
Improved Dynamic Cache Sharing for
Communicating Threads on a Runtime-Adaptable

Processor
Joost Hoozemans∗ Arthur Lorenzon† Antonio Carlos Schneider Beck‡ Stephan Wong§

Computer Engineering Lab
Delft University of Technology

Email: {j.j.hoozemans∗, j.s.s.m.wong§}@tudelft.nl
Institute of Informatics

Universidade Federal do Rio Grande do Sul
Email: {aflorenzon†, caco‡}@inf.ufrgs.br

Abstract—Multi-threaded applications execute their threads on
different cores with their own local caches and need to share data
among the threads. Shared caches are used to avoid lengthy and
costly main memory accesses. The degree of cache sharing is
a balance between reducing misses and increased hit latency.
Dynamic caches have been proposed to adapt this balance to
the workload type. Similarly, dynamic processors aim to execute
workloads as efficient as possible to being able to balance between
exploiting Instruction-level parallelism (ILP) and Thread-level
parallelism (TLP). To support this, they consist of multiple pro-
cessing components and caches that have adaptable interconnects
between them. Depending on the workload characteristics, these
can connect them together to form a large core that exploits ILP,
or split them up to form multiple cores that can run multiple
threads (exploiting TLP). In this paper, we propose a cache
system that is able to further exploit this additional connectivity
of a dynamic VLIW processor by being able to forward cache
accesses to multiple cache blocks while the processor is running
in multi-threaded (‘split’) mode. Additionally, only requests to
global data are broadcasted, while accesses to local data are kept
private. This will improve the hit rates similar to existing cache
sharing schemes, but reduce the penalty due to stalling the other
subcores. Local accesses are recognized by distinguishing memory
accesses relative to the stack frame pointer. Results show that
our cache exhibits similar miss rate reductions as shared caches
(up to 90% and on average 26%), and reduces the number of
broadcasted accesses by 21%.

I. INTRODUCTION

Modern computing system rely heavily on caches to deliver
the bandwidth needed to achieve high performance. As the
memory gap has been steadily increasing, the cache hierarchy
has become increasingly important. The challenge is that
different programs have widely different requirements on the
caches. This becomes worse when considering multi-threaded
workloads; some of these need large amounts of inter-thread
communication, benefiting from large caches that are shared
with neighboring processing cores, while others benefit more
from small private caches that have lower latency compared
to the large shared caches. On a shared memory multicore

Part of this work has been supported by the ALMARVI European Artemis
project nr. 621439.

platform with a single level of cache, running a multi-threaded
program requiring a large amount of communication will
result in excessive bus bandwidth utilization and main memory
accesses. This can impede performance and scalability. Fur-
thermore, in embedded systems, it increases energy utilization
considerably, as main memory accesses consume more energy
than cache accesses and will typically stall the processor for
a large number of cycles. This is one of the reasons why
designers have started to add large shared cache levels to the
system.

Shared caches require multiple access ports or banking to be
able to handle multiple requests simultaneously. This means
they will likely require multiple cycles to handle requests and
will utilize more area with respect to private caches that can be
smaller and only need to service a single request at a time. In
other words, the degree of sharing is a design trade-off. This
is why a large body of work has been dedicated to studying
cache sharing and partitioning. Even in contemporary systems
with multiple levels of cache, this is still relevant as contention
for the shared Last-Level Cache (LLC) has impact on the total
performance [1].

Besides the memory system, workloads also have varying
requirements on the processing fabric. Some programs are very
thread-parallel by nature, others are more sequential but may
have a high degree of ILP (Instruction-Level Parallelism) that
can be exploited by wide-issue processors. Ideally, one would
like to design or select processors and caches specifically
for an application at design-time, to allow for design-time
optimization to be performed. However, with general-purpose
platforms (and modern, high performance embedded systems
such as mobile phone SoCs), this is not possible as they need
to be able to perform well on a wide range of programs not
known at design time. That is why researchers have introduced
processors and caches that can change their characteristics
dynamically, at run-time [2] [3]. This means that the processor
can operate as a single, wide-issue core to exploit ILP or as
multiple smaller cores that can run multiple threads in parallel.
Dynamic processors require caches that can facilitate all the
different possible core configurations. When the processor



is running in a single-core configuration, it should still be
able to access all of the available cache blocks. This requires
additional connectivity between the processing elements and
the cache blocks (see Figure 1).

