
VLIW-based FPGA Computation Fabric with
Streaming Memory Hierarchy for Medical

Imaging Applications

Joost Hoozemans, Rolf Heij, Jeroen van Straten, and Zaid Al-Ars

Delft University of Technology
j.j.hoozemans@tudelft.nl, r.w.heij@student.tudelft.nl, j.van.straten-1@tudelft.nl,

z.al-ars@tudelft.nl

Abstract. In this paper, we present and evaluate an FPGA acceleration
fabric that uses VLIW softcores as processing elements, combined with a
memory hierarchy that is designed to stream data between intermediate
stages of an image processing pipeline. These pipelines are commonplace
in medical applications such as X-ray imagers. By using a streaming
memory hierarchy, performance is increased by a factor that depends on
the number of stages (7.5× when using 4 consecutive filters). Using a
Xilinx VC707 board, we are able to place up to 75 cores. A platform
of 64 cores can be routed at 193MHz, achieving real-time performance,
while keeping 20% resources available for off-board interfacing.
Our VHDL implementation and associated tools (compiler, simulator,
etc.) are available for download for the academic community.

1 Introduction

In contemporary medical imaging platforms, complexity of image processing
algorithms is steadily increasing (in order to improve the quality of the output
while reducing the exposure of the patients to radiation). Manufacturers of med-
ical imaging devices are starting to evaluate the possibility of using FPGA accel-
eration to provide the computational resources needed. FPGAs are known to be
able to exploit the large amounts of parallelism that is available in image process-
ing workloads. However, current workflows using High-Level Synthesis (HLS) are
problematic for the medical application domain, as it impairs programmability
(increasing time-to-market) and maintainability. Additionally, some of the image
processing algorithms used are rather complex and can yield varying quality of
results. Therefore, in this paper, we propose a computation fabric on the FPGA
that is optimized for the application domain, in order to provide acceleration
without sacrificing programmability. By analyzing the structure of the image
processing workload type (essentially a pipeline consisting of multiple filters op-
erating on the input in consecutive steps), we have selected a suitable processing
element and designed a streaming memory structure between the processors.

The image processing workload targeted in this paper consists of a number
of filters that are applied to the input data in sequence. Each filter is a stage



2 Joost Hoozemans, Rolf Heij, Jeroen van Straten, and Zaid Al-Ars

in the image processing pipeline. The input stage of a filter is the output of the
previous stage - the stages stream data to each other. Making sure these transfers
are performed as efficiently as possible is crucial to provide high throughput.

The processing element used in this work is based on a VLIW architecture.
These type of processors are ubiquitous in areas such as image and signal pro-
cessing. They are known for their ability to exploit Instruction-Level Parallelism
(ILP) while reducing circuit complexity (and subsequently power consumption)
compared to their superscalar counterparts. In the medical imaging domain,
power consumption is not a main concern, but as image processing workloads
can be divided into multiple threads easily, a reduction in area utilization will
likely result in an increase in total throughput.

The remainder of this paper is structured as follows: Section 2 discusses
related work, Section 3 discusses the implementation details, Section 4 and 5
present the evaluation and results, and Section 6 provides conclusions and future
work.

2 Related work

A prior study on using VLIW-based softcores for image processing applications
is performed in [1], showing that a VLIW-based architecture has advantages
over a scalar architecture such as the MicroBlaze in terms of performance versus
resource utilization. In [2], an FPGA-based compute fabric is proposed using the
LE-1 softcore (based on the same Instruction Set Architecture - VEX), target-
ing medical image processing applications. This work focuses solely on offering
a highly multi-threaded platform without providing a memory hierarchy that
can sustain the needed bandwidth through the pipeline. A related study on
accelerating workloads without compromising programmability is [3], with one
of the design points being a convolution engine as processing element. A well-
known prior effort, and one of the inspirations of this work, uses softcores to
provide adequate acceleration while staying targetable by a high level compiler
is the Catapult project [4]. The target domain is ranking documents for the Bing
search engine. A related effort that aims to accelerate Convolutional Neural Net-
works is [5]. However, this project did not aim to conserve programmability (only
run-time reconfigurability), as the structure of this application does not change
enough to require this. In the image processing application domain, [6] provides a
comparison of convolution on GPU or FPGA using a Verilog accelerator, [7] and
[8] present resource-efficient streaming processing elements, and [9] introduces a
toolchain that targets customized softcores.

3 Implementation

The computation fabric developed in this work consists of two facets; the pro-
cessing elements and the memory hierarchy, as shown in Figure 1. The imple-
mentation of both will be discussed in this section. Then, the process of designing
a full platform using these components is discussed.



