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Abstract—Many emerging technologies are under investigation
to realize alternatives for future scalable electronics. Memristor
is one of the most promising candidates due to memrsitor’s
non-volatility, high integration density, near-zero standby power
consumption, etc. Memristors have been recently utilized in
non-volatile memory, neuromorphic system, resistive computing
architecture, and FPGA to name but a few. An FPGA typically
consists of configurable logic blocks (CLBs), programmable
interconnects, configuration, and block memories. Most of the
recent work done was focused on using memristor to build
FPGA interconnects and memories. This paper proposes two
novel FPGA implementations that utilize memristor-based CLBs
and their corresponding automatic design flow. To illustrate the
potential of the proposed implementations, they are benchmarked
using Toronto 20, and compared with the state-of-the-art in terms
of area and delay. The experimental results show that both the
area (up to 4.24x) and delay (up to 1.46x) of the novel FPGAs
are very promising.

I. INTRODUCTION

As transistors gradually approach their inherent physical
device limits, CMOS technology faces major challenges
such as increased leakage, saturated performance gain, and
reduced reliability [1,2]. To address these challenges, novel
technologies; such as carbon nanotube, graphene transistors,
and memristors [3]; are proposed as alternatives for future
scalable electronics. Memristors are one of the most promising
candidates due to their non-volatility, high integration density,
and near-zero standby power [3,4]. Memristors-based
design have been proposed for non-volatile memory [4],
neuromorphic system, resistive computing architecture [5,6],
and field programmable gate array (FPGA) [7–9].

Many novel memristor-based FPGAs, called MemFPGA for
short, have been reported recently. MemFPGAs typically em-
ploy the classical island-style architecture [10] which consists
of configurable logic blocks (CLBs), programmable inter-
connect, and block RAM (BRAM). Each CLB consists of
look-up tables (LUTs) and a D flip-flop (DFF). Both CLBs
and the programmable interconnect use memories to store
configuration information. In MemFPGAs, memristors are
utilized in the following fashion:

• As configuration memory for CLBs and interconnects [7]
• Used in the implementation of programmable intercon-

nect [8].
• Implement BRAMs and DFFs [9].

In this work, we propose the use of memristors to improve
the implementation of LUTs within FPGA, something that
have not been done before. This paper proposes two FPGA
implementations using memristor-based LUTs along with an
appropriate Electronic Design Automation (EDA) process.
The cost of both implementations in terms of area and delay
is analyzed.

The rest of this paper is organized as follows. Section II
briefly describes memristor-based logic. Section III presents
the proposed FPGA implementation followed by an EDA flow
in Section IV. Section V evaluates the proposed approaches
and the paper is concluded in Section IV.
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II. FUNDAMENTALS OF MEMRISTOR LOGIC

This section starts with the characteristics of memristors,
followed by an overview of memristor logic, finally presents
two memristor logic styles used in this work.

A. Electronic Characteristics of Memristor

Fig. 1 shows I-V characteristics of a typical memristor [4]. The
memristor switches from one resistive state to another when
voltage across the device is greater than its threshold voltage
Vth. Otherwise, it stays in its current resistive state. The the
high-to-low switching is referred to as SET (RL) resistance,
while low-to-high switching is referred to as RESET(RL).

B. Overview of Memristor Logic

There are four types of memristor logic that have been
previously proposed, namely, threshold [11], majority [11],
implication [12], and Boolean logic [13,14]. Since LUTs
are commonly based on Boolean logic, we will limit our
discussion to memristor-based Boolean logic. Memristor-based
Boolean logic can be classified into two styles depending on
how logic states are represented. One style uses high and
low voltages to represent logic 1 and 0 as is referred to as
memristor-ratioed logic (MRL) [13]. On the other hand, when
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Fig. 2: 2-Input NAND Gate of Memristor-Ratioed Logic

high/low resistance is to represent logic 1 and 0, then it is
referred to as Resistive Boolean logic (RBL) [14]. Next, we
describe MRL and RBL Boolean logic.