This additional connectivity leads to the following drawback
of both ‘classical’ dynamic caches (targeting static multipro-
cessor systems) and dynamic processors: it results in longer
cycle times or hit latency [3]. In return this should provide
higher hit rates (in case of dynamic caches) and/or a higher
degree of flexibility to adapt to the workload (in case of
dynamic processors). Additionally, when a dynamic processor
is running in multi-core mode, it allows cache requests to
be forwarded to multiple blocks (because the connections are
already in place to support the dynamic adaptability). In this
case, the forwarded request will introduce contention, because
the blocks will either be able to service a single request per
cycle (stalling the core if it is trying to access memory at the
same time) or need more access ports (increasing area usage,
cycle time and/or latency). In this paper, we propose a scheme
to alleviate this penalty.

As discussed, using shared cache schemes will only in-
crease hit rates when accessing data that may be present
in a neighboring cache block. This means that the target
application domain is workloads with threads that have a high
degree of communication between them. On Symmetric Multi-
Processing (SMP) systems, threads usually communicate by
simply operating on globally shared data in the same address
space (although message passing and other schemes exist).
However, a thread does not only use global (shared) data, it
also references local (private) data such as the stack. Sending
these memory requests to other cache blocks will never result
in an advantage, as private data is in principle never needed
by other threads.

In this paper, we propose a scheme where a dynamic
processor can broadcast only global memory requests to its
cache blocks, while keeping local accesses private to its own
first level cache. This means that local accesses do not suffer
from the penalty of a shared cache, while global accesses
can benefit from being able to access shared data more
efficiently. There are several ways the processor can identify
the difference between these types of accesses; the most
obvious way is by introducing an instruction set extension
that makes a distinction between the 2 types in its memory
instructions (e.g., Private Load/Shared Load). These can be
supported by the compiler, as it knows which variables are
shared or private. The instruction set architecture of the run-
time adaptable processor used in this work, ρ-VEX, uses a
specific register as stack pointer (similar to ARM and x86). In
this case, the processor inherently uses the stack pointer for
local memory accesses (i.e., variables that are on the stack)
and an instruction set extension is therefore not necessary.

The contributions of this paper are:
• We propose an improvement to the cache system of a

dynamic processor that sends global memory accesses to
multiple blocks (”broadcasting”) while keeping thread-
local memory accesses private.

• We show that for multi-threaded workloads, broadcasting
only global cache requests can significantly decrease the
number of accesses to main memory, equivalent to results
obtained when broadcasting all cache requests.

• We show that, by not broadcasting local cache requests,
the penalty for this dynamic cache block sharing can be
reduced.

• We examine and discuss the effects cache sharing has on
the power utilization for multi-threaded workloads.

II. BACKGROUND

The cache sharing concept introduced in this paper is
applied to a dynamically reconfigurable VLIW processor in-
troduced by [4]. It is a proof-of-concept that can dynamically
balance Instruction-Level Parallelism (ILP) and Thread-Level
Parallelism (TLP) by dividing resources between cores as
efficiently as possible. This is done by splitting the processor
into multiple separate cores when there is a high level of TLP
and merging them back into a large (high-issue width) VLIW
core when there is only a single program with a high level of
ILP. One of the special characteristics of the ρ-VEX compared
to related dynamic processors (see Section VII) is that it is
a VLIW architecture. Traditional VLIW architectures need
binaries that were specifically compiled for their organization
(number of datapaths, pipeline organization). The ρ-VEX
project has solved this drawback by introducing generic VLIW
binaries [5], that allow a single binary to be executed on
different issue widths. In this manner, binary compatibility
is achieved. In the following sections, the ρ-VEX dynamic
processor and cache design will be described briefly.

