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Exploiting Idle Hardware to Provide Low Overhead Fault Tolerance
for VLIW Processors
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Because of technology scaling, the soft error rate has been increasing in digital circuits, which affects system
reliability. Therefore, modern processors, including VLIW architectures, must have means to mitigate such
effects to guarantee reliable computing. In this scenario, our work proposes three low overhead fault tolerance
approaches based on instruction duplication with zero latency detection, which uses a rollback mechanism
to correct soft errors in the pipelanes of a configurable VLIW processor. The first uses idle issue slots within
a period of time to execute extra instructions considering distinct application phases. The second works at a
finer grain, adaptively exploiting idle functional units at run-time. However, some applications present high
instruction-level parallelism (ILP), so the ability to provide fault tolerance is reduced: less functional units
will be idle, decreasing the number of potential duplicated instructions. The third approach attacks this issue
by dynamically reducing ILP according to a configurable threshold, increasing fault tolerance at the cost of
performance. While the first two approaches achieve significant fault coverage with minimal area and power
overhead for applications with low ILP, the latter improves fault tolerance with low performance degradation.
All approaches are evaluated considering area, performance, power dissipation, and error coverage.
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1. INTRODUCTION

Technology scaling has been allowing increased logic integration and performance
improvements in processors, as higher frequencies can be achieved. However, as the
feature size of transistors decreases, their reliability is also compromised, so they get
more susceptible to soft errors [Shivakumar et al. 2002]. Soft errors affect processors
by modifying values stored in memory elements (such as pipeline registers, register
files, and control registers) and are caused by numerous energetic particles such as
protons and heavy ions from space or neutron and alpha particles at the ground level.
To harden the processor against such errors, fault-tolerant techniques are mandatory
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for detection and correction before a failure in the system can be observed [Beck et al.
2012].

Very long instruction word (VLIW) processors are representative examples of cur-
rent architectures that may suffer from the aforementioned issues (e.g., Intel Itanium
[Sharangpani and Arora 2000] and Trimedia CPU64 [van Eijndhoven et al. 1999]).
VLIW processors exploit instruction-level parallelism (ILP) by means of a compiler, ex-
ecuting several operations (instructions) per cycle depending on the processor’s issue-
width and the intrinsic ILP available in the application. These instructions are orga-
nized into words (bundles), and all instructions in a bundle are executed in parallel.
VLIW processors occupy less area and dissipate less power when compared to tradi-
tional superscalar processors, since the process of scheduling instructions is statically
done by a compiler. Therefore, the hardware of a VLIW processor is much simpler:
the instruction queue, reorder buffer, dependency-checking, and many other hardware
components are not needed.

Even though VLIW processors are also used in space missions [Villalpando et al.
2011], the focus of this work is to provide the best trade-off when it comes to area, per-
formance, fault tolerance, and power dissipation. Therefore, providing fault tolerance
at a low cost, as processors are getting more susceptible to failures at lower altitudes,
due to the technology scaling; instead of providing a bulletproof, and expensive, pro-
cessor against faults. In addition, the pipelanes of a VLIW processor occupy about 45%
of the core total area and the register file (which occupies the rest) can be protected
with parity [Gaisler 1997; McNairy and Bhatia 2005] or error correction codes (ECC)
[Slegel et al. 1999].

In several cases, however, the compiler is not able to fill all slots of the bundle with
independent instructions [Aditya et al. 2000]. The solution is filling the unused slots
with no operations (NOPs). These NOPs require memory bandwidth to be fetched,
potentially increasing cache misses, which would result in performance degradation
and extra energy consumption. In order to amortize such costs, several techniques have
been proposed to remove these NOPs [Tremblay et al. 2000; Colwell et al. 1991; Conte
et al. 1996; Jee and Palaniappan 2002; Sharangpani and Arora 2000; de Waerdt et al.
2005; Fisher et al. 2005; Raje and Siu 1999; Suga and Matsunami 2000; Hubener et al.
2014; Brandon et al. 2015]. Even so, the functional units of the issue slot responsible
for executing the NOP (whether it was removed from code or not) will still be idle.

Therefore, we propose three approaches for detecting and correcting soft errors in
VLIW issue slots (pipelanes) that will exploit this idle hardware to provide fault toler-
ance at a low cost. All approaches are based on a modified dual modular redundancy
(DMR) approach with an instruction rollback mechanism, and they are implemented
in an 8-issue VLIW processor. The first is a configurable mechanism implemented in
hardware that uses idle issue slots in a given program phase (i.e., a sequence of bundles
with similar number of instructions) to execute duplicated instructions. It has a vari-
able number of duplicated instructions depending on the application phase: between
zero (no fault tolerance) and four (full duplication). The second duplicates instructions
whenever there is a free pipelane at a given cycle. In this case, the idle functional unit
will execute a duplicated instruction to increase fault tolerance.