C. Memristor Ratioed Logic (MRL)

The basic gates in MRL are AND, OR, NAND and NOR [13].
Fig. 2 shows an example of a 2-input NAND gate consisting
two memristors and a CMOS inverter (an n-input NAND
gate requires n memristors). When only one the inputs is
1 (e.g., A=1, B=0, see Fig. 2(a)), a current flows through
memristor MA and MB as indicated by the dash-lined resulting
in RESETing MA and SETing MB. The voltage of the floating
nanowire Vx= MB

MA+MB
Vdd≈0 as RH�RL [4], hence the output

voltage Vo is Vdd. Cases when both inputs are 1 or 0 can be
analyzed similarly and are shown in Fig. 2(b)-(c).

D. Resistive Boolean Logic (RBL)

In RBL, the basic logic gates are NAND, copy, invert (INV),
and AND and are shown in Fig. 3 [14]. To illustrate work-
ing principle of RBL, a two-input NAND gate is used as
an example. A 2-input NAND gate consists of two input
memristors (MA and MB), an output memristor (Mo), and
a resistor Rs (RL�Rs�RH ). The output memristor must
be RESET to RH before each operation and input ones
must be pre-programmed before execution (for brevity, this
initialization is not shown). To perform an NAND operation,
control voltages Vdd

2 and Vdd (Vdd
2 <Vth) are applied to input and

output memristors, respectively. In the case when input A=1
and B=0, MA = RH, and MB = RL (see Fig. 3(a)), the voltage
on floating nanowire Vx≈Vdd

2 is RL�Rs�RH resulting in the
voltage across Mo to be Vmo≈Vdd−Vdd

2 =Vdd
2 <Vth, rendering

Mo to stay in RH state. Case when input A=B=1 can be
analyzed similarly and is shown at the bottom of Fig. 3(a).
Fig. 3(b) shows other gates which work in the similar way as
the 2-input NAND gate.

III. TWO FPGAS USING MEMRISTOR LOGIC

This section first briefly describes island-style FPGA architec-
ture then presents MRL and RBL based FPGA architectures.

A. Island-Style FPGA Architecture

Fig. 4(a) shows the island-style FPGA architecture [10] which
consists of CLBs, connection boxes (CBs), switching boxes
(SBs) and BRAMs. Each CLB is composed of a switch matrix
and N basic logic elements (BLEs) as shown in Fig. 4(b). The
switch matrix contains multiple MUXs configured by SRAM
bits to route I shared inputs and feedback N outputs among
BLEs. A single K-input BLE contains a LUT, DFF, MUX and
configuration memories (i.e., SRAM) as shown in Fig. 4(c).
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The LUT can implement a K-input Boolean function as
determined by the configuration memories. The LUT can
switch between sequential and combinational mode using the
DFF and MUX. CBs and SBs constitute the programmable
interconnect to route the signals among CLBs.

The reminder of this section presents two novel FPGAs. The
MRL based implementation will be referred to as MFPGA
whereas RBL based one will be labeled as RFPGA.

B. MFPGA

MFPGA uses MRL to implement the LUT and switch matrix
(SM) of the CLBs while still using CMOS to implement the
DFF and 2:1 MUX of BLEs. The output f of a 2-input LUT
can be expressed by Eq.1:

f = c1x̄1x̄2 + c2x̄1x2 + c3x1x̄2 + c4x1x2 (1)