A. Dynamic Core

This section provides a brief overview of the ρ-VEX pro-
cessor. For a more in-depth discussion, we refer to [4] and
[6]. The ρ-VEX VLIW core is a VHDL implementation of
a dynamically reconfigurable VLIW processor. It consist of a
number of 2-issue VLIW processors that can be merged if the
available ILP is high enough. Merging can be performed in
powers of 2 - combinations of 2, 4, and 8-issue cores are pos-
sible. A configuration switch has a latency of approximately
9 cycles, which is the time to decode the new setting and
flushing the 4-stage pipelines. The total number of cores is
design-time reconfigurable. The design has been prototyped
on FPGA using up to 4 2-issue cores (that can be merged into
a 8-issue VLIW). Larger configurations are supported by the
code, but not feasible for prototyping on FPGA. All sub-cores
have their own register file, control registers, and a complete
set of functional units, so they can operate fully independent.
In case the processor is running in single-core mode, it
functions as an 8-issue VLIW processor. The principle works
by multiplexing the program counter and other architectural
control registers to the datapaths depending on the processor
configuration. There core will be interfaced with the dynamic
cache using 4 program counters and data access ports (address,
data, write/read enable signals). Furthermore, there are 4 sets
of memory mapped control registers and signals related to



Fig. 1. Cache design that allows the ρ-VEX to run multiple programs as
separate cores or one program as a combined core, while always using all
available cache storage capacity.

interrupts etcetera that interface with the rest of the SoC.
Depending on the configuration, these connections may or may
not be active at the same time. This requires a dynamic cache
that can support this.

B. Dynamic Cache

To allow the core to run using its different configurations,
a cache has been developed that consists of multiple blocks.
To increase efficiency of the blocks, they can be combined
much like the datapaths of the processor to work together
when the configuration allows (see Figure 1). In a more
straight-forward design, each core would have a private block
of cache directly connected to it. When combining multiple
cores, this would mean that the other blocks of cache stay
idle. The dynamic cache works by introducing a small series
of multiplexers between the cache blocks and the processor
cores. The network routes the request from a core to all the
blocks that are connected to it in the current configuration.
The data from the block that has it is routed to the correct
memory unit, similar to how a set associative cache works.
We exploit this functionality that is already in place to support
our proposed cache request broadcasting scheme, as we will
describe in Section IV.

III. CONCEPT

In multi-threaded applications, there are 2 types of memory
accesses; (thread-)local and global (also referred to as “pri-
vate” and “shared”, respectively). The first type is to data that
is used only by the thread itself, such as variables on the stack.
The other type is to data that is global to the application,
and that all threads need to access or update. A programmer
typically creates stack variables when declaring them inside a
function declaration, and global variables by declaring them
outside functions. In other words, the distinction between stack
variables and other (possibly shared) data on a software level is
trivial. The amount of data that is communicated between mul-
tiple threads is an inherent characteristic of the algorithm and
implementation; some algorithms can run very independently
and others need large amounts of communication between
the working sets of different threads (see Table I for the

communication characteristics of the benchmarks used in our
evaluation).

Dynamically shared caches try to increase the hit rate when
running applications with large amounts of communication,
while minimizing latency for applications with small amounts
of communication. Figure 2 shows a simplified overview of
how a dynamically shared cache works; it is able to forward
memory accesses to multiple cache blocks, depending on a
reconfigurable interconnection network (a series of switches
that can forward the request or not). The caches blocks need
to be able to handle requests from multiple sources, as will
be discussed in more detail in Section IV. This results in
penalties in the form of added circuit complexity and access
latency when considering the hardware design, and increased
contention and energy utilization at the respective cache level
during run-time. On the other hand, it also results in decreased
numbers of cache misses, resulting in decreased contention
and energy utilization after the respective cache level. By
making the level of sharing dynamic (as has been done in
previous work), this balance can be tuned in favor of the
current workload. In existing dynamically shared caches, all
memory accesses are forwarded because the hardware does
not know whether they are global or local.

