A Domain-Specific Language and Compiler for
Computation-in-Memory Skeletons

Jintao Yu
Delft University of Technology
Mekelweg 4, 2628 CD
Delft, The Netherlands
j.yu-1@tudelft.nl

ABSTRACT

Computation-in-Memory (CiM) is a new computer architec-
ture template based on the in-memory computing paradigm.
CiM can solve the memory-wall problem of classical Von
Neumann-based computer systems by exploiting application-
specific computational and data-flow patterns with the ca-
pability of performing both storage and computations of
emerging resistive RAM technologies (e.g., memristors). How-
ever, to efficiently explore and design such radically new ap-
plication-specific CiM architectures, we require fundamen-
tally new algorithm specification and compilation techniques.
In this paper, we introduce a domain-specific language to ex-
press not only the computational patterns of an algorithm
but also its spatial characteristics. Furthermore, we design a
compiler that is able to transform these patterns into highly-
optimized CiM designs. Experiments demonstrate the func-
tional correctness of the language and the compiler as well
as an order of magnitude speedup improvement over a mul-
ticore system in both performance and energy costs.

Keywords

Domain specific language; computation-in-memory; algo-
rithmic skeleton; memristor

1. INTRODUCTION

In classical Von Neumann-based computing systems, mem-
ory access and data transfer operations are becoming a big
bottleneck for Big Data applications [5]. This is not only
because of the limited transfer speed at which data is re-
trieved from and written back to memory, but also because
performing a large amount of memory accesses incurs high
energy costs. A solution is to design application-specific
memristor-based Computation-in-Memory (CiM) architec-
tures [9], which feature a large memristor crossbar to exe-
cute massively parallel applications. Because we can per-
form both computations and storage using memristors [19],
no off-crossbar data transfers are required during execution,

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions @acm.org.

GLSVLSI ’17, May 10-12, 2017, Banff, AB, Canada
© 2017 ACM. ISBN 978-1-4503-4972-7/17/05. .. $15.00
DOL: http://dx.doi.org/10.1145/3060403.3060474

Tom Hogervorst
Delft University of Technology
Mekelweg 4, 2628 CD
Delft, The Netherlands

Razvan Nane
Delft University of Technology
Mekelweg 4, 2628 CD
Delft, The Netherlands
r.nane@tudelft.nl

enabling CiM-based architectures to solve the memory wall
bottleneck.
Application-specific CiM-based solutions can therefore re-

sult in significant performance gains over multicore systems [10].

To implement highly-optimized CiM architectures, a designer
would need to explicitly spatially program the application-
specific computational and data-flow patterns onto the cross-
bar. This is a new form of Spatial Computation paradigms [3],
which map programs into completely distributed hardware.
Although general purpose languages can be used for spa-
tial computation [3], Domain-Specific Languages (DSLs) fa-
cilitate domain experts to generate optimal solutions [16].
Some DSLs have been developed for specific platforms, such
as MaxJ for Data-Flow Engine [15] and ANML for Au-
tomata Processor Engines [8]. However, specifying and com-
piling customized application layouts for a memristor cross-
bar poses a new challenge. Due to the passive nature of
the memristor, the mapping and routing results directly in-
fluences the scheduling phase [20] because data movements
on the crossbar have to be controlled as well. As a result,
existing DSLs for spatial computation are not applicable to
memristor-based CiM architectures.

To solve aforementioned challenge, a new type of skeleton
was proposed: the CiM skeleton [20]. Skeletons (formally
referred to as algorithmic skeletons) are high-level software
constructs used to hide the complexity of parallel computer
systems from a programmer [6]. Additionally, CiM skeletons
provide the scheduling, mapping, and routing information
needed to program applications on the CiM architecture. In
this paper, we propose a DSL and a DSL-based compilation
flow to express and implement CiM skeletons. We make the
following contributions:

e A skeleton-based Domain Specific Language, CiM DSL,
to describe the low-level crossbar details of the spatial
patterns of an algorithm.

e A compiler that generates a scheduled, mapped, and
routed system from this DSL using CiM Skeletons.

e The verification of this compiler and comparison with
a multicore system.