= c1x̄1x̄2 · c2x̄1x2 · c3x1x̄2 · c4x1x2

where xi (i=1,2) are the inputs and ci (1≤i≤4) are configura-
tion bits. Fig. 5(a) shows an example of an MRL-based 2-input
LUT. Each term in output f , e.g., c1x̄1x̄2, is implemented
using a NAND gate whose output are used as inputs to another
NAND gate to calculate the complete output f . All memristors
of the NAND gates are mapped on a memristor crossbar.
For instance, the term c1x̄1x̄2 is realized by enabling the
three memristors at the junctions between columns x̄1, x̄2,
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and c1 with the first row while keeping other memristors on
the same row disabled (by not electroforming them [4]). Note
that the disabled junction is permanently in a high resistance
RD�RH [14]. Configuration bit c1 is stored in a 3-Transistor-
2-Memristor (3T2R) cell as shown in Fig. 5(b) [7]. Two
memristors M1 and M2 form a voltage divider and inverter
output Vc is used as value for c1. To configure c1 to 0, M1 and
M2 should be programmed to RL and RH using Vdd. During
execution stage, Vr is applied resulting in Vc=0 outputted. The
case of c1=1 works in a similar fashion.

The output f of an N:1 MUX (e.g., N=2) used in SM can be
expressed by Eq.2 where xi (1≤i≤2) presents the inputs and
c1 configuration bit. Fig. 5(c) shows an MRL-based 2:1 MUX
as an example. It works similarly as MRL LUT.

f = x1c1 + x2c̄1 = x1c1 · x2c̄1 (2)

C. RFPGA

In RFPGA, RBL is used to implement BLEs while it uses
the same switch matrix used in MFPGA. The output f of a
K-input LUT can be expressed by Eq.1; e.g., K=2.

f = c1x̄1x̄2 · c2x̄1x2 · c3x1x̄2 · c4x1x2 (3)

Fig. 6(a) shows an RBL implementation of 2-input LUT. The
first two rows are used to invert xi to x̄i (i=1,2) whereas
the following four rows implement the four terms in Eq.3
by mapping four NAND gates of Fig. 3(a) on the crossbar.
For instance, the expression c1x̄1x̄2 is implemented by row
3 where three memristors are placed at columns x̄1, x̄2 and
c̄1 junctions representing inputs while a memristor is placed
on column f junction signifying the output. The remaining
junctions in row 3 are disabled. To calculate output f , an
AND gate is mapped on column f where it reuses the output
of the four NAND gates as input hence storing value at the
memristor at the junction of row and column f .

To control the crossbar of the BLE, multiple voltage drivers
and a CMOS controller are employed. A voltage driver is
attached to each nanowire (triangles in Fig. 6(a)) and is used
to control the voltage on the nanowires. The controller has
two modes of operation, configuration (CFG) and execution
(EXE) as described by the state machine shown in Fig. 6(b).
The CFG mode consists of two states:

1) RSC: Activate all configuration bits by RESET all
memristors to RH .

2) WR0: Deactivate configuration bits that do not con-
tribute to function implemented (set memristors to RL).
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TABLE I: Control Voltages for BLEs of RFPGA
EXE Mode

State
Row Column

INV NAND OL IN INN C OUT
1–2 3–6 7 x1,x2 x̄1,x̄2 ci f

RSL Vdd Vdd Vdd/2 GND GND Vdd/2 GND
TRO GND Vdd/2 Vdd Float Vdd/2 Vdd/2 Float
RSO Vdd/2 Vdd/2 Vdd Vdd/2 Vdd/2 Vdd/2 GND
INV Float Vdd/2 Vdd/2 Vdd Vdd/2 Vdd/2 Vdd/2
CPY Vdd GND Vdd/2 Float Float Vdd/2 Vdd/2

NAND Vdd/2 Float Vdd/2 Vdd/2 Vdd/2 Vdd/2 Vdd
AND Vdd/2 Vdd GND Vdd/2 Vdd/2 Vdd/2 Float

CFG Mode

State
Row Column

INV NAND OL IN INN C OUT
RSC Vdd/2 Vdd Vdd/2 Vdd/2 Vdd/2 GND Vdd/2
WR0 Vdd/2 Vdd/GND* Vdd/2 Vdd/2 Vdd/2 Vdd Vdd/2

The EXE mode consists of seven states:

1) RSL: RESET all memristors to RH except output f and
configuration bits (i.e., ci, 1≤i≤4).

2) TRO: Transfer output f to the next BLEs, while receive
all inputs of the LUT.