We propose to use the distinction between local and global
memory accesses to send only the global memory requests to
the shared caches and to keep local memory requests private.
Because local variables can never hit in other cache blocks,
broadcasting these requests can never result in lower miss rates
(Figure 2, left side). However, the requests will still increase
L2 or main memory contention and energy utilization. By
broadcasting only the global memory accesses, miss rates can
be reduced with similar ratio’s compared to existing shared
caches, while causing the penalty (i.e., increased contention
and energy utilization) to be reduced.

We propose two methods to implement the concept. The first
method preserves binary compatibility and does not require
compiler support. Many architectures use a special register to
keep track of the stack. All accesses to the stack (that are
inherently local) will be performed by addressing memory
relative to that register, which is how the hardware can
detect whether a memory access is local. Additionally, many
architectures (such as ARM and x86) use PUSH and POP
instructions to access the stack. The second method entails
adding an instruction to the ISA that allows the programmer
or compiler to broadcast a memory requests only if it has a
certain probability of hitting in a neighboring cache block.
This will also allow thread-private malloc’ed memory to be
distinguished and will improve the results. This paper only
evaluates the first method.

The reduction in total accesses to all shared blocks of cache
can be formulated as

RedL1acc =
(Acclocal +Accglobal) ∗Nsharedcaches

Acclocal + (Accglobal ∗Nsharedcaches)
(1)

Where N , the number of cores and caches, is a design
choice for the hardware platform, the number of global and



Fig. 2. Diagram explaining the concepts of dynamically shared caches on the left (previous work), and our improved version. As can be seen, a reference
to a memory value that is local to a thread can never hit in another core’s cache (depicted by the red cross). The access does consume energy and create
contention on the shared caches. By broadcasting only those requests to memory that potentially resides in other core’s caches, the same improvements in
cache hit ratio’s can be achieved.

local Accesses are a program characteristic (see Table I), and
Reduction is the reduction in total traffic to all the N cache
blocks in the system that is caused by a thread. This reduction
will lower the bandwidth requirements on the cache blocks and
can lead to energy savings.

IV. IMPLEMENTATION

Shared access to memories can be achieved in two ways:
(1) by increasing the number of access ports that can be
used independently and (2) by arbitrating between requests.
Increasing the number of ports is very expensive in terms of
circuit area, which is one of the reasons why the shared higher-
level caches are much slower than private first-level caches
(e.g., L2 access latency is 21 cycles compared to 4 cycles for
the L1 in an ARM A15 chip). Arbitrating between requests
will mean that one of the requests will be stalled while the
other is being handled.

As the ρ-VEX cache design already has multiplexers in
place to connect the cores to the cache blocks (see Figure 1),
adding the broadcast mechanism is considerably less complex
than adding an access port for each core to all cache blocks.
In case one of the cores performs a cache request broadcast,
the request is forwarded to all blocks in the same way as when
the cache is running in single-core mode, and the result is for-
warded to the requesting core. The other cores’ cache accesses
are delayed using the same logic that handles cache misses.
An alternative design could ignore the broadcast request if the
cache is busy, which would increase the probability of the
broadcast resulting in a miss but decrease the total hit penalty.

Our implementation only considers read accesses at this
point, because the ρ-VEX caches are write-through. The

processor is configured as a 4-core 2-issue VLIW. The 4 cache
blocks participate in the shared setup, as a sharing degree of
4 has been found to be the most effective by [3].

V. EVALUATION

To measure the efficacy of the improved dynamic cache
sharing concept, a SoC simulator, written in C, is utilized that
simulates a reconfigurable ρ-VEX core with dynamic L1 cache
that is connected to a main memory through a simple round-
robin bus model. We are using the characteristics of the ρ-VEX
FPGA prototype for evaluations, where the core is running on
80 MHz, L1 caches have 1 cycle latency, main memory has
12 cycles penalty for a read miss and 8 cycles for a write
miss. The L1 instruction cache has 16 cycles miss penalty. To
estimate energy utilization, we used CACTI [7]. To attempt to
accurately model the energy utilization of the different types
of accesses, we have used a model of a 4KiBdirect mapped L1
cache with a line size of 4 bytes for the data cache blocks. The
instruction cache blocks are 8KiBdirect-mapped L1 caches
with a 32 byte line size and the main memory is a 512MB
DDR3.

