
An Architecture for Near-Data Processing Systems

Erik Vermij
IBM Research

the Netherlands
erik.vermij@nl.ibm.com

Christoph Hagleitner
IBM Research – Zurich

Switzerland
hle@zurich.ibm.com

Leandro Fiorin
IBM Research

the Netherlands
leandro.fiorin@nl.ibm.com

Rik Jongerius
IBM Research

the Netherlands
r.jongerius@nl.ibm.com

Jan van Lunteren
IBM Research – Zurich

Switzerland
jvl@zurich.ibm.com

Koen Bertels
Delft University of Technology

the Netherlands
k.l.m.bertels@tudelft.nl

ABSTRACT
Near-data processing is a promising paradigm to address the
bandwidth, latency, and energy limitations in today’s com-
puter systems. In this work, we introduce an architecture
that enhances a contemporary multi-core CPU with new
features for supporting a seamless integration of near-data
processing capabilities. Crucial aspects such as coherency,
data placement, communication, address translation, and
the programming model are discussed. The essential compo-
nents, as well as a system simulator, are realized in hardware
and software. Results for the important Graph500 bench-
mark show a 1.5x speedup when using the proposed archi-
tecture.

1. INTRODUCTION
The world is more connected than ever before, by means

of a wide variety of social media, and modern voice-, text-
or image-based communication methods. Besides personal
data, companies and institutes are piling up seismic data,
atmospheric data, all kinds or traffic related data, etc., and
with strong movement towards ‘the internet of things’, more
and more data will be generated and stored. Creating value
from huge amounts of data is becoming an ever more im-
portant task for computer systems. Unfortunately, not only
are the tasks becoming harder, traditional computer systems
are also becoming relatively worse at handling them. There
is a growing gap between processing performance of CPUs,
GPUs, and other computing devices, and the bandwidth and
latency of those devices towards the data they require.

This work is conducted in the context of the joint ASTRON
and IBM DOME project and is funded by the Netherlands
Organization for Scientific Research (NWO), the Dutch Min-
istry of EL&I, and the Province of Drenthe, the Netherlands.

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

CF’16 May 16-19, 2016, Como, Italy
c© 2016 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-4128-8/16/05.

DOI: http://dx.doi.org/10.1145/2903150.2903478

In this work, we present an architectural extension to a
contemporary server, specifically aimed at bridging the gap
between what today’s data-intensive workloads demand, and
what existing computer architectures can offer. To achieve
this, we make use of the near-data processing paradigm,
which has received renewed attention in the last years [3],
especially for data-intensive workloads like graph-processing
[7], on top of a memory system organization as found in
the IBM POWER8 CPU [11]. This CPU has two levels
of memory controllers (MCs): at the CPU we have up to
eight memory-technology agnostic MCs, while the memory-
technology specific MCs are located on separate ‘memory
buffer’ chips, tightly coupled with the main memory, and
are connected to the CPU by means of CPU- and memory-
agnostic high-speed links (‘DMI ’ links).

We propose the addition of processing capabilities to such
a ‘memory-side chip’, bringing processing very close to the
main memory. This is shown in Figure 1, where near-data
processors (NDPs) are directly attached to the memory-side
MCs. The focus of this paper is to discuss the architec-
tural implications on both the CPU and the NDP side, the
required software, and workload partitioning. Because of
space limitations, we leave to future work a detailed discus-
sion about the NDP implementation and optimization for
different memory technology. We consider the NDP-specific
part of the memory-side chip to be either several general-
purpose cores, or an embedded reconfigurable area, allowing
for workload-optimized cores through reconfiguration.

2. RELATED WORK
Motivated by the availability of new technologies such

as 3D stacking, big-data workloads with high degrees of
parallelism, and programming models for distributed big-
data applications, near-data processing has been recently
re-discovered. In [5], it has been investigated for acceler-
ating big-data workloads with poor locality in SSDs, while
in [10, 8, 2] accelerator architectures embedded in the logic
layer of 3D-stacked DRAM devices, such as the Micron’s Hy-
brid Memory Cube (HMC), have been proposed and studied.
From a software perspective, near-data processing related
work was presented by Trancoso [12], focusing on applica-
tion partitioning, and Chu [4], focusing on a high-level pro-
gramming paradigm. Work in [1] studies the execution of
separate instructions at the CPU or directly at the mem-
ory, based on hardware-managed locality profiling. In [6],
the authors propose the execution of kernels on coarse-grain

357



System.bus

NDP
Interface

CPU

High-speed.link

Generic
Mem..Ctrl.

Memory

Tech..spec.
Mem..Ctrl.

core

Generic
Mem..Ctrl.

core corecore

Generic
Mem..Ctrl.

NDP

Memory

Tech..spec.
Mem..Ctrl.

NDP.
Manager NDP

Memory

Tech..spec.
Mem..Ctrl.

NDP.
Manager

P
h

ys
ic

al
ly

.li
n

ea
r.

m
em

o
ry

.r
eg

io
n

Example.virtual.memory.region

Figure 1: A CPU environment enhanced with near-data processing capabilities.

reconfigurable architectures (CGRAs) on top of DRAM de-
vices. Our work complements the above mentioned work
by introducing the system-level architecture that supports
arbitrary NPD kernels in a CPU environment.