3) RSO: RESET the memristor that stores output f .
4) INV: Invert inputs xi to x̄i (i=1,2).
5) CPY: Copy inputs to all NAND gates.
6) NAND: Execute all NAND gates to calculate the items.
7) AND: Execute an AND gate to calculate output f .

To perform the operation of each state in the state machine,
control voltages as indicated in Table I needs to be applied
to the various nanowires. For instance, during CPY state, all
inputs (xi and x̄i) are copied to all NAND gates by applying
Vdd to row INV (row 1–2) and GND to NAND (row 3–6)
while simultaneously column IN (xi) and INN x̄i are floating.
In order to reduce the impact of sneak path currents on the
BLE’s robustness, Vdd

2 is applied to rows and columns that are
not involved in the operations [4,14].

IV. AN EDA FLOW FOR PROPOSED FPGAS

This section presents a modified EDA flow for the proposed
FPGA architectures and evaluate them in term of area and
delay.
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A. Modified EDA Flow

To automatically implement circuits using the proposed FP-
GAs, we modify the standard EDA flow for CMOS FPGA [10]
as shown in Fig. 7 where shaded blocks identify modification.
Circuit design is first optimized at logic level and then mapped
to LUTs using ABC [15]. Thereafter, LUTs are packed into
CLBs using T-VPACK [16] where each CLB consists of one
or more LUTs depending on configuration setting. Next, CLB
netlist is placed and routed using VPR [16]. Finally, the entire
FPGA consisting of CLBs and the routing architecture (includ-
ing CBs and SBs) are estimated in terms of area and delay.
To estimate the performance of the proposed architectures,
we modify the performance estimation block by adding area
and delay models for memristor-based CLBs. As the FPGA
architecture is regular, FPGA performance estimation block
only need to sum up the area and delay of CLBs and routing
architecture [10]. The rest of this section presents area and
delay model for the proposed CLBs.

B. Area Model of Memristor CLBs

CLBs of MFPGA and RFPGA can be implemented by a
memristor crossbar stacked on top of a CMOS circuit as shown
in Fig. 8 [3,4]. Hence, the area of a single CLB (Aclb) is
estimated by the maximum area of the memristor crossbar
(Axbar) and CMOS circuit (Acmos) as given by Eq.4. Crossbar
area is estimated as the product of number of junctions
(Njunction) by the area of a single junction (Ajunction).{

Aclb = max{Axbar, Acmos}
Axbar = Njunction ·Ajunction

(4)

The CMOS part of MFPGA CLB contains inverters, DFFs,
and 3T2R memory cells, hence can be represented as the
summation of each component’s area as expressed in Eq.5.

Acmos,MFPGA =
∑

Ainv +
∑

Amemory +
∑

Adff (5)

where Ainv, Amemory, and Adff are the areas of a CMOS
inverter, 3T2R memory cell, a DFF, respectively.
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Fig. 8: A Possible Implementation of MFPGA and RFPGA
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The CMOS part of RFPGA CLB contains voltage drivers and
controller and thus its area can be expressed in Eq.6.

Acmos,RFPGA = Actrl +
∑

Avd (6)

where Actrl presents the area of the controller and Avd is
that of a single voltage driver. The area of the controller can
be estimated by a synthesis tool (e.g., Cadence RTL compiler).

Fig. 9 shows a possible implementation of a voltage driver
consisting of three pass transistors [17] controlled by three-bit
signals C[0:2]. To drive a nanowire with multiple memristors
connected as shown on the right side of Fig. 9, the transistors
should provide enough current to drive such wires. There-
fore, transistors width-to-length ratio W

L should be carefully
determined. To program a single memristor, the transistor
must supply a current greater than Iw= Vdd

RL
[9]. The area of

a transistor is typically An=6F 2 [7] where F is the feature
size of CMOS technology. To drive na active memristors in
parallel, W

L should be increased na times in order to provide
the required current Iw. As a result, An of the transistor
increases na times as given in Eq. 7.