A number of benchmark programs from the target appli-
cation domain is executed on the simulator using 3 different
cache behaviors: the default (baseline), a fully shared mode
where all data cache read accesses are broadcasted to all cache
blocks, and (our approach) a global-only shared mode where
only data cache accesses that will potentially access globally
shared data are broadcasted to all cache blocks. The target
application domain in this case is multi-threaded programs
that have some level of communication between the threads.



Workloads without any communication do not benefit from
cache sharing and therefore are not evaluated.

A. Benchmarks

Five parallel implementations of well-known algorithms
with different memory usage behaviors (accesses to shared
and private addresses) were designed. Table 1 depicts the main
characteristics regarding communication of each benchmark,
obtained by using the PIN Tool [8].

• Gauss
The Gauss method is a technique for solving the n
equations of the linear system of equations Ax = b, where
A is the matrix of coefficient m x n; x is the vector of
variables, and b the vector of terms [9].

• Jacobi
The Jacobi method consists of an iterative algorithm to
determine the solution of linear systems involving a large
percentage of zero coefficients. Assuming a linear system
Ax = b, where A is the matrix of coefficient m x n; x is
the vector of variables, and b the vector of terms; the
goal is to find an approximate result for x through the
convergence of the vectors [9].

• LU
LU-Decomposition uses the Doolittle Method (a widely
used algorithm [9]) to perform the Lower-Upper Decom-
position.

• OddEven - Odd/Even sort is a sorting algorithm based on
bubble sort that compare pairs of elements. In a first step,
the indexed pairs are analyzed (odd, even). If the value
of the first element is greater than the second (even), they
are exchanged. In a second step, the same thing is done,
but now with the inverted pattern (even, odd). These two
steps are alternately repeated for N/2 iterations, where N
is the number of elements in the vector.

• Turing
Turing Ring describes a space system that predators and
prey interact in one location. The system consists of the
simulation of iteration and evolution of predators and
prey through the use of differential equations, and the
evolution is according to the neighboring cells [10].

The applications were implemented using the C language.
Since the way the parallel algorithm is written may influence
its behavior during execution, we have followed the guidelines
indicated by [11] and [12]. Therefore, the applications were
parallelized using the fork-join model, where the master thread
is in charge of initializing the data, calculating the workload
division and starting the other threads.

All benchmarks were ran using multiple input sizes, which
largely determine the cache performance. We expect that, as
the input sizes grow, the working set of the algorithms will
become too large, and cache performance will start to degrade.
When this happens, we expect the effectiveness of the shared
cache will degrade as well. Note that this is not a shortcoming
of the concept as cache performance is an important factor for
every program and scalability in this regard is a characteristic
of the algorithm and/or its implementation.

TABLE I
CHARACTERISTICS OF THE BENCHMARKS REGARDING MEMORY

ACCESSES WHEN EXECUTING 4 THREADS

Benchmarks Private Shared Total
Write Read Write Read

Gauss 49.02% 22.49% 8.93% 19.56% 100%
Jacobi 54.08% 22.86% 4.08% 18.98% 100%
LU-Decomposition 62.68% 22.79% 0.37% 14.16% 100%
Odd-Even Sort 30.46% 24.18% 21.56% 23.80% 100%
Turing Ring 41.79% 24.89% 27.94% 5.38% 100%

B. Results

Fig. 3. Gauss benchmark results

Fig. 4. Jacobi benchmark results

Figures 3 to 7 depict the performance and cache results of
the benchmarks on the 3 platforms. Interestingly, there is very
little performance difference in most cases, in contrast to what
is measured by [3]. This might be caused by the relatively
heavy broadcast hit penalty we assume (1 cycle compared to
a single-cycle access latency for non-shared caches) and the
penalty we incorporate for when a broadcasted request collides
with other requests (instead of assuming a multi-banked setup).



Fig. 5. LU benchmark results

Fig. 6. Odd/Even benchmark results

It can be seen that our cache scheme has a slight advantage
and in the OddEven benchmark, it changes a reduction in
performance into an improvement in performance. The results
for reductions in data cache read misses show that, as expected,
both shared cache behaviors perform very similar. Finally, the
results show considerable decreases in broadcasted requests of
up to 90% and on average 26%.

