values reported for fixed length seeds with at
most 1 mismatch in Table II are mostly for very long seeds
(30 or above). Shorter fixed length seeds have much higher
error as compared to the values given in Table II. Building
hash table for seeds longer than 20 bp is impractical. We
can select the best seeding technique to be used with local
alignment by measuring the execution time of the DNA read
aligner with optimized local alignment. The local alignment
is SIMD optimized using SSW. It is implemented with Intel
SSE2 instruction set which has 128-bit SIMD registers. A
signed two-byte integer is used to store the score value. This
allows the concurrent computation of 8 DP matrix cells.

Figure 3 compares the execution of local alignment with
three seeding techniques (all-SMEM, nov-SMEM and fixed

length seeds with at most 1 mismatch) before and after
applying the SIMD optimization. The input data set is the same
as the one used in Table II. The mapping error for each seeding
technique remains nearly the same as reported in Table II and
hence, is comparable to all techniques. Figure 3 shows that
after SIMD optimization nov-SMEM-local becomes slightly
faster than fixed-length(1)-local and has nearly same execution
time as all-SMEM-local. The figure shows the significant
reduction in execution time of local alignment with nov-
SMEM. Its execution time scales down by 4.57x for 600 bp
read length. For the range of DNA read lengths shown, the
reduction in execution time of nov-SMEM is 2.74x up to
4.57x, for all-SMEM it is 2.32x up to 3.1x and for fixed
length seeds with at most 1 mismatch it is 1.62x up to
2.86x. Therefore, the combination of nov-SMEM with local
alignment achieves the highest reduction in execution time
with minimal reduction in accuracy. Although, nov-SMEM
generate less seeds as compared to all-SMEM and fixed length
seeds, however for longer reads the amount of seeds generated
by nov-SMEM is sufficient for accurate mapping of the read.
The high reduction in the execution time of nov-SMEM-
local for longer reads shows that with future DNA reads nov-
SMEM-local has high potential for acceleration/optimization
without sacrificing accuracy.

Now that we have seen that nov-SMEM is a better seeding
approach for local alignment, we will now compare the exe-
cution time of SIMD optimized nov-SMEM-local and banded
all-SMEM-BLAST-ext DNA read aligners (which is the fastest
combination using the Blast-like extension algorithm) to come
up with the best seeding-extension combination. Our banded
implementation of BLAST-like seed extension is the same
as done in BWA-MEM. Figure 4 compares the execution
time of the SIMD optimized nov-SMEM-local and banded
all-SMEM-BLAST-ext. The input data set is the same as the
one used in Table II. The optimization has not increased the
mapping error of both schemes and therefore, nov-SMEM-
local remains more accurate than all-SMEM-BLAST-ext for
all read lengths (with 600 bp read length nov-SMEM-local

Fig. 3. Comparison of execution time of local alignment with
all-SMEM, nov-SMEM and fixed length seeds (at most 1
mismatch) before and after SIMD optimization

Fig. 4. Comparison of execution time of BLAST-like seed
extension with all-SMEM and nov-SMEM-local before and
after optimization

is 3.1x more accurate than all-SMEM-BLAST-ext). Figure 4
shows that the banded all-SMEM-BLAST-ext seed extension
was not able to gain much speed as compared to the un-
optimized all-SMEM-BLAST-ext of Table II, whereas SIMD
nov-SMEM-local shows good speed up has nearly same exe-
cution time as banded all-SMEM-BLAST-ext. Therefore, we
can conclude that SIMD optimized nov-SMEM-local seeding-
extension combination have performed best in this comparison
due to its high accuracy, and more potential for optimiza-
tion/acceleration for future DNA reads.

VII. CONCLUSION

In this paper we compared different seeding and extension
techniques used in modern DNA read aligners. The compared
seeding techniques were maximal exact matching seeds and
fixed length seeds. Three seed extension techniques were
compared: global alignment, local alignment and BLAST-like
seed extension. For the purpose of the comparison we built
an open source generic seed-and-extend DNA read aligner
called GASE and then measured the accuracy and execution
time for all the possible seeding and extension techniques.
Our results showed that fixed length seeds (0-mismatch)
are not a good seeding choice with any type of extension

algorithm, while all-SMEM is the best seeding approach with
BLAST-like seed extension. Local alignment is more accurate
than BLAST-like seed extension, especially for longer reads.
all-SMEM, nov-SMEM and fixed length seeds (at most 1
mismatch) have comparable accuracies with local alignment.
Overall, SIMD optimized nov-SMEM-local seeding-extension
combination has performed best in this comparison due to its
high accuracy and more potential for optimization/acceleration
for future DNA reads.