The paper is organized as follows. Section 2 provides back-
ground information about the CiM architecture. Section 3
and Section 4 describe the CiM DSL and the implementation
of its compiler. Thereafter, Section 5 validates the compiler
with multiple applications. Finally, Section 6 concludes the
paper.

Library Application Q Application

Memristor CiM DSL%
cru | developer) developer
op — o) Software/CiM Partitionin
Nanowire Bottom f = open_file(); Y | : |
Nanowire b = read_file(f); Function v v
LA S I library CiM DSL || Software HLS
A ko] #pragma hw compiler | | compiler tool
i Mem 5 while (i<100) D) v v
H - il = i1 * 2
e 15 BT I G Linking |
T Ty #pragma lib #
Controller Inner_pro(a, b); CiM Implementation
(a) CiM architecture (b) Program sample (c) CiM compilation tool-chain

Figure 1: CiM architecture and compilation tool-chain.

2. BACKGROUND

The CiM architecture is a computational template in which
application-specific accelerators are instantiated and exe-
cuted in-memory under the control of a CPU. Figure la
shows a high-level view of the CPU/CiM heterogeneous sys-
tem. CiM’s hardware consists of two parts: a large recon-
figurable crossbar of horizontal and vertical nanowires with
memristors on every intersection, and a CMOS-based con-
troller that activates voltages on the nanowires to control
the memristors. Memristors can be configured as memory
elements as well as computation elements [19], allowing both
to be performed in the crossbar. The high density of a mem-
ristor crossbar enables this architecture to fully exploit the
parallelism in embarrassingly parallel applications. Further-
more, since a CiM crossbar coexists with the general mem-
ory space (RRAM in Figure 1a), we do not have any off-chip
memory accesses. This leads to significant improvements in
both performance and energy consumption.

Figure 1c shows CiM’s programming model. Before pro-
grammers can use application-specific accelerators in CiM,
an algorithm designer is required to create the library func-
tions (i.e., accelerators) optimized for minimum communica-
tion maximum parallelism on the crossbar. The algorithms
are specified in the CiM DSL, using skeleton operators to
specify not only the floorplan but also the communication
paths' between the computational units. Please note that
in the CiM crossbar, each corner point that changes the di-
rection of the path needs to be explicitly controlled [18].
As a result, the scheduling is dependent on the mapping
and routing. The defined CiM skeletons are used further to
specify the complete algorithm that is stored in the func-
tion library. Subsequently, an application programmer can
use this library in a different high-level language (e.g., C).
Therefore, CiM DSL is designed for the library developers
rather than the application developers. Functions not con-
tained in the library are processed by a CiM High-Level
Synthesis (HLS) tool. Finally, the compilation results of
different tools are linked together. Figure 1a illustrates one
possible compilation result of the sample program shown in
Figure 1b. One circuit is generated using the library func-
tions (colored green), and another one is generated by the
CiM HLS tool (colored blue). Code that doesn’t need to
be executed on the CiM crossbar (colored red), is compiled

We refer to communication paths simply as paths in the
remainder of the paper

Library functions:

@ct_shufﬂe

CiM Skeletons: reduce
butterfly

N7
Skeleton operators: @ @ »

Figure 2: Dependence of CiM skeletons and library
functions.

regularly for the CPU. In this paper we focus only on the
CiM DSL compiler.

3. CIMDSL

In this section, we describe the rules of CiM DSL’s syntax
using one variant of Extended Backus-Naur Form (EBNF) [2].
We design the DSL with the goal to create and use CiM
skeletons easily. Figure 2 shows the dependence between
different CiM concepts. First, we define skeleton language
operators, which are language constructs that are used to
specify different connections between functional blocks and
their relative position. Subsequently, the operators are used
to define CiM Skeletons. Finally, both skeleton operators
and CiM skeletons are used to build library functions.