Most of the benchmarks show a large drop in hit rates as the
input size increases, and the efficiency of the proposed cache
shows a correlation with it. This confirms the expectation that
the concept needs a certain hit rate to function properly (as
the probability of a word residing in memory is decreasing,
so is the probability to find it in other cache blocks). The
Turing benchmark is showing some counter intuitive results
because both the hit rates and reduction in cache broadcasts
for the improved cache are fairly stable over different input
sizes, but the effectiveness of cache sharing does in decreasing
misses diminishes. Figure 8 Shows the average dynamic
energy savings for the 5 benchmarks. These results are mostly
influenced by the number of cache misses, as these consume
considerably more energy than core cycles and cache hits. We

Fig. 7. Turing benchmark results

Fig. 8. Dynamic energy savings compared to ρ-VEX standard cache (non-
shared). In this graph, the energy savings by not broadcasting local variables
is insignificant next to the savings because of the miss rate decrease.

have plotted only dynamic energy usage because the static
energy consumption stays very constant between the different
setup (as there is limited difference in performance).

Important to note is that the VEX architecture targets
the media processing domain and is equipped with a large
number of registers. This causes the number of local accesses
to be relatively low compared to architectures such as x86
and ARM, that have limited amounts of registers (and will
therefore need to use the stack more often).

VI. CONCLUSION

Sharing caches can decrease the number of cache misses
and thereby increase performance and/or decrease energy
utilization. Earlier shared cache systems broadcast all accesses
to the caches, including local accesses. Our work introduces a
distinction between local and global data that is supported by
the processor architecture (by distinguishing accesses relative
to the stack pointer register). Using this concept, we have
shown a cache system that only broadcasts the global cache
accesses (that potentially reside in the caches of the other



cores) while keeping most local accesses private. Our results
show that the decrease in cache misses and the resulting
energy saving is similar to broadcasting all cache accesses,
while the number of broadcasts required to achieve this is
reduced by 21% on average. Furthermore, results show that
the performance is in many cases dependent on whether the
working set fits in the caches. Exploiting the characteristics
of the ρ-VEX platform, the cost of adding the dynamic cache
sharing functionality is small because the processor already
has much of the required logic in place in order to support its
dynamic adaptability.

VII. RELATED WORK

A. Dynamic Processors

The realization that dynamic workloads require dynamic
computing platforms has inspired several academics to design
dynamic systems. Dynamic processors (examples being [2]
[13] [14]) try to target diverse code where, usually, the goal is
to provide high performance for single-threaded programs with
high ILP and high throughput for multi-threaded programs
with high TLP (Thread-Level Parallelism). In other words,
these processors can adapt to the characteristics of the running
program. The ρ-VEX is no different in this regard. What is
different, is that 1) it targets the embedded domain and 2)
uses a VLIW style architecture that allows a natural mapping
of tasks/threads to datapaths. The compiler has already cre-
ated instruction bundles, that all utilize a certain number of
datapaths. If there are unused datapaths, they can be assigned
to run another thread or switched off to conserve energy.
This way, there is no need for very large instruction windows
and dependency checking circuitry (needed by the ρ-VEX’s
superscalar counterparts in the general-purpose domain) that
becomes even more complex for dynamic processors. The ρ-
VEX will be discussed in Section II-A.

B. Dynamic Caches

This work touches upon the areas of reconfigurable caches,
cache partitioning, and cache sharing. In particular, the dy-
namic (run-time) variants are the most relevant and will be
discussed. A large body of work has been dedicated to dynamic
caches, partly because there are multiple ways in which a
cache can be dynamic. Many caches have been designed
that are reconfigurable in the level of associativity, size, and
line size [15] [16]. Cache partitioning can be viewed from
both the software and hardware point of view. From the
software’s perspective, it is possible to analyze where data
used by programs (or even functions within programs) will
be mapped into the cache. In this manner, contention can be
identified at compile-time and by modifying the layout of the
data in the binaries, cache behavior can be improved (see for
example [17]). This is not related to this work, as we are
proposing a hardware cache sharing mechanism. A hardware’s
perspective (of a dynamically partitioned cache) is presented
in [18], where storage areas can be partitioned and used
for different purposes (e.g., cache, local memory/scratchpad,
prefetch buffer, and lookup tables/instruction reuse buffer).