However, applications with high ILP will have a reduced number of NOPs. This lack
of NOPs would reduce the opportunities for instruction duplication, which might not
deliver the necessary protection against faults. The third approach goes one step further
by attacking this issue. It allows the tuning of how much fault tolerance is needed for a
given application by reducing the ILP at runtime (i.e., some issue slots are artificially
freed by moving instructions to the next cycle) to increase duplication. For this process
to occur, an ILP threshold, which is configured before application’s execution, is used.
When the average ILP of the application reaches such threshold, the instructions that
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follow and use more than half of the issue slots are split into two, and executed in
two cycles, providing full duplication for both halves. By changing the value of the
aforementioned threshold, it is possible to configure how many instructions will be
split throughout program execution, changing the level of fault tolerance provided and
the incurred performance overhead.

The details of the fault tolerance techniques proposed by this work are presented
in Section 2. Next, we describe the implementation and show the results. For that, a
fault injection campaign was performed in several benchmarks on different configura-
tions of the VLIW processor. We evaluate error coverage, area, power dissipation, and
performance. Section 4 discusses related works and compare the proposed approaches
with several others, considering many factors. Finally, Section 5 concludes this work
and discusses future directions.

2. VLIW PROCESSOR AND PROPOSED FAULT TOLERANCE TECHNIQUES

The VLIW processor used in this work is the ρ-VEX softcore VLIW processor [Wong
et al. 2008], implemented in VHDL. The ρ-VEX core has a five-stage pipeline, and it can
be configured to have a different number of issue slots (e.g., 2, 4, or 8). Each pipelane
(issue slot) may contain different functional units from the following set: ALU (always
present), multiplier, memory, and branch units. For the three proposed approaches,
which will be further explained in the next subsections, the 8-issue version (i.e., eight
pipelanes) configuration is considered. It has the following organization: eight ALUs,
four multipliers, two memory units, and two branch units (one branch and one memory
unit only execute duplicated instructions), which is similar to other VLIW processors
(e.g., Intel Itanium [Sharangpani and Arora 2000] and TMS320C6745 [Instruments
2011]).

When there are idle pipelanes (and how these idle issue slots are detected/configured
will vary according to the different approaches implemented in this work), they are
used to execute duplicated instructions (e.g., arithmetic operations, jump address of a
branch, or the values of a memory operation) from other pipelanes. Then, their results
(i.e., all output signals) are compared by a checker. Consequently, it may have none
(eight issue slots without duplication) to full duplication (four main issue slots and four
duplicated ones), depending on the available resources. The destination register, the
register file’s and memory’s write enable signals are also compared by a checker.

The fault-tolerant implementation of the ρ-VEX is depicted in Figure 1. The pipelanes
are numbered from P0 to P7, Dec stands for the decode stage, Exe for the execution (two
cycles), and WB for the write-back stage. In order to keep the low overhead (area and
delay), the duplication pairs are statically placed, that is, pipelane 0 with pipelane 4,
pipelane 1 with pipelane 5, and so on. Therefore, the pipelanes are combined in a way
that the first four are compared with the four last ones. For example, if pipelane 6
was going to execute a NOP, then it will execute the duplicated instruction from the
pipelane 2 instead. Every functional unit is capable of executing both main program
instructions and, in the case of pipelanes P4, P5, P6, and P7, duplicated instructions
from its correspondent pipelane. The exceptions are the memory unit in pipelane 4 and
the branch unit in pipelane 7: these units execute only duplicated instructions, since
the ρ-VEX does not support more than one memory or branch operation per cycle.
The compiler used in this work (HP VEX compiler) schedules the instructions starting
from the lower issue slots (from 0 to 7), considering the availability of the functional
units. Thus, our approach efficiently exploits this scheduling mechanism. For the sake
of comparison, a fault-tolerant 4-issue version was implemented: it has full duplication
(i.e., all pipelanes are duplicated in hardware), so it is also composed of eight pipelanes,
as depicted in Figure 2. Each duplicated pipelane executes the same instructions than
its regular counterpart with the full duplication approach.
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Fig. 1. Phase-configurable and adaptive duplication.

Fig. 2. Full duplication configuration for the 4-issue VLIW processor.

In order to not only detect an error, but also correct it, a rollback mechanism is used.
When a mismatch is found in any of the compared signals, the rollback executes the last
instruction again. The PC for the rollback is stored in a register, in case of an error, this
stored PC overwrites the current PC (rolling back the execution). As no memory or regis-
ter file was modified in the meantime (between the rollback PC and the current PC), the
pipeline is simply flushed and the writing to the memory and register file are blocked,
avoiding memory corruption. Once the rollback PC is loaded, the instruction corre-
sponding to that PC is fetched again and the execution resumes from that point. Thus,
having a fixed cost of 5 cycles to refill the pipeline, which is negligible considering the
total number of cycles of an application and that this cost is only paid in case of an error.

As the checker has zero latency error detection, the memory and the register file
will not be corrupted in case of an error, because the writing to these components will
be disabled in time. Both the checkers and the rollback mechanism do not affect the
critical path of the processor, as they operate in parallel to the pipelanes. In addition,
the application does not have to be modified at all, as all the proposed techniques were
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implemented in hardware. Modifying and recompiling the binary code may not be a
trivial task, leading to incompatibility with future processors and losing backward com-
patibility. Hence, any compiler that supports the VEX instruction set architecture may
be used to compile the applications (e.g., HP VEX compiler, GCC VEX, and others). The
HP VEX compiler was chosen because it is more stable and robust than the GCC VEX.