VLIW-based FPGA Computation Fabric for Medical Imaging 3

2-issue
core

Instr.
memory

Data
memory

2-issue
core

Instr.
memory

Data
memory

Decoder

Debug access bus

20 MHz

200 MHz

2-issue
core

Instr.
memory

Data
memory

DecoderDecoder

Data
source

Data
sink

Stream unit Stream unit Stream unit

Fig. 1. Organization of a single stream of processing elements (Stream unit) and the
streaming connections that link the data memories. Each processor can access the
memory of its predecessor. Each processor’s memories and control registers can be
accessed via a bus that runs on a low clock frequency to prevent it from becoming a
timing-critical net.

3.1 Processing elements

This section describes the design and implementation of our fabric. The proces-
sor cores in the fabric are derived from the ρ-VEX processor [10]. The ρ-VEX
processor is an VLIW processor based on the VEX ISA introduced by Fisher et
al [11]. The ρ-VEX processor has both run-time and design-time reconfigurable
properties, giving it the flexibility to run a broad selection of applications in an
efficient way.

Image processing tasks are highly parallelizable in multiple regards; 1) The
code is usually computationally dense, resulting in high ILP, and 2) Every pixel
can in theory be calculated individually and it is easy to assign pixels to threads
(by dividing the image into blocks). In other words, there is an abundance of
Thread-Level Parallelism (TLP). Exploiting TLP is usually more area efficient
than exploiting ILP - increasing single-thread performance comes at a high price
in power and area utilization and will quickly show diminishing returns. This is
why GPUs exploit TLP as much as possible by using many small cores. There-
fore, the processing elements of our fabric will use the same approach and we will
use the smallest 2-issue VLIW configuration as a basis. This will still allow it to
exploit ILP by virtue of having multiple issue slots and a pipelined datapath.

By placing multiple instances of our fabric on an FPGA, TLP can be ex-
ploited in two dimensions; by processing multiple blocks, lines or pixels (de-
pending on the filter) concurrently, and by assigning each step in the image
processing pipeline to a dedicated core (pipelining on a task level in contrast to
the micro-architectural level).

To explore the design space of the processor’s pipeline organization, we have
measured code size and performance of a 3x3 convolution filter implemented
in C. This convolution code forms a basis with which many operators can be
applied to an image depending on the kernel that is used (blurring, edge de-
tection, sharpening) so it is suitable to represent the application domain. The
main loop can be unrolled by the compiler using pragmas. Figure 2 lists the
performance using different levels of loop unrolling for different organizations



4 Joost Hoozemans, Rolf Heij, Jeroen van Straten, and Zaid Al-Ars

of a 2-issue ρ-VEX pipeline; the default pipeline with 5 stages and forward-
ing, one with 2 additional pipeline stages to improve timing, and one using the
longer pipeline and with Forwarding (FW) disabled to further improve timing
and decrease FPGA resource utilization. Loop unrolling will allow the compiler
to fill the pipeline latency with instructions from other iterations. The perfor-
mance loss introduced is reduced from 25% to less than 2% when unrolling 8
times. Additionally, disabling forwarding reduces the resources utilization of a
core allowing more instances to be placed on the FPGA (see Figure 3).

0 2 4 8
0

50

100

150

99
92 88 87

104

92 88 86

126

101
93

88

Loop Unroll factor

E
x
ec

u
ti

o
n

ti
m

e
(M

cy
cl

es
)

5-stage Forwarding

7-stage Forwarding

7-stage no Forwarding

Fig. 2. Execution times of a 3x3 convolution filter on a single processor using different
loop unrolling factors.

3.2 Memory hierarchy

In our fabric, processing elements are instantiated in ‘streams’ of configurable
length. This length should ideally be equal to the number of stages in the image
processing pipeline. Each stage will be executed by a processor using the output
of the previous processor. A connection is made between each pair of ρ-VEX
processors in a stream, so that a core can read the output of the previous step
(computed by the previous core in the stream) and write the output into its own
data memory (making it available for reading by the next core in the stream).
The memory blocks are implemented using dual-port RAM Blocks on the FPGA.
Each port can sustain a bandwidth of one 32-bits word per cycle per port, so
both processors connected to a block (current, next) can access a block without
causing a stall. The blocks are connected to the processors by means of a simple
address decoder between the memory unit and the data memories.

The first and last core should be connected to DMA (Direct Memory Access)
units that move data to and from input and output frame buffers (eventually
going off-board).