This work discusses caches that are partitioned in order to
change the level of sharing between cores.

The level of cache sharing determines whether all processor
cores have access to a private block of cache memory or if
they are all attached to the same cache but have to contend
for access. There are numerous design points in between (such
as sharing a cache between pairs of cores), a popular design
being a private L1 cache and shared L2 caches (or in the
general-purpose domain: private L1 and L2 caches and a
very large shared L3). In most systems, these are design-time
characteristics.

Academics have designed systems where the level of shar-
ing can be modified at run-time (i.e., dynamically). Some
use a setup where the storage capacity is divided between
different (unrelated) processes ([19], [20] and [21]). This is
not related to this work as we are targeting multi-threaded
applications that communicate data between cores. In [3],
a design is proposed where 16 cores can access a pool of
cache banks. The degree of sharing (private, shared with a
group of n processors or fully shared with all processors) is
dynamically reconfigurable. The trade-off to be made here is
that higher degrees of sharing may reduce misses, but will
increase hit latencies. in [22], a similar concept of detecting
private memory regions is discussed, where the directory
based coherency can be switched off. Our work focuses on a
simpler setup with a dynamic processor that has write-through
caches with only bus snooping for coherency. Furthermore, our
scheme uses the stack register to distinguish private accesses
instead of requiring Operating System support.

REFERENCES

[1] S. Kim, D. Chandra, and Y. Solihin, “Fair Cache Sharing and
Partitioning in a Chip Multiprocessor Architecture,” in Proceedings
of the 13th International Conference on Parallel Architectures and
Compilation Techniques, ser. PACT ’04. Washington, DC, USA:
IEEE Computer Society, 2004, pp. 111–122. [Online]. Available:
http://dx.doi.org/10.1109/PACT.2004.15

[2] Khubaib, M. A. Suleman, M. Hashemi, C. Wilkerson, and Y. N. Patt,
“MorphCore: An Energy-Efficient Microarchitecture for High Perfor-
mance ILP and High Throughput TLP,” in Microarchitecture (MICRO),
2012 45th Annual IEEE/ACM International Symposium on, Dec 2012,
pp. 305–316.

[3] J. Huh, C. Kim, H. Shafi, L. Zhang, D. Burger, and S. W. Keckler,
“A NUCA Substrate for Flexible CMP Cache Sharing,” Parallel and
Distributed Systems, IEEE Transactions on, vol. 18, no. 8, pp. 1028–
1040, 2007.

[4] F. Anjam, M. Nadeem, and S. Wong, “Targeting Code Diversity with
Run-time Adjustable Issue-slots in a Chip Multiprocessor,” in Design,
Automation Test in Europe Conference Exhibition (DATE), 2011, March
2011, pp. 1–6.

[5] A. Brandon and S. Wong, “Support for Dynamic Issue Width in VLIW
Processors Using Generic Binaries,” in Design, Automation Test in
Europe Conference Exhibition (DATE), 2013, March 2013, pp. 827–832.

[6] A. Brandon, J. Hoozemans, J. van Straten, A. Lorenzon, A. Sartor,
A. C. S. Beck, and S. Wong, “A Sparse VLIW Instruction Encoding
Scheme Compatible with Generic Binaries,” in 2015 International
Conference on ReConFigurable Computing and FPGAs (ReConFig),
Dec 2015, pp. 1–7.

[7] CACTI 6.5, http://www.hpl.hp.com/research/cacti.
[8] C.-K. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser, G. Lowney,

S. Wallace, V. J. Reddi, and K. Hazelwood, “PIN: Building Customized
Program Analysis Tools with Dynamic Instrumentation,” in Acm sigplan
notices, vol. 40, no. 6. ACM, 2005, pp. 190–200.

http://dx.doi.org/10.1109/PACT.2004.15
http://www.hpl.hp.com/research/cacti


[9] W. H. Press, Numerical Recipes 3rd Edition: The Art of Scientific
Computing. Cambridge university press, 2007.