The benchmark set chosen is composed of the following 10 applications, which com-
prises a subset of the WCET benchmark suite [Gustafsson et al. 2010]: adaptive differ-
ential pulse-code modulation (ADPCM), compress JPEG (CJPEG), cyclic redundancy
code (CRC), discrete Fourier transform (DFT), Expint, finite impulse response (FIR),
Matrix Multiplication, NDES (bit manipulation, shifts, array and matrix calculations),
sums (recursively executes multiple additions on an array), and x264. From this point
on, we will use only the benchmark’s acronyms.

Each of the three proposed methods is suitable for different system requirements,
presenting a trade-off between area, performance and power dissipation. Next, each
one will be discussed.

2.1. Phase-Configurable Duplication

In this first approach, idle pipelanes during a whole given program phase (i.e., a se-
quence of instructions words that always have NOPs in specific issue slots) are used to
execute duplicated instructions from other pipelanes. The first step for this approach is
to profile the application, in order to detect the phases. This was done with the Mentor
Graphic’s ModelSim. After that, a table indexed by the program counter (32 bits) and
containing the configuration of each application’s phase (4 bits) is created. The phase
configuration represents the function of each pipelane in a given phase, informing
whether each issue slot will execute regular instructions of the application or execute
duplicated instructions from another pipelane. Based on this table, the processor will
dynamically change the function of the pipelanes and will enable or disable the check-
ers in each phase. The maximum number of phases for the considered benchmarks was
5, which results in a table of only 180 bits.

The profiling was performed for all applications from our benchmark set. The results
for five benchmarks are depicted in Figure 3. The dots demonstrate when a given
pipelane, identified by its ID (y axis), is being used (i.e., executing program instructions)
in a given moment of the application’s execution (x axis). The profiling for the other
five benchmarks has a similar behavior to the one from the Matrix Multiplication
benchmark (i.e., there are no idle phases). The idle phases that were used to execute
duplicated instructions are highlighted in Figure 3 (empty blocks in Figure 3(a, b, d,
e). The blank areas of a given pipelane ID represent a period of time in which this
pipelane is idle (executing NOPs only).

Figure 4 depicts each phase for the ADPCM benchmark: the P0-P7 represent
pipelanes 0 to 7. The pipelanes in white background are executing duplicated in-
structions from the other pipelane, according to their respective pairs (as discussed in
Figure 1). The pipelanes in black background are executing main program instructions.
In this example, there are phases with full duplication (phase 4), partial duplication
(phases 2 and 5), and no duplication (phases 1 and 3).

As it can be noticed, the ADPCM, CRC, Sums, and x264 benchmarks have phases
when some issue slots are not utilized. On the other hand, as the Matrix Multipli-
cation, CJPEG, DFT, Expint, FIR, and NDES benchmarks do not have such phases,
they cannot take advantage of the phase-configurable approach, because the modified
processor would have the same behavior as the unprotected version. Therefore, even
though this approach has no costs in terms of performance and negligible power over-
head, it can be only used when the application has phases with lower ILP than the
processor supports. This approach may also be used with power gating [Hu et al. 2004;
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Fig. 3. Issue utilization and configurable duplication.

Fig. 4. Phase-configurable duplication for the ADPCM benchmark.
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Giraldo et al. 2015], for instance, allowing idle hardware to be shut down on noncritical
parts of the program, consequently reducing the energy consumption of the application.

2.2. Adaptive Duplication

In this technique, the idle pipelanes are used to execute duplicated instructions when
possible (i.e., when there are NOPs). Therefore, the verification is done on a per-cycle
basis and not by phases as the previous approach. After fetching an instruction word,
each pipelane receives one instruction, for decoding and further execution. We have
modified this process so that the pipelane receives the program instruction (no dupli-
cation) or the instruction from another pipelane (when a NOP is found, it is replaced
for a duplicated instruction). Therefore, the duplicated instruction is obtained simply
by choosing between one signal or the other with a multiplexer. No additional accesses
to the memory are required. Therefore, this approach is completely dynamic, providing
fault tolerance adaptively. For this reason, its costs in area and power are higher than
the phase-configurable configuration, as it will be presented later.

An example of code execution comparing the original (unprotected) 8-issue version
with the adaptive duplication approach is presented in Figure 5(a) and Figure 5(b).
P stands for the pipelanes, in which x corresponds to the pipelane number (0 to 7),
tx represents the time, and the Ix the program instructions that are being executed.
This will not affect performance, as all instructions of a VLIW bundle are executed in
parallel, but it will increase fault tolerance when there are NOPs available.

2.3. Adaptive Duplication with ILP Reduction

As previously explained, the adaptive duplication exploits idle hardware to provide
fault tolerance. However, when the VLIW bundle has more than half of the issue-width
filled with instructions, the duplication will not be full, as depicted in Figure 5(b) at t2,
t3, and t5.

The third and last method is able to perform the trade-off between performance and
fault tolerance using an ILP threshold. Therefore, if the ILP in a given moment is high
and the application still needs more fault tolerance, this method will reduce the ILP
for that purpose. On the other hand, the first two approaches only exploited idle cycles,
not being able to guarantee fault tolerance for high ILP phases. This flexibility comes
at a cost in area and power; however, it is still low when compared to other techniques.