3.1 Circuits and Expressions

The CiM DSL creates systems by connecting functional
blocks together in expressions. The syntax related to this is
as follows:

Circuit_decl ::= 1D File_name (1)
Exp ::= Circuit | Int | ID Exzp1 Exzps ... (2)

| Exp1 Op Exps | Map | Fold | Repeat (3)

Op:u= x_D_x | x_H_* | x_Ix (4)

Map ::= ID Range Exp (5)

Fold := Op Ezxp (6)
Repeat ::= Int Exp (7)
Range ::= Int | Int [Ar_Op Int] Int (8)
Ar Op = “47 | “=7| “x7 | «” (9)

A circuit declaration (Circuit_decl) declares the name of
the primitive circuit used in the program and specify its

T input ports
a Ll a | O b M) output ports
ab b o | routing
- 4 M Smirror
(a) “D* (D) %H* (o) *L*

Figure 3: Implementation of operators.

foldR<* H *>(map<i=4:/2:0>(repeat[i](add)))

Figure 4: Expression and data-flow graph of an
adder tree.

library file (Rule 1). This file contains all the circuit’s infor-
mation needed by the CiM compiler, including its latency,
area, energy consumption, positions of input and output
ports, initiation interval, and VHDL model. An expression
can be a primitive circuit, an integer, or an instantiation of
a CiM skeleton (Rule 2). To create a CiM skeleton, the user
needs to specify the component name that represents the
skeleton, and assign the parameters. Two expressions and
an operator (Op) constitute a new expression (Rule 3). The
operators are *_D_* *_H_* and *_I_*. Operators represent
different mapping strategies as shown in Figure 3. The map-
ping is performed according to the positions of input and
output ports. *_D_* puts two circuits next to each other so
that an input port is directly linked with the output port.
H rotates one circuit and uses a mirror in between. The
mirror changes the direction of a path [18]. *_I_* links two
groups of input and output ports between two components
using mirrors.

Other forms of expressions include map (Rule 5), fold
(Rule 6), and repeat (Rule 7). These expressions are use-
ful to generate larger circuits. For example, map applies
every number in a range to an expression that contains an
variable. The range is an array of integers, which can be
expressed using one to three fields (Rule 8). If the range has
one field, it is a single value. If it has two fields, it is a series
of incrementing integers from the first up to but not includ-
ing the second value. If it has three fields, it represents a
discontinuous array of integers. In this case, the arithmetic
operator (Ar_Op) and the number in the middle indicate the
intervals. The arithmetic operators are add (“+”), subtract
(%), multiply (“x”), and divide (“/”) (Rule 9). The bracket
() surrounding “Ar_Op Int” means they are optional.

We use an example shown in Figure 4 to explain the se-
mantics of repeat, fold, and map expressions. The example
is an adder tree that calculates the sum of eight values. The
CiM DSL line that describes this circuit is shown at the top
of the figure. Repeat[n](add) creates an array of n addi-
tions. The map expression duplicates the repeat expression
following a noncontinuous array [4, 2, 1]. These duplicates
are linked with *_H_* operator, which is specified by the fold
expression. The associativity of fold expressions is indicated
by the letter “L” or “R” at the end.

3.2 Statements and Signals

Statements connect the circuits declared in expressions to
signals, to give explicit control over the data flow to and from
those circuits. A signal is a connection path between two
data locations. The relevant CiM DSL syntax is as follows:

Statement ::= Signal [Exp] Signal | Loop (10)
Loop ::= ID Range Statement+ (11)
Signal ::= ID Range | Signal + + Signal (12)

| Zip(Signal, Signal) (13)

A statement contains an input signal, an output signal
and optionally an expression (Rule 10). It will be translated
into a group of primitive circuits. Loops can be used to
compactly express a group of similar statements, which is
similar to the semantics of map (Rule 11). The symbol “4”
means the loop structure accepts one or more statements.
Signals have a name and a range, and they can be built
using signal operators “++” (Rule 12) and “zip” (Rule 13).
“+4” concatenates two signals sequentially and “zip” builds
a single signal from the elements of two signals interleaved
with one another.

Statements are allowed to specify only the connection be-
tween input and output signals, without including any com-
ponent (Rule 10). This feature is useful for shuffling the
signals. Listing 1 shows an example of a signal shuffie, specif-
ically one named the butterfly pattern, which is used in a
bitonic sort function.