3.3 Platform

The VHDL code of the components is written in a very generic way and there
are numerous parameters that can be chosen by the designer. First of all, the ρ-
VEX processor can be configured in terms of issue width, pipeline configuration,



VLIW-based FPGA Computation Fabric for Medical Imaging 5

forwarding, traps, trace unit, debug unit, performance counters, and caches. Sec-
ondly, there is an encompassing structure that instantiates processors in streams.
The number of streams and length per stream are VHDL generics.

4 Experimental setup

Since the target application of the designed system is related to medical image
processing, an X-ray sample image is used as input for the evaluation. Typi-
cal medical imagers work with images that have a size of 1000 by 1000 pixels.
The dimensions of our benchmark images are 2560 by 1920 pixels. The image
is resized to other dimensions in order to determine the scalability of system
performance. Each pixel is represented by a 32-bit value (RGBA). Using a tech-
nique described in the following section, the image may be scaled down to 1280
by 960 and 640 by 480 pixels.

A workload of algorithms based on a typical medical image processing pipeline
is used. The first step in the image processing pipeline is an interpolation al-
gorithm used to scale the size of the source image. The bi-linear and nearest
neighbor interpolation algorithms both have the same computational complex-
ity making them equally feasible. Because of its slightly higher flexibility, we
select the bi-linear interpolation algorithm for the evaluation. Secondly, a gray
scaling algorithm is applied. This algorithm is selected because it operates on
single pixels in the input dataset. The third stage is a convolution filter that
sharpens the image, followed by the final stage, an embossing convolution filter.

5 Evaluation results

5.1 Resource utilization

We have synthesized the platform using various configurations targeting the Xil-
inx VC707 evaluation board. As stated, the pipeline organization of the process-
ing elements has influence on the resource utilization and timing. In Figure 3, 4
options have been evaluated using the standard synthesis flow (unconstrained).
With forwarding enabled, the platform completely fills the FPGA using 64 cores.
When forwarding is disabled, this can be increased to 75.

Additionally, we have performed a number of runs where we created sim-
ple placement constraints that steered the tool towards clustering the cores per
stream so that they are aligned on the FPGA in accordance with their stream-
ing organization. A single stream consisting of 4 cores achieves an operating
frequency of 200MHz. Using 16 streams, timing becomes somewhat more diffi-
cult as the FPGA fabric is not homogeneous (some cores will need to traverse
sections of the chip that are reserved for clocking, reconfiguration and I/O logic,
and the distribution of RAM Blocks is not completely uniform). Still, this con-
figuration achieves an operating frequency of 193 MHz at 80% LUT utilization,
leaving room for interfacing with off-board electronics.



6 Joost Hoozemans, Rolf Heij, Jeroen van Straten, and Zaid Al-Ars

Pipeline organization Cores Resource utilization Freq.
Forwarding Stages LUT FF BRAM (MHz)

Enabled 7 64 99% 29% 81% 149
Enabled 5 64 93% 26% 81% 103
Disabled 7 75 96% 33% 95% 162
Disabled 5 75 98% 30% 95% 143

Disabled 7 4 5% 2% 5% 200
Disabled 7 64 82% 28% 81% 193

Fig. 3. Resource utilization and clock frequency of different platform configurations on
the Xilinx VC707 FPGA board. The layout of the 64-core, 193MHz platform on the
FPGA is depicted on the right. Manually created placement constraints were used to
group each stream together.

5.2 Image processing performance

Figure 4 depicts the execution times of a 3x3 convolution filter on the various
platforms, taking into account the number of cores, execution frequency, code
performance on the pipeline organization (using 8x loop unrolling).

The results on using the streaming architecture for consecutive filters ver-
sus the same system with caches and a bus are depicted in Figure 5. Enabling
streaming of data results in speedup of 7.5 times. Processing an image sized 1280
by 960 requires 94.72 million clock cycles (see Figure 5). Using 16 streams con-
sisting of 4 cores (64 cores in total) at an operating frequency of 193 MHz, this
would mean that our fabric can process approximately 34 frames per second.

Note that the difference will increase with the number of stages, so the fabric
will perform better with increasingly complex image processing pipelines.

FW
5-st

age 64-co
re

FW
7-st

age 64-co
re

noFW
5-st

age 75 core

noFW
7-st

age 75 core

noFW
7-st

age 64 core

101

13.1

9.01

8.2

7.24 7.12

Platform

E
x
ec

u
ti

o
n

ti
m

e
(µ

s)

Fig. 4. Execution times of a convolution 3x3 filter for the platforms in the design-space
exploration as listed in Figure 3 using 8x loop unrolling (from Figure 2).