This process can be tuned by configuring the threshold that will activate the ILP
reduction, offering a trade-off between fault tolerance and performance. A “utilization
value” is calculated at every bundle and changed according to the ILP available in
the current bundle. A dedicated hardware is used to calculate this value. When the
utilization value reaches the threshold, the current bundle (if it has more than half of
the issue-width occupied) is divided into two, so it is possible to apply full duplication
to each half of the bundle.

The utilization value is calculated from the ratio between the sum of the number of
used issue slots on the high part of each bundle (varying from zero to half of the issue-
width) and the number of executed bundles that use more than half of the issue-width.
Hence, this value represents the average utilization of the issue slots considering the
bundles on which full duplication without the ILP reduction cannot be applied. Note
that only bundles that have some instruction at the high part will change the utilization
value; otherwise, the full duplication will be automatically applied, since it incurs in
no performance penalties.

Examples of code execution using different thresholds (1 and 2) are depicted in
Figure 5(c) and Figure 5(d), respectively. The instructions that at broken into two
cycles (allowing full duplication) are highlighted by the arrows on the right side of
the instruction word. When the threshold is equal to 1, every bundle that has more
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Fig. 5. Code execution example.

instructions than the half of the issue-width is split into two, because the utilization
value will always be at least 1 for those bundles (e.g., t2, t4, and t7). When setting the
threshold to 2, the bundle at time t2 will not be divided because the average utilization
value will be equal to 1, which is below the threshold. The instruction bundle at t3 will
be divided because the utilization value will be equal to 2 (4 used issue slots/2 bundles).
The same reasoning goes to the instruction at time t6, which has a value above the
threshold.

Let us analyze Figure 5 again. As it can be observed, there is no performance overhead
when the adaptive duplication without ILP reduction is used (Figure 5(b)). However,
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eight instructions would not be duplicated. By using ILP reduction with threshold
equal to 1 (Figure 5(c)), we would have 50% of performance degradation with the
ability to duplicate all instructions. If a threshold equal to 2 (Figure 5(d)) is chosen,
there would be 33% of performance degradation, and one instruction would not be
duplicated. Hence, either fault tolerance or performance can be prioritized for a given
application by changing the technique and/or the threshold value.

3. RESULTS

3.1. Methodology

An extended fault injection campaign was performed to inject soft errors in the
pipelanes and checkers of the VHDL version of the processor, making it possible to
evaluate the failure rate. Next, the fault model is described:
Fault type: The injected faults are transient and comprise a single event transient
(SET) that will affect a signal from the design. Note that a single SET may cause single
bit upsets (SBUs) or multiple bit upsets (MBUs).
Injection place: The faults are injected in any atomic signal of the target module. All
internal and low-level signals from the processor core are considered (the memory and
the register file are considered to be ECC protected).
Injection instant: Follows a uniform probability function in the range between zero
and t equal to the expected execution time from the application without faults.
Fault duration: To increase the likelihood of the SET to be captured by a flip-flop, the
signal is forced for the duration of one clock cycle.
The faults are injected via tool command language (TCL) scripts, which were developed
in the context of this work, and the design is simulated using the Mentor Graphics’
Modelsim simulator. One fault is injected per application’s execution, due to the ex-
tremely low probability of more than one fault affect the same execution of a given
application.

The total number of injected faults was 5.5 million (so there was the same number of
application executions). The failure rate distribution as the number of injected faults
increases is depicted in Figure 6 for three benchmarks, demonstrating that the failure
rate stabilizes after a certain number of fault injections.

The aforementioned approach for injecting faults considers low-level signals of the
processor; hence, it allows a controllable and precise injection of the faults. On the other
hand, several other approaches rely on higher-level fault injectors, which are not able
to precisely estimate the failure rate when the circuit area distribution is considered.
Examples of such approaches are high-level simulators [Nakka et al. 2007; Sanchez and
Reorda 2015], code instrumentation [Reis et al. 2005], assumption of 100% coverage
[Ray et al. 2001], or works that propose fault tolerance techniques but do not evaluate
the coverage of such techniques [Austin 1999; Subramanyan et al. 2010]. One approach
to statistically determine the reliability of a structure is to compute the architectural
vulnerability factor (AVF) [Mukherjee et al. 2003], which is the probability that a fault
in a particular structure will result in an error. However, computing AVF for complex
structures and processors requires knowledge of the synthesized components, which
results in a loss of controllability regarding the target components that are under
test. Exposing the circuit to high-energy particle accelerators suffers from the lack of
controllability of which parts of the circuit that will be exposed to the radiation beam.
In addition, as the ASIC chip of the ρ-VEX processor is not available, it is not possible
to test its behavior under a source of energetic particles.