REFERENCES

[1] Wetterstrand KA., “DNA Sequencing Costs: Data from the NHGRI
Genome Sequencing Program (GSP),” Available at: www.genome.gov/
sequencingcosts, Accessed [30th September, 2015].

[2] S. F. Altschul et al., “Basic local alignment search tool,” Journal of
Molecular Biology, vol. 215, no. 3, pp. 403 – 410, 1990.

[3] “NovoAlign,” http://www.novocraft.com/products/novoalign/.
[4] H. Li, “Aligning sequence reads, clone sequences and assembly contigs

with BWA-MEM,” arXiv [q-bio.GN], May 2013. [Online]. Available:
http://arxiv.org/abs/1303.3997

[5] B. Langmead and S. S., “Fast gapped-read alignment with bowtie 2,”
Nature Methods, vol. 9, pp. 357–359, 2012.

[6] Y. Liu and B. Schmidt, “Long read alignment based on maximal exact
match seeds,” Bioinformatics, vol. 28, no. 18, pp. i318–i324, 2012.

[7] “GASE generic aligner,” https://github.com/nahmedraja/GASE.
[8] J. Shang et al., “Evaluation and comparison of multiple aligners for next-

generation sequencing data analysis,” BioMed Research International,
2004.

[9] “Genome Comparison and Analytic Testing,” http://www.bioplanet.com/
gcat.

[10] H. Li and N. Homer, “A survey of sequence alignment algorithms for
next-generation sequencing,” Briefings in Bioinformatics, vol. 11, no. 5,
pp. 473–483, 2010.

[11] I. Mandoiu and A. Zelikovsky, Bioinformatics Algorithms: Techniques
and Applications. John Wiley and Sons, 2008, ch. 6, pp. 117–142.

[12] H. Li, “Exploring single-sample SNP and indel calling with whole-
genome de novo assembly,” Bioinformatics, vol. 28, no. 14, pp. 1838–
1844, Jul 2012.

[13] P. Ferragina and G. Manzini, “Opportunistic data structures with appli-
cations,” in Proceedings of the 41st Annual Symposium on Foundations
of Computer Science, ser. FOCS ’00, 2000, pp. 390–398.

[14] U. Manber and G. Myers, “Suffix arrays: A new method for on-line
string searches,” SIAM Journal on Computing, vol. 22, no. 5, pp. 935–
948, 1993.

[15] M. I. Abouelhoda, S. Kurtz, and E. Ohlebusch, “Replacing suffix trees
with enhanced suffix arrays,” Journal of Discrete Algorithms, vol. 2,
no. 1, pp. 53 – 86, 2004.

[16] J. Zhang et al., “Optimizing burrows-wheeler transform-based sequence
alignment on multicore architectures,” in CCGrid, Delft, Netherlands,
May 2013.

[17] J. Trraga et al., “Acceleration of short and long dna read mapping
without loss of accuracy using suffix array,” Bioinformatics, 2014.

[18] W. K. Sung, Algorithms in Bioinformatics: A Practical Introduction.
CRC Press, 2009, ch. 2, pp. 29–56.

[19] M. Farrar, “Striped smithwaterman speeds database searches six times
over other SIMD implementations,” Bioinformatics, vol. 23, no. 2, pp.
156–161, 2007.

[20] M. Zhao et al., “SSW library: An SIMD smith-waterman c/c++ library
for use in genomic applications,” PLoS ONE, vol. 8, 12 2013.

[21] K. Chao, W. R. Pearson, and W. Miller, “Aligning two sequences within
a specified diagonal band,” Computer applications in the biosciences :
CABIOS, vol. 8, no. 5, pp. 481–487, 1992.

[22] “SAM format specification,” https://samtools.github.io/hts-specs/
SAMv1.pdf.

[23] “Wgsim,” https://github.com/lh3/wgsim.
[24] S. Tishkoff and K. K. Kidd, “Implications of biogeography of human

populations for ’race’ and medicine,” Nature Genetics, vol. 36, no. 11s,
pp. S21 – S27, 2004.

[25] R. Mills et al., “An initial map of insertion and deletion (indel) variation
in the human genome,” Genome Research, vol. 16, no. 5, pp. 1182–90,
2006.