Iw = na
Vdd

RL
, and An = 6naF

2 (7)

Further, assume that we have another nd disabled junctions
with each consuming current equal to ID= Vdd

RD
, then the

transistor should also compensate for the current through nd

disabled memristors as described in Eq.8.{
Iw = na

Vdd
RL

+ nd
Vdd
RD

= (na + RL

RD
nd) Vdd

RL
,

An = 6(na + RL

RD
nd)F 2

(8)

Finally, the total area Avd of a single voltage driver is as given
in Eq.9. Typically, RD

RL
>5 × 104 [18] and hence the number

of memristors na dominates the area of the driver.

Avd = 3An = 18(na +
RL

RD
nd)F 2 ≈ 18naF

2 (9)
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C. Delay Model of Memristor CLBs

The delay of MFPGA CLB is determined by the critical path
from inputs to outputs similar to CMOS circuit. The critical
path contains an SM MUX , an LUT, a DFF, and a 2:1 MUX.
The DFF and 2:1 MUX are implemented using CMOS and
the remaining components are implemented using MRL. The
delay Dmrl of a MRL-based LUT or MUX is modelled by
Eq.10 (see Fig. 5).

Dmrl = 2Dinv + 2Tsw + Dnw,row + Dnw,col. (10)

where Dinv represents the delay of a CMOS inverter, Tsw is the
switching time of a memristor device, and Dnw,row (Dnw,col.)
the delay of a row (column) nanowire. Note that memristors
driven by Vdd first switch RL and then memristors driven
by GND switch to RH or vice versa (see Fig. 2(a)) [13],
therefore, memristor devices need 2Tsw to switch. A row or
column nanowire is modelled as a transmission line as shown
in Fig. 10 and its delay Dnw is formulated by Elmore model
[19] as given in Eq.11.

Dnw =
∑n

i=1

[
Ci

(∑i
j=1 Rj

)]
= (n2 + 4n− 21/8)Rnw · Cnw · F 2

n : number of junctions in the nanowire
R1 = 3

2F ·Rnw

Ri = 2F ·Rnw, 1 < i ≤ n

C1 = 3
2F ·

Cnw
2

Ci = 2F · Cnw, 1 < i < n

Cn = 2F · Cnw + 3
2F · Cnw

(11)

RFPGA CLB contains several BLEs based on RBL and an
SM based on MRL. The delay of SM is modelled by Eq.10.
The delay Dble of the BLE of Fig. 6 is modelled by Eq.12.

Dble = Nstep ·Dstep = 7 ·Dstep

Dstep = Dxbar + Dctrl

Dxbar = Tsw + Dnw

(12)

where Dble is the product of execution step number Nstep
and the delay of a single step Dstep. Dstep is the sum of
crossbar delay Dxbar and that of the CMOS controller Dctrl.
The nanowire delay Dnw is modelled by Eq.10 and Dctrl is
provided by the synthesis tool (e.g., Cadence RTL Compiler).

V. EVALUATION

To evaluate the performance of proposed architectures, a
benchmark suite was synthesized and the their area and delay
characteristics were compared with state-of-the-art FPGA.
First, will present experimentation setup, followed by results
and discussion, and finally limitations of this work.

TABLE II: FPGAs for Comparison

FPGA
CLB Routing Architecture

BLE SM Config. Programmable Config.
Memory Interconnect Memory

Baseline CMOS CMOS 6T-SRAM

CMOS SRAM
MemFPGA CMOS CMOS 1T1R-RRAM

MFPGA MRL MRL 3T2R-RRAM
RFPGA RBL MRL 3T2R-RRAM

TABLE III: Parameters of FPGA Architecture and Technology
Parameter Description Value

Island-Style FPGA Architecture [10,16]
K No. of LUT inputs, 3≤K≤12 –
N No. of LUTs in a CLB, N=1,4,8 –
I No. of CLB inputs, I=K

2
(N + 1) –

Fc,in Input connectivity fraction of each CLB 0.5
Fc,out Output connectivity fraction of each CLB 1