The synthesis tools used were the Xilinx ISE synthesis tool to obtain the FPGA area
and frequency using the Virtex 6 - XC6VLX240T FPGA, and the Cadence Encounter
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Fig. 6. Failure rate behavior as more faults are injected (unprotected processor).
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RTL compiler to obtain power dissipation and ASIC area, using a 65nm CMOS cell
library from STMicroeletronics. There are three possible reasons for failures in the
system (the distribution of these failures types is evaluated in Sartor et al. [2015]):

• Data failure: there is a mismatch between the memory dump from the application
and the golden memory dump. The dumps are compared once the application ends
its execution.

• Data flow failure: the application does not stop within the number of cycles that it
should (i.e., number of cycles to execute the application without any failures).

• Simulation failure: some specific signals at specific times are flipped and crashes the
simulation (i.e., ModelSim’s simulation is aborted without finishing the execution of
the application).

3.2. Failure Rate and Performance Degradation Analysis

Table I presents the failure rate and performance of the chosen applications in all
proposed configurations (4-issue full duplication; phase-configurable; Adaptive only,
without ILP reduction; and with ILP reduction, using Threshold = 1.75, 2, or 2.5 and
Threshold = 1), and unprotected versions (4- and 8-issue). Note that, in some bench-
marks, results of the adaptive version with ILP reduction are not shown for a threshold
greater than 1 because the failure rate does not decrease significantly. On average, the
unprotected processors have a failure rate of 6.61% and 3.73% for the 4- and 8-issue,
respectively, while the protected versions present the following failure rates: 0.05% for
the full duplication, 0.45% for the phase-configurable (considering only benchmarks
with phases), 0.75% for the adaptive only, and 0.4% (threshold = 1) for the adaptive
with ILP reduction. The unprotected 8-issue has a lower failure rate than the unpro-
tected 4-issue due to the elevated number of NOPs in the VLIW instruction; therefore,
the probability of a flipping bit affecting the result of an instruction is lower than on
the 4-issue configuration. The failure rate comprises the detection and correction; all
errors are detected, but not all can be corrected in time. Even though there is no latency
for the fault detection, the circuit delay may prevent the memory or the register file
to be blocked for writing in time. In these specific cases, the memory and register file
are blocked a moment after the incorrect data began to be written, hence, generating
wrong results in some cases.

The only approach that affects the performance of the applications is the adaptive
with ILP reduction; all others have no performance overhead. Figure 7 presents the
performance degradation (y axis) according to the threshold (x axis). It varies from
zero to 27.25% with the threshold equal to 1 (the lowest possible value). As we increase
the threshold, the performance degradation is reduced, being negligible (less than 1%)
at 3.5. Therefore, performance degrades as the threshold reduces; on the other hand,
fault tolerance increases.

Figure 8 depicts the trade-off between failure rate and performance of the adaptive
approach without and with ILP reduction and different thresholds, normalized to the
unprotected 8-issue version. “Adpt.” stands for “Adaptive Only” (without ILP reduc-
tion), and T stands for “Threshold” for the Adaptive with ILP reduction. The failure
rate reduction varies from 61.68% (CJPEG executing on the Adaptive Only version)
to 97.09% (Matrix multiplication on Adaptive with T = 1), while performance degra-
dation reaches up to 27.25% (CJPEG on Adaptive with T = 1), when compared to the
unprotected version.

In the CJPEG benchmark, for instance, when switching from threshold 2.5 to 1, the
failure rate is further reduced from 65.65% to 86.96% (when compared to the unpro-
tected 8-issue), and the performance degrades from 3.65% to 27.25% (also compared to
the unprotected version). Therefore, for this benchmark, there is a large improvement
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Table I. Failure Rate and Performance Degradation

Unprot. Prot. Unprot. Protected
4-issue Full dup. 8-issue Phase-config. Adaptive Threshold

ADPCM

Failure
rate (%)

6.93 0.06 3.66 0.99 0.66

T
=1

0.59

T
=1

.7
5 0.65

T
=2

0.66

Exec.
Cycles

571 571 568 568 568 633 621 574

CJPEG

Failure
rate (%)

9.55 0.02 6.07 6.07 2.33

T
=1

0.79

T
=2

.5

2.12

Exec.
Cycles

508 508 411 411 411 523 426

CRC

Failure
rate (%)

5.20 0.06 2.95 0.64 0.33

T
=1

0.32

Exec.
Cycles

13,289 13,289 13,270 13,270 13,270 13,616

DFT

Failure
rate (%)

4.63 0.07 2.68 2.68 0.38

T
=1

0.15

Exec.
Cycles

35,072 35,072 32,575 32,575 32,575 32,979

Expint

Failure
rate (%)

4.21 0.05 2.37 2.37 0.13

T
=1

0.13

Exec.
Cycles

9,341 9,341 9,097 9,097 9,097 9,257

FIR

Failure
rate (%)

10.94 0.04 5.93 5.93 1.21

T
=1

0.93

Exec.
Cycles

119,392 119,392 111,769 111,769 111,769 120,095

Matrix Mult.