Listing 1: Butterfly Shuffle Statement

[

zip(in[0:2:m/2], in[m/2:2:m]) ++
2 zip(in[1:2:m/2], in[1+m/2:2:m]) => out[0:m];

3.3 Programs and Components

A complete CiM DSL program consists of one or more
circuit declarations and one or more components (Rule 14).
A component describes a library function or a CiM skele-
ton. The CiM DSL syntax concerning these two language
constructs is as follows:

Program ::= Circuit_decl™ Component™ (14)
Component ::= ID Sig_decl [Par_decl] Statement™® (15)
Sig_decl ::= {ID Int}* {ID Int}* (16)
Par_decl ::= {Type ID}* 17)
Type := “int” |“comp” (18)

The head of a component contains its name (ID), signal
declaration (Sig_decl), and parameter declaration (Par_decl)
(Rule 15). The square brackets surrounding Par_decl means
it is optional. Among all the components in a program, one
and only one component should be named as “main”. It
represents the library function defined by the program. The
stgnal declaration declares input and output signals, contain-
ing names (ID) and their sizes (Int) (Rule 16). Parameter
declaration specifies the type and names of the parameters
(Rule 17). Currently, CiM DSL supports two types of pa-
rameters, which are integer (“int”) and components (“comp”)
(Rule 18). The body of a component is one or more state-
ments (Rule 15), which link expressions with input and out-
put signals (Rule 10).

As an example of a complete CiM DSL program, List-
ing 2 shows the code for matrix multiply A, xn X Bnxk in
CiM DSL. It is built based on the inner product function.
To achieve the best performance, the primitive circuits used
in the inner product are arranged following an H-tree pat-
tern [10]. Please refer to Figure 6a for a visualization of the
target layout. The inner product hardware is duplicated to
calculate all the elements of the result matrix in parallel.

Listing 2: Matrix Multiply in CiM DSL

libmod add(add.lib);
libmod mul(mul.lib);
comp main<in[32] | out[16]1>(0){
in[0:32]=> matrix_multiply (4, 4, 4) =>out[0:16];
}
comp matrix_multiply<A[m*nl, Bln*k] | out[mxk]l>
(int m, int n, int k){
forV i=0:m do
9 A[n*i: n*i+n] ++ B[0: nx*k] =>
10 row(n,k) => out[k*i:k*i+k];
11 end
12|}
13| comp row<al[n], bln*k] | out[n]>(int n, int k){
14 forH i=0:k do
15 al0:n]++b[n*i:n*i+nl=>inner_product(n)=>out[i];
16 end
17|
18| comp inner_product<al[n], b[n] | out[1]>(int n){
19 zip(a[0: n], b[0: n]) => repeat[n](mul)
20 *_H_* reduce(n/2, add) => out[0];
21| }
22| comp reduce<in[2*n] | out[1]>(int n, comp c){
23 in[0: 2%n] => foldR<*_H_*>(map<i = n: /2: 0>
24 (repeat[i](c))) => out [0];
25| }

0 N oG AW N

Line 1 and line 2 declare two primitive circuits, i.e. the
adder (add) and the multiplier (mul). The keyword of this
declaration is “libmod”, and the name suffix of the library
files is “.lib”. After these declarations, the program defines
five components with the key word “comp”. The “main”
component (line 3 to line 5) specifies that the sizes of two
matrices are both four by four. The declaration of input and
output ports are surrounded with a pair of angle brackets
and separated with a delimiter (“|”). On the other hand, the
parameter declarations are marked with parentheses (line 7,
line 13, etc.). The body of components are surrounded with
curly braces and consists of one or more statements. For
each statement, the expression and signals are linked by
“=>"" which means that input locations (e.g., registers/s-
torage locations in the crossbar) are transferred via signals
to the matrix multiplication’s input ports. Note the use
of the “++" signal operator in lines 10 and 15 to concate-
nate two arrays into one, and of the “zip” signal operator in
line 19 to zip the elements of two arrays into one. matriz_-
multiply and row components both employ a for-loop, which
expresses a group of statements. It arranges the circuits that
are obtained from the loop statements vertically (forV) or
horizontally (forH). Therefore, line 15 duplicates k inner_-
product function in a row, and line 10 further extends these
rows into a matrix. The repeat expression in lines 19 and
24 represents duplicates of a circuit, which are executed in
parallel. It does not contain mapping information and will
be further mapped using operators. Line 23 builds a binary
tree as shown in Figure 4. The map expression duplicates a
circuit using a variable (i) in the range (n:/2:0). The range
is divided into three fields by colons (:). The first field (n)
is the starting number. The second field (/2) is applied to
n repetitively until the value reaches the third field (0). All

Figure 5: Dereferencing of reduce(4, add).

these intermediate values, not including the third field, con-
stitute the range. Finally, the group of circuits represented
by map are linked with the operator specified in the fold
expression (i.e., *_H_*).