[10] J. Paudel and J. N. Amaral, “Using the Cowichan Problems to Investigate
the Programmability of X10 Programming System,” in Proceedings of
the 2011 ACM SIGPLAN X10 Workshop. ACM, 2011, p. 4.

[11] I. Foster, “Designing and Building Parallel Programs,” 1995.
[12] D. R. Butenhof, Programming with POSIX Threads. Addison-Wesley

Professional, 1997.
[13] K. Sankaralingam, R. Nagarajan, H. Liu, C. Kim, J. Huh, D. Burger,

S. W. Keckler, and C. R. Moore, “Exploiting ILP, TLP, and DLP with
the Polymorphous TRIPS Architecture,” in Computer Architecture, 2003.
Proceedings. 30th Annual International Symposium on. IEEE, 2003,
pp. 422–433.

[14] M. Tremblay, J. Chan, S. Chaudhry, A. W. Conigliaro, and S. S. Tse,
“The MAJC Architecture: A Synthesis of Parallelism and Scalability,”
IEEE Micro, vol. 20, no. 6, pp. 12–25, 2000.

[15] C. Zhang, F. Vahid, and W. Najjar, “A Highly Configurable Cache
Architecture for Embedded Systems,” in Computer Architecture, 2003.
Proceedings. 30th Annual International Symposium on. IEEE, 2003,
pp. 136–146.

[16] L. Chen, X. Zou, J. Lei, and Z. Liu, “Dynamically Reconfigurable
Cache for Low-Power Embedded System,” in Natural Computation,
2007. ICNC 2007. Third International Conference on, vol. 5. IEEE,
2007, pp. 180–184.

[17] D. Chandra, F. Guo, S. Kim, and Y. Solihin, “Predicting Inter-Thread
Cache Contention on a Chip Multi-Processor Architecture,” in High-
Performance Computer Architecture, 2005. HPCA-11. 11th International
Symposium on. IEEE, 2005, pp. 340–351.

[18] P. Ranganathan, S. Adve, and N. Jouppi, “Reconfigurable Caches and
their Application to Media Processing,” in Computer Architecture, 2000.
Proceedings of the 27th International Symposium on, June 2000, pp.
214–224.

[19] G. E. Suh, L. Rudolph, and S. Devadas, “Dynamic Partitioning of
Shared Cache Memory,” The Journal of Supercomputing, vol. 28,
no. 1, pp. 7–26. [Online]. Available: http://dx.doi.org/10.1023/B:
SUPE.0000014800.27383.8f

[20] H. Dybdahl and P. Stenström, “An Adaptive Shared/Private NUCA
Cache Partitioning Scheme for Chip Multiprocessors,” in High Perfor-
mance Computer Architecture, 2007. HPCA 2007. IEEE 13th Interna-
tional Symposium on. IEEE, 2007, pp. 2–12.

[21] W. Wang, P. Mishra, and S. Ranka, “Dynamic Cache Reconfiguration
and Partitioning for Energy Optimization in Real-time Multi-core
Systems,” in Proceedings of the 48th Design Automation Conference,
ser. DAC ’11. New York, NY, USA: ACM, 2011, pp. 948–953.
[Online]. Available: http://doi.acm.org/10.1145/2024724.2024935

[22] B. A. Cuesta, A. Ros, M. E. Gómez, A. Robles, and J. F. Duato,
“Increasing the Effectiveness of Directory Caches by Deactivating
Coherence for Private Memory Blocks,” in ACM SIGARCH Computer
Architecture News, vol. 39, no. 3. ACM, 2011, pp. 93–104.

http://dx.doi.org/10.1023/B:SUPE.0000014800.27383.8f
http://dx.doi.org/10.1023/B:SUPE.0000014800.27383.8f
http://doi.acm.org/10.1145/2024724.2024935