Failure
rate (%)

9.91 0.08 5.68 5.68 1.30

T
=1

0.17

T
=2

0.53

Exec.
Cycles

111,050 111,050 111,025 111,025 111,025 113,929 112,547

NDES

Failure
rate (%)

3.99 0.04 2.09 2.09 0.42

T
=1

0.24

Exec.
Cycles

28,527 28,527 27,499 27,499 27,499 28,667

Sums

Failure
rate (%)

5.52 0.04 2.96 0.11 0.37

T
=1

0.37

Exec.
Cycles

332 332 319 319 319 319

x264

Failure
rate (%)

5.21 0.09 2.94 0.07 0.33

T
=1

0.33

Exec.
Cycles

15,102 15,102 15,089 15,089 15,089 15,090

in fault tolerance, which comes at the high cost of performance. For benchmarks such
as the ADPCM, the performance degradation of changing the threshold from 2 to 1 is
greatly increased (1.06% to 11.44%), while the fault tolerance improvement is minimal
(81.96% to 83.98%). On the other hand, other benchmarks, such as the Matrix multi-
plication, present high fault tolerance improvements with low impact on performance:
with 2.62% of performance degradation, the failure rate reduction goes from 77.08%
(Adaptive Only) to 97.09% (Threshold = 1).

3.3. Dynamic Threshold Adaptation

In this section, the dynamic threshold adaptation is exploited when executing a given
application. This approach will adapt the threshold in order to cope with a given accept-
able failure rate variation (AFRV) defined a priori by the designer before execution. In
this experiment, the threshold starts at its lowest value and will gradually be increased
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Fig. 7. Performance degradation when varying the ILP reduction threshold.

in order to reduce the performance degradation according to the AFRV: If the failure
rate increases more than the AFRV, the threshold will be restored to its last value in
order to maintain the failure rate within the bounds defined by the user.

Figure 9 depicts this approach being applied to three benchmarks. The application
is executed in batches of 250 times, and for each batch, the threshold is gradually
increased if the failure rate does not increase more than the AFRV (in this example,
AFRV = 0.5%). Figure 9(a) presents the matrix multiplication benchmark, in which
the threshold is gradually increased from 1 to 3.75 without reaching the AFRV value.
However, when the threshold is increased to 4, the failure rate surpasses the AFRV,
which triggers the threshold reduction back to 3.75 and restore the acceptable failure
rate defined by the user. In Figure 9(b) (ADPCM), the threshold is increased from 1 to
4 without reaching the AFRV limit, and Figure 9(c) (CJPEG) reaches the AFRV value
with a threshold equal to 2.5, which is reduced back to 2.25 for the next executions.

Figure 10 presents the performance improvement and the failure rate variation that
the dynamic threshold provides when compared to the Threshold = 1. In the ADPCM
benchmark, the dynamic threshold is able to improve the performance by 11.44% with
a failure rate that varies from 0.59 (T = 1) to 0.66; for the matrix multiplication: 2.61%
speed-up with 0.17 to 0.53% failure rate variation; finally, for CJPEG, 0.2% speed-up
and no failure rate variation. Therefore, the dynamic threshold approach can be used to
reduce the performance overhead and still maintain the failure rate within the bounds
defined by the user.

3.4. Area and Power Dissipation

Table II presents the area (both FPGA and ASIC versions) and power consumption
(ASIC only) for all VLIW configurations. The operating frequency for these config-
urations was set to 65MHz. As it can be observed, the overhead for the 4-issue full
duplication is small in terms of area and power dissipation when compared to the
unprotected 4-issue, even though the pipelines are duplicated (the area for each
checker is less than 1%). The area overhead for the FPGA is 30% in LUTs and 35% in
registers; for the ASIC is 50%, while the power dissipation overhead is 35%. The area
overhead between ASIC and FPGA is not comparable with each other as different
technology and synthesis tools are used. The overhead is almost negligible when
one compares the phase-configurable approach with the base 8-issue configuration:
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Fig. 8. Adaptive with ILP reduction normalized to the unprotected version.

2.6% for the FPGA (in LUTs) and 2.8% for the ASIC, with 3.8% overhead in power
dissipation. For the adaptive version without ILP reduction, the overhead is also
extremely low: 4.6% for the FPGA and 3.5% for the ASIC, while the power dissipation
overhead is 5.3%. The overhead for the adaptive approach with ILP reduction is higher
because of extra control circuitry. However, the overhead is still low when compared
to other techniques (as it will be discussed next), being 18.3% for the FPGA, 14.1% for
the ASIC and 27.6% in power dissipation. The energy consumption overhead for some
of these techniques is further discussed in Sartor et al. [2016].

Therefore, each approach has its advantages depending on the target application
and its requirements. For instance, the phase-configurable may be used with power
gating, allowing idle hardware to be shut down on noncritical parts of the program.
The adaptive approach is able to exploit idle hardware for low ILP applications in a
completely transparent manner with extremely low overhead. For high ILP applica-
tions, the adaptive with ILP reduction can guarantee a certain amount of duplicated
instructions and therefore fault tolerance.
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Fig. 9. Dynamic threshold adaptation
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Fig. 10. Performance improvement and failure rate variation for the dynamic duplication approach when
compared to the Threshold = 1.