4. IMPLEMENTATION

We developed CiM DSL compiler using Spoofax, a lan-
guage workbench in the Eclipse IDE [11]. The development
consists of two phases. First, we define the syntax and the
name binding rules, which are used to parse user programs
into an Intermediate Representation (IR). Second, we define
transformation and generation rules, which annotate and
transform the IR according to our defined skeleton opera-
tors, and emit the code for the desired circuits, respectively.
Spoofax has good support for both phases so that the work-
load of developing the new DSL is significantly reduced. Af-
ter defining all the rules, the CiM DSL compiler is generated
by Spoofax.

A CiM DSL program is compiled into circuits following
four steps, namely parsing, dereferencing, transforming, and
emitting. The parsing builds an Abstract Syntax Tree (AST),
which is subsequently dereferenced to eliminate language
structures such as for-loop, fold, map, and repeat. During
dereferencing, the loops are fully unrolled, and fold, map,
and repeat are applied. Figure 5 shows this process for the
expression in the reduce component in Listing 2 (line 22). In
this case, we assume n is four. The left side illustrates the
AST obtained after parsing, where the range is calculated
into a noncontinuous array. Then, map, repeat, and foldR
are applied successively as described in Section 3. The re-
sult of the deferencing is also an AST in which all the leaf
nodes are primitive circuits, and all the internal nodes are
skeleton operators. The result AST is shown in the right
part of Figure 5, where the *_H_* operator is replaced by
the name H7Tree that implements this pattern.

The transform process constructs circuits based on the
AST that is obtained in the previous step. The circuit con-
struction is performed using a post-order, depth-first tree
traversal using the Transform_ske function that is dynami-
cally dispatched according to the type of the operators. The
function contains the scheduling, placement, and routing al-
gorithms that will be applied to the circuits according to
the particular CiM skeleton that it implements. Figure 7
shows an example of transforming the AST on the right of
Figure 5. Its left part shows the leaf nodes of the deref-
erenced AST and the circuits they represent. The right
part is the transformation of this AST, which is done in
two steps. The lower Htree node is transformed first, which
combines four adders and two adders into two group adders.
Next, these two groups are transformed by the root node to
form a whole circuit together with another adder. The small
squares shown in this figure represent mirrors.

Finally, the code generation phase emits three types of

s L

-

L u
| |
L] il
u u
[—H—H—H
u]
] []
I]
u u
o—a—a—d
(a) Inner product (b) FIR filter

b L™ 54 L
=y
e
L SR L

e Nl

L
I 7

T

[
[
= s R _Tl_
[

(c) Bitonic sort

Figure 6: Graphic output.

{add,add,add,add}

.
gt
<
<
a9

s
ol] [
m DFJ
| e N
§ - Ch
i ERERNLE N
i]

=

Figure 7: Transformation of reduce(4, add).

files, which are VHDL, mapping constraints, and graphic
outputs. The VHDL contains the port maps and an FSM,
which are produced according to the mapped, routed, and
scheduled Data Flow Graph (DFG) of the algorithm. This
VHDL can be used for behavioral simulation. We generate
graphic output to examine the placement and routing re-
sults. This output is in the C language, invoking a graphic
library named pslib to produce a graph in postscript (.ps)
format.

S. EXPERIMENTAL RESULTS

We use four functions to validate CiM DSL and its com-
piler, which are vector inner product, matrix multiply, Finite
Impulse Response (FIR) filter, and bitonic sort. The code
of the first two functions and a small part of bitonic sort
is shown in Listing 2 and Listing 1. The data type used in
these functions are 32-bit integer.

5.1 Compiler Outputs

The attributes of primitive circuits we used in this case
study are listed in Table 1. The adder (Add) and the mul-
tiplier (Mul) are designed by previous works [12, 1]. The
original design is not based on a crossbar, so the area and
latency are moderately different when we adapt it to CiM.
We will not discuss these changes since the hardware design
is beyond the scope of this work. The Greater than (Gt)
component, which is used in bitonic sort, cannot be found
in existing works. Therefore we estimate their attributes.