N
L Channel segment length (i.e., number of CLBs) 4

Technology
Memristor (TaOx RRAM) [18,22]

F (nm) Feature size 90
Tsw (ns) Switching time (max of SET and RESET) 0.2
RL (kΩ) ON Resistance 200
RH (MΩ) OFF Resistance 200
Rs (MΩ) Resistance of Rs (for RBL) 1

Memory Cell Area [4]
Asram (F 2) Area of a 6T-SRAM Cell 140
A1t1r (F 2) Area of a 1T1R-RRAM Cell 6
A3t2r (F 2) Area of a 3T2R-RRAM Cell 18
Am (F 2) Area of a memristor in crossbar 4

Nanowire (Copper) [23]
Cnw (fF/µm) Capcitance in unit length 0.26
Rnw (Ω/µm) Resistance in unit length 9.88

CMOS: Synopsys EDK 90nm Lib

A. Experiment Setting Up

Table II summarizes the characteristics of all FPGAs used
in this sections. FPGA that employs SRAM as configuration
memories is used as baseline implementation. In addition to
traditional SRAM based FPGA, an MemFPGA that replaces
SRAM of CLB with 1T1R as described in [20] was im-
plemented and compared to the proposed architectures. All
FPGAs in Table II can use routing architecture based on either
CMOS [10] or RRAM [7,8]. To highlight the improvement
of CLBs, all FPGAs use the same CMOS programmable
interconnect.

This experiment uses classical island-style FPGA architecture
[10] and Toronto 20 benchmark package [21] which consists
of 20 benchmark circuits frequently used in different domains.
Different numbers of LUT inputs (K=3–8,10,12) and numbers
of LUTs within a CLB (N=1,8) are evaluated using area
and delay model described in Section IV. All area and delay
various reported are the average for all benchmark circuits
synthesized. Since circuit ‘tseng’ of Toronto 20 cannot be
synthesized correctly by ABC, it was not included in this
experiment. Table III summarizes parameters of FPGA archi-
tecture and technology used in the experiments.

B. Results

Area Fig. 11 shows the area required for all four FPGAs.
MFPGA and RFPGA typically need smaller area to implement
CLBs (see Fig. 11(a)) whereas all need almost similar area to
implement their routing architectures. Overall, MFPGA and
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Fig. 11: Area of Different FPGAs

RFPGA outperform the baseline and MemFPGA as logic area
dominates the total area. Therefore, MFPGA and RFPGA
provide a great potential to improve logic integration density.

Delay Fig. 12 shows the delay of all four FPGAs. The
delay of the CLBs within MFPGA is similar to baseline and
MemFPGA in case K≥6. On the other hand, the delay of
CLBs within RFPGA are longer than others as each CLB
needs several steps to complete its function. The delay of
routing architecture in MFPGA and RFPGA are less than
the other two FPGAs. Overall, MFPGA performs better than
others in case K≥6 in all three clustering configurations. It
is worth noting that each CLB of RFPGA can store data at
run time, and hence its LUTs can be pipelined to improve its
throughput.

In addition, MFPGA and RFPGA can be further improved if
they incorporated with memristor-based routing architectures
(e.g., [8]).

C. Limitations

This paper did not estimate power consumption of the pro-
posed FPGAs as power modelling of memristor logics are
still not mature [4]. Nevertheless, the proposed FPGAs may
consume less power as memristors are non-volatile and hence
they may consume less leakage power [3,4]. In addition, as this
paper mainly illustrates the potential of FPGAs using mem-
ristor logic, technology challenges such as limited endurance,
process variations [4] are out of the scope of this paper. These
limitations will be studied in our future work.

VI. CONCLUSION

This paper proposed two novel FPGA implementations based
on memristor logics. Their performances are intensively eval-
uated. Compared to the state-of-the-art, the proposed FPGAs
provide a potential to improve the logic integration density,
and possibly to reduce the delay. Hence, they are promising
candidates for the future FPGA design and applications.
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Fig. 12: Delay of Different FPGAs
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