Table II. Area and Power Dissipation Comparison

FPGA ASIC
Registers LUTs Cells Power dissipation (nW)

Unprotected 4-issue 3,058 16,006 28,041 2,298,962.51
8-issue 3,974 35,075 66,967 7,484,818.25

Protected

Full duplication 4,102 20,819 42,121 3,109,613.33
Phase-configurable 4,133 35,973 68,849 7,771,568.02
Adaptive 4,206 36,672 69,305 7,878,161.31
Adaptive with ILP reduction 4,834 41,485 76,407 9,553,048.27

4. RELATED WORK

Several works have been proposed for the detection and correction of soft errors in
VLIW and superscalar processors. These works aim to improve the fault tolerance
of the target system, typically based on redundancy, which may be implemented in
software, hardware, or both.

Dual modular redundancy (DMR) based on checkpoints with rollback was used by
Xiaoguang et al. [2015] and Yang and Kwak [2010] to detect and correct errors. When-
ever an error is detected, the state in which the execution was correct is recovered.
Therefore, the latency to detect the error on these approaches will vary according to
the periodicity of the checkpoints (i.e., when a new checkpoint must be made). On the
other hand, the proposed duplication with rollback has zero latency detection as it
compares the results at all times and executes again only the instruction word that
presented the error. Therefore, in addition to the zero latency detection, the control
structure of the rollback is much simpler than the ones that use checkpoints.

Another common approach is to triplicate a processor and use a majority voter (triple
modular redundancy (TMR)), as implemented in Schölzel [2007] and Chen and Leu
[2010]. In these cases, they only triplicate the functional units of a VLIW processor
rather than the entire processor; therefore, it is possible to reduce area and power
dissipation costs. Schölzel [2007] proposed the Reduced TMR, in which both hardware
and software needed to be changed. If the two instructions (main and duplicated)
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compute different results, the instruction is executed a third time. However, such
approaches only cover errors that happen in the computation of a given operation.
Therefore, errors that may occur before or after the execution stage are not detected.
Moreover, the proposed duplication with rollback occupies less area and dissipates less
power than Schölzel [2007] and Chen and Leu [2010] and does not change the binary
code of the application.

Hu et al. [2005], propose a similar approach to Schölzel [2007]. However, instruction
replication is done in software, so the binary code is changed, even though there is no
area overhead. In the same way, replication is done partially to some instructions to
amortize the costs in performance (although it also affects the capacity of providing
fault tolerance). Anjam and Wong [2013] propose a TMR approach to be applied on the
synchronous flip-flops. However, the area and power dissipation overheads are higher
than the proposed technique.

Bolchini [2003] and Hu et al. [2009] propose a software-based redundancy based on
duplication with comparison (DWC) for VLIW data paths aiming to reduce the per-
formance overhead by using the idle functional units. However, these techniques still
present huge performance degradation and increase code size, as they are implemented
in software. Mitropoulou et al. [2014] propose an optimization to the DWC’s generated
code by reducing the impact of the basic block fragmentation caused by the check
instructions, having lower, but still not negligible, performance degradation than the
previous two techniques.

Tan and Fu [2012] propose to exploit idle streaming processors on GPGPUs by ex-
ecuting replicated warps. Even though this approach is implemented in software, the
hardware also requires modifications. In addition, it is only able to detect errors in the
execution, not correct them, as the proposed approaches. Also, no results regarding
area, power and energy are provided.

The main limitations of software-based redundancy are the increase in the code
size, energy consumption, and performance overheads that come with it. On the other
hand, hardware-based redundancy approaches increase area and power dissipation
with little or no performance overhead. The approaches proposed in this article, even
though implemented in hardware, have low overhead in area and power dissipation.

Adaptive fault tolerance: Some works exploit the previous techniques in order to
provide an adaptive fault tolerance mechanism. Jacobs et al. [2012] propose an adaptive
framework that switches between different fault tolerance techniques depending on a
priori knowledge of the environment, external events, or application-triggered events.
The supported fault tolerance modes are TMR, duplication with comparison, algorithm-
based fault tolerance (ABFT), internal TMR, and high-performance (no fault tolerance).
This approach is for FPGAs only, as the hardware needs to be reconfigured. On the other
hand, the proposed approach is implementation independent (i.e., can be used on both
FPGAs and ASICs).

An adaptive checkpoint mechanism was proposed in Zhang and Chakrabarty [2004],
in which the checkpointing interval is adjusted during the execution based on the oc-
currence of faults and the available slack. An offline preprocessing based on linear
programming is used to determine the parameters that are provided to the online
checkpointing procedure. Even though the checkpointing is adaptively made, the de-
tection latency is still greater than zero, besides the need for preprocessing. Mills
et al. [2014] replicate a task and execute the replicated task in a processor with lower
processor speed in order to save energy. If the main task completes successfully, the
duplicated one is terminated; otherwise, the duplicated task takes over, possibly at an
increased processing speed, and completes the computation. Although this technique

ACM Journal on Emerging Technologies in Computing Systems, Vol. 13, No. 2, Article 13, Publication date: January 2017.