Table 1: Attributes of Primitive Circuits and Copy
Operation

Latency | Width | Height | Energy | Ref.

Add 178 9 32 1248 | [12]
Mul 803 256 128 | 4407.8 | [1]
Gt 27 128 192 93 -
Copy 3 - - 12.8 1]

The latency is listed in terms of Clock Cycle (CC). The area
is represented by the required number of rows (Height) and
columns (Width). The energy consumption of the adder
and the multiplier is not given in the original papers [12,
1]. Actually, it is impossible to report accurate energy con-
sumption at the design phase because this is input data de-
pendent. However, we can estimate the maximum value by
assuming every IMPLY or FALSE operation [12] consumes
the energy of switching states. This energy varies among
technologies, from 0.1£J [17] to 230£J [13]. In this paper, we
use 100fJ. We also calculated the energy consumption for
copy operation following the same way. Its implementation,
which is essentially two NOT operations, is taken from [1].

We generated the graphic outputs of inner product, FIR
filter, and bitonic sort as shown in Figure 6. Matrix multi-
ply is not presented because it is a matrix of inner products,
which is very large but contains little information. The vec-
tor size of inner product is 16. The tap size of FIR filter
is four and the input size is two. The input size of bitonic
sort is eight. In Figure 6a and Figure 6b, the large and
small boxes denote multipliers and mirrors respectively. The
adders are tiny bars beside the mirrors. In Figure 6¢, the
small boxes are also mirrors while the large ones are gts.
The red and green dashes in these figures indicate the input
and output ports while the blue lines show the routing. The
layouts are the same as we designed, which demonstrates
the DSL works as intended.

5.2 Performance Evaluation

We enlarged the problem sizes and compared the perfor-
mance of generated circuits with a multicore platform. The
problem sizes and the attributes of the generated circuits are
listed in Table 2. For the FIR filter, the tap size is 64 and the
input size is 512. We calculated the area of the generated cir-
cuits based on the memrisor density predicted by ITRS [7],
which is 2.38 x 10'! bit/cm®. These library functions are
simulated using Sniper [4], and the energy consumption is
reported by McPAT [14]. The targeted multicore system is
Intel Xeon X7460 processor that consists of six cores on a

Table 2: Experimental Results

Problem CIM Multicore
size Lat/CC | Width | Height | Area/mm? | Energy/mJ | Lat/us | Energy/mJ | Speedup
Inner product 32768 3653 20448 73696 0.6332 0.1502 272.7 15.99 74.65
Matrix multiply 32x32 1753 19456 72704 0.5943 0.1500 174.5 21.96 99.54
FIR filter 64/512 12773 8192 147456 0.5075 0.1498 302.7 35.95 23.70
Bitonic Sort 256 1401 58240 32768 0.8019 0.0008 - - -

Figure 8: FPGA floorplanning for inner product.

die of 503 mm?, running at 2.66 GHz each. These cores have
64kB L1 cache each and share a 16 MB L3 cache. Every
two cores share an L2 cache of 3MB. The latency (Lat) and
energy consumption are also listed in Table 2. The speedup
of CiM’s latency over multicore is calculated, which is be-
tween 23x and 99x. The area of the circuits generated by
CiM compiler is very small compared with this processor.
The energy consumption is less than 1% of the multicore.
Please note that we do not include the CMOS controller in
the energy evaluation because there is no backend synthesis
tool yet for the CiM system. However, we do not expect the
controller to have a big impact on the reported numbers due
to its simplicity.

5.3 FPGA Prototyping

To confirm the validity of the graphical output, we built
also an FPGA prototype to simulate the layout of the CiM
inner product design on FPGA. We synthesized the gen-
erated area constraint file and the VHDL file with Xilinx
Vivado. The implemented design of inner product is shown
in Figure 8. Primitive circuits are recognizable by their yel-
low borders, and connections between circuit are represented
by orange lines. The sizes of the adders and multipliers are
different from Figure 6a. Despite this difference in visualiza-
tion of the connections, we can verify that the floorplanning
and interconnect information was included in the VHDL and
constraint files correctly.