VLIW-based FPGA Computation Fabric for Medical Imaging 7

2590*1920 1280*960 640*480

102

103

377

95

24

3,016

710

165

Image size

E
x
ec

u
ti

o
n

ti
m

e
(M

cy
cl

es
)

Streaming Non-Streaming

Fig. 5. Execution times of a 4-stage image processing pipeline on a streaming versus
non-streaming platform using different image sizes

6 Conclusion

In this paper, we have introduced and evaluated an implementation of a FPGA-
based computation fabric that targets medical imaging applications by providing
an image processing pipeline-oriented streaming memory hierarchy combined
with high-performance VLIW processing elements. We have shown that the
streaming memory hierarchy is able to reduce bandwidth requirements and in-
crease performance by a factor of 7.5 times when using a single stream of only 4
processing stages. The platform stays fully targetable by a C-compiler and each
core can be instructed to perform an individual task. The platform is highly
configurable and designers can modify the organization to best match their ap-
plication structure. For future work, there is room for further design-space explo-
ration of the processing elements in terms of resource utilization versus perfor-
mance, introducing design-time configurable instruction sets, increasing the clock
frequency, and other architectural optimizations. The platform, simulator and
toolchain are available for academic use at http://www.rvex.ewi.tudelft.nl.

Acknowledgment

This research is supported by the ARTEMIS joint undertaking under grant
agreement no. 621439 (ALMARVI).

References

1. J. Hoozemans, S. Wong, and Z. Al-Ars, “Using VLIW Softcore Processors for
Image Processing Applications,” in Embedded Computer Systems: Architectures,
Modeling, and Simulation (SAMOS), 2015 International Conference on, pp. 315–
318, IEEE, 2015.

http://www.rvex.ewi.tudelft.nl


8 Joost Hoozemans, Rolf Heij, Jeroen van Straten, and Zaid Al-Ars

2. D. Stevens, V. Chouliaras, V. Azorin-Peris, J. Zheng, A. Echiadis, and S. Hu,
“BioThreads: a novel VLIW-based chip multiprocessor for accelerating biomedi-
cal image processing applications,” IEEE transactions on biomedical circuits and
systems, vol. 6, no. 3, pp. 257–268, 2012.

3. T. Nowatzki, V. Gangadhan, K. Sankaralingam, and G. Wright, “Pushing the
limits of accelerator efficiency while retaining programmability,” in 2016 IEEE
International Symposium on High Performance Computer Architecture (HPCA),
pp. 27–39, IEEE, 2016.

4. A. Putnam, A. M. Caulfield, E. S. Chung, D. Chiou, K. Constantinides, J. Demme,
H. Esmaeilzadeh, J. Fowers, G. P. Gopal, J. Gray, et al., “A Reconfigurable Fabric
for Accelerating Large-Scale Datacenter Services,” IEEE Micro, vol. 35, no. 3,
pp. 10–22, 2015.

5. K. Ovtcharov, O. Ruwase, J.-Y. Kim, J. Fowers, K. Strauss, and E. S. Chung,
“Accelerating Deep Convolutional Neural Networks using Specialized Hardware,”
Microsoft Research Whitepaper, vol. 2, 2015.

6. L. M. Russo, E. C. Pedrino, E. Kato, and V. O. Roda, “Image Convolution Pro-
cessing: A GPU versus FPGA Comparison,” in 2012 VIII Southern Conference on
Programmable Logic, pp. 1–6, March 2012.

7. P. Wang, J. McAllister, and Y. Wu, “Soft-core Stream Processing on FPGA: An
FFT Case Study,” in 2013 IEEE International Conference on Acoustics, Speech
and Signal Processing, pp. 2756–2760, May 2013.

8. P. Wang and J. McAllister, “Streaming Elements for FPGA Signal and Image Pro-
cessing Accelerators,” IEEE Transactions on Very Large Scale Integration (VLSI)
Systems, vol. 24, pp. 2262–2274, June 2016.

9. B. Bardak, F. M. Siddiqui, C. Kelly, and R. Woods, “Dataflow toolset for Soft-core
Processors on FPGA for Image Processing Applications,” in 2014 48th Asilomar
Conference on Signals, Systems and Computers, pp. 1445–1449, Nov 2014.

10. S. Wong and F. Anjam, “The Delft Reconfigurable VLIW Processor,” in Proc. 17th
International Conference on Advanced Computing and Communications, (Banga-
lore, India), pp. 244–251, December 2009.

11. J. A. Fisher, P. Faraboschi, and C. Young, Embedded Computing: A VLIW Ap-
proach to Architecture, Compilers, and Tools. 500 Sansome Street, Suite 400, San
Francisco, CA 94111: Morgan Kaufmann Publishers, 2005.