13:18 A. L. Sartor

Table III. VLIW Fault Tolerance Techniques Comparison

Technique
Error

Coverage
Area

overhead
Performance
degradation

Power
dissipation
overhead

Code size
increase

Phase-configurable
duplication

∼100% 2.8% ∼0% 3.8% 0%

Adaptive duplication ∼100% 3.5% ∼0% 5.3% 0%
Adaptive with ILP
reduction

∼100% 14.1% ∼0%–27.25% 27.6% 0%

DMR with rollback
[Xiaoguang et al. 2015; Yang
and Kwak 2010]

∼100% 0% 51%–100% 0% 100%

TMR ∼100% 200% ∼0% ∼200% 0%
Partial TMR [Chen and Leu
2010]

95%–99% 100% 0.6%–34.3% ∼100% 0%

Reduced TMR [Schölzel 2007] ∼100% 100% 0%–100% ∼100% >0%
Reduced TMR - SW [Hu et al.
2005]

∼100% 0% 30%–60% 0% 100%

Flip-flops TMR [Anjam and
Wong 2013]

∼100% 200% ∼0% ∼200% 0%

DWC - SW [Bolchini 2003; Hu
et al. 2009]

∼100% 0% 28%–106% 0% 109%–
217%

DWC opt. - SW [Mitropoulou
et al. 2014]

∼100% 0% 29% 0% 100%–
150%

is able to reduce the energy consumption when compared to regular task duplication,
the overhead area and power is still huge, as it needs an extra processor.

Also, some works that aim to increase the performance of VLIW processors may be
used to complement the proposed techniques. For instance, Jones et al. [2006] propose to
increase the ILP on VLIW processors via hardware accelerators. Even though the use of
hardware accelerators often require code changing and recompilation, this approach is
orthogonal and can be applied simultaneously to the techniques of this work. Therefore,
hardware accelerators may be used along with the proposed techniques of this work on
those phases in which the ILP can be improved without jeopardizing the fault tolerance.
Adding extra hardware accelerators, naturally, would increase the area overhead.

Table III presents the comparison among the results from the proposed approaches
and the other works previously discussed in this section. We consider error coverage,
area, performance, power dissipation, and code size increase. As it can be noticed, the
proposed approaches have the lowest area and power dissipation overheads when com-
pared to other hardware-based techniques (in bold). Software-based techniques (in
italic) naturally do not affect the area nor the power dissipation, but they create a per-
formance overhead and increase the code size, both affecting total energy consumption
of the system, as the application will take longer to execute and the memory will be
more stressed.

5. CONCLUSIONS AND FUTURE WORK

In this work, fault tolerance mechanisms that exploit idle hardware and are based on
duplication and instruction rollback are proposed, which are able to not only detect
a fault, as conventional DMR approaches, but also correct the error by executing the
faulty instruction again via rollback. The performance overhead that a rollback causes
is negligible compared to the application’s total number of cycles. In addition, these
mechanisms are able to provide fault tolerance at a minimum cost, by using idle
resources of the VLIW processor with low area and power overhead. Moreover, the ILP
reduction approach can be used to improve the fault tolerance at the cost of performance
when the application has high ILP.

ACM Journal on Emerging Technologies in Computing Systems, Vol. 13, No. 2, Article 13, Publication date: January 2017.



Exploiting Idle Hardware to Provide Low Overhead Fault Tolerance for VLIW Processors 13:19

Finally, we will evaluate the applicability of this approach in other configurations
and processors: in the current processor configuration (1 branch, 1 memory unit, and 4
multipliers), we need to add one more branch and memory units to allow the execution
of all duplicated instructions. In the simplest configuration of the current processor (1
branch, 1 memory, and 1 multiplier), the overhead of adding one more of those units (for
duplication) would be of only 2%. Therefore, it is very likely that this approach may be
applied to any VLIW configuration/processor, with more or less area overhead depend-
ing on the available functional units. This organization is similar to other commercial
VLIW processors, for instance, the Intel Itanium [Sharangpani and Arora 2000] has 8
ALUs (4 integer and 4 MMX), 2 floating point multiply-add units, 2 memory units and
3 branch units; and the TMS320C6745 [Instruments 2011] from Texas Instruments
has 6 ALUs, 2 multipliers, and 2 memory units. Therefore, as long as the functional
units are symmetric, the duplication can be applied to any type of functional unit, in
any VLIW processor.

As future work, we will consider other VLIW configurations (e.g., 2- and 4-issue
versions) with different issue slot organizations, based on how critical each instruction
is. In these cases, the bundle will proportionally be much more used than the ones
from the 8-issue (the compiler will fill the bundles with more instructions than NOPs).
Therefore, there will be less and different phases in the application, and a higher
performance and fault tolerance variation when using the ILP reduction approach.

In addition, temporal redundancy techniques will be used to complement the spatial
redundancy that is currently used. Temporal redundancy will potentially increase the
rollback overhead and detection latency, as checkpoints will be needed to restore to an
error-free state. However, this approach allows instructions to be compared with more
flexibility (in different cycles); therefore, exploiting idle cycles that spatial redundancy
is not able to benefit from. For instance, if a bundle has more empty slots than the
number of program instructions, when applying the duplication, some of those will
remain empty. Therefore, temporal redundancy allows the exploitation of these slots to
improve fault tolerance by executing duplicated instructions from a previous bundle,
instead of only duplicating instructions within the same bundle. A dynamic approach
for dynamically detecting phase changes [Guo et al. 2016] will also be evaluated to be
integrated to the fault tolerance approach.
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