6. CONCLUSION

In this paper, we introduce a DSL and compiler to de-
sign programs to be run on future CiM-based systems. The
skeleton-based DSL allows for the modular, high-level de-
scription of a system, and the compiler schedules, places,
and routes the system using information provided by CiM
skeletons. The functional correctness of the DSL is veri-
fied using VHDL files generated by the compiler, and the
mapping and routing results are confirmed by generating
graphical output files. This DSL can also be used for FPGA
designs and it will be investigated in future work.

7. REFERENCES

[1] K. Bickerstaff and E. E. Swartzlander. Memristor-Based
Addition and Multiplication, pages 473-486. Springer
International Publishing, Cham, 2014.

[2] T. Bray, J. Paoli, C. M. Sperberg-McQueen et al.
Eztensible markup language (XML). World Wide Web
Consortium Recommendation, 1998.

[3] M. Budiu, G. Venkataramani, T. Chelcea et al. Spatial
computation. ASPLOS XI, pages 14-26, New York, NY,
USA, 2004. ACM.

[4] T. E. Carlson, W. Heirman, S. Eyerman, et al. An
evaluation of high-level mechanistic core models. ACM
Trans. Archit. Code Optim., 11(3):28:1-28:25, Aug. 2014.

[5] C.P. Chen and C.-Y. Zhang. Data-intensive applications,
challenges, techniques and technologies: A survey on big
data. Information Sciences, 275:314 — 347, 2014.

[6] M. Cole. Algorithmic Skeletons: Structured Management of
Parallel Computation. MIT Press, Cambridge, USA, 1991.

[7] I. R. Committee. International technology roadmap for

semiconductors 2.0. Technical report, 2015.

P. Dlugosch, D. Brown, P. Glendenning, et al. An efficient

and scalable semiconductor architecture for parallel

automata processing. TPDS, 25(12):3088-3098, Dec 2014.

[9] S. Hamdioui, L. Xie, H. A. D. Nguyen et al.. Memristor
based computation-in-memory architecture for data-in-
tensive applications. DATE ’15, pages 1718-1725, San Jose,
CA, USA, 2015. EDA Consortium.

[10] A. Haron, J. Yu, R. Nane, et al. Parallel matrix
multiplication on memristor-based computation-in-memory
architecture. HPCS ’16, pages 759-766. IEEE, July 2016.

[11] L. C. Kats and E. Visser. The spoofax language workbench:
Rules for declarative specification of languages and ides.
OOPSLA ’10, pages 444-463, New York, USA, 2010. ACM.

[12] S. Kvatinsky, G. Satat, N. Wald, et al. Memristor-based
material implication (imply) logic: Design principles and
methodologies. VLSI, 22(10):2054-2066, Oct 2014.

[13] S. Lee, J. Sohn, Z. Jiang et al. Metal oxide-resistive
memory using graphene-edge electrodes. Nature
communications, 6(8407):1-7, 2015.

[14] S. Li, J. H. Ahn, R. D. Strong et al. Mcpat: An integrated
power, area, and timing modeling framework for multicore
and manycore architectures. MICRO 42, 2009. ACM.

[15] O. Pell, O. Mencer, K. H. Tsoi et al. Mazimum
Performance Computing with Dataflow Engines, pages
747-774. Springer New York, New York, NY, 2013.

[16] The OpenSPL Consortium. Openspl: Revealing the power
of spatial computing. Technical report, Dec. 2013.

[17] C.-L. Tsai, F. Xiong, E. Pop et al. Resistive random access
memory enabled by carbon nanotube crossbar electrodes.
Acs Nano, 7(6):5360-5366, 2013.

[18] L. Xie, H. A. D. Nguyen, M. Taouil et al. Interconnect
networks for memristor crossbar. NANOARCH 15, pages
124-129. IEEE, July 2015.

[19] J. J. Yang and R. S. Williams. Memristive devices in
computing system: Promises and challenges. J. Emerg.
Technol. Comput. Syst., 9(2):11:1-11:20, May 2013.

[20] J. Yu, R. Nane, A. Haron et al. Skeleton-based design and
simulation flow for computation-in-memory architectures.
NANOARCH ’16, pages 165-170. IEEE, July 2016.

8