3. ARCHITECTURE OF AN NDP-ENHANCED
CPU

Figure 1 shows the proposed architecture, where the CPU
is enhanced with NDPs. The CPU has several high-speed
links, and for illustrative purposes, one is connected to a ‘de-
fault’ memory-side chip, while two are connected to NDPs,
although fully NDP-equipped systems are more likely. NDPs
are tightly coupled with their respective memory controller,
and have their own contiguous physical address range. How-
ever, an NDP can be invoked by a process that has its virtual
address space distributed across multiple physical regions
(see Figure 1), possibly even in a multi-node SMP domain.
An NDP with its local memory can therefore be seen as a
NUMA domain in an asymmetrical multi-processor system,
being a sub-node of the CPUs NUMA domain, with different
access characteristics to local and global memory.

The three functional requirements of our system are:

• to enable near-data processing capabilities, while being
minimally-invasive, in an existing CPU architecture;

• to implement arbitrary near-data processing function-
ality, ranging from workload-optimized cores, to general-
purpose multi-core processors;

• to dereference all virtual pointers of the host process
on the NDP, coherently with the CPUs view of the
memory.

3.1 Required architectural features
The architectural features needed to implement the above

described functional requirements are shown in Figure 1 and
described below:

• The MC functionality must be split in two: a generic
MC at the CPU, and a technology-specific MC at the
memory-side chip.

• An NDP-Manager (NDPM) is introduced between the
high-speed link and the memory-side MC. The NDPM
is the interface component towards the NDP, offering
clean memory and communication ports. It further-
more provides all support-functionality to get arbi-
trary workloads up and running, like coherency, ad-
dress translation, and accessing global data.

• The NDP-Interface (NDPI) is attached to the system
bus. This component (i) handles the communication
between the core (OS and/or user application) and the
NDPMs, (ii) represents the access point to the global
coherent memory space from the NDPs perspective,
and (iii) provides address translation capabilities for
the NDPMs by having its own memory-management
unit, capable of walking the page tables. A single
NDPI manages all the NDPMs, because adding ports
to the system bus is very costly, and designing a com-
ponent working at full system-bus load does not rep-
resent a challenge.

3.2 Communication
To support the communication between the NDPM and

the NDPI, we generalized the traffic protocol managing the
high-speed serial link. Instead of being load/store-only, it
was extended to be able to also carry the communication
between the the NDPI and NDPM. A single identification
byte per every 128 byte frame (a cacheline) was added, intro-
ducing a neglectable overhead for the original traffic. Both
at the CPU and the NDPM side original data traffic and
messages can easily be separated and forwarded to the ap-
propriate data or communication path.

Software can send messages to the NDPI by means of (ex-
isting) architecture specific instructions, which force a cache
line directly on the system bus to be snooped by the NDPI.
This gives us the possibility to dispatch messages with very
little latency and overhead, in contrast to memory-mapped
solutions. Messages from the NDPI to the software use an
interrupt-based mechanism, to again have a low latency so-
lution.

3.3 Coherency
Coherency is a crucial issue for near-data processing, for

which several approaches have been proposed in academic

358



work. They range from positioning the NDP in a separate
address space (thus not requiring coherency), to manually
enforced coherency, as well as proposals requiring changes
to the CPU’s coherency methods. We believe hardware-
managed coherency will be necessary for any successful de-
vice, as doing this manually is very difficult, if not impossi-
ble. Furthermore, as stated in the functional requirements,
we believe changes to the CPU should be kept to a mini-
mum.

In our work, to enforce coherency between the NDP and
the CPU, we use the basic MSI (modified-shared-invalid)
coherency protocol, implemented between the NDPM and
NDPI. Devices (CPU and NDPs) can therefore send mes-
sages like getS, getM, Upg etc. towards the NDPM. This
approach does not require a change in the coherency proto-
col on the CPU, because the MSI state is a subset of the
much more complex coherency protocols found in contem-
porary CPUs. When the NDP wants ownership of a cache
line, an invalidate signal is sent to the NDPI. If the cache
line was modified in the CPU cache, it is first written back
to main memory. If the CPU needs ownership of a cache
line, it invalidates it at the NDPM and possibly reads the
cache line from main memory.

The state of the memory is managed at the NDPM, and
every line has either the state CPU owned (CPU), NDP
owned (NDP), or Shared. This makes possible to share data
between the CPU and the NDPs, without having to inval-
idate the copy on the original device. Furthermore, since
cache lines stay in a device-owned state even after eviction,
devices can access their datasets as fast local memory, as no
coherency state changes are required. The state is stored in
a directory data structure, kept in DRAM and accessed via
a hardware-managed cache.

3.4 Data placement and scaling
Typically, CPUs stripe accesses to subsequent cache lines

across different memory channels but also supports contigu-
ous memory regions per memory channel. The latter con-
figuration is used in this work for the memory channels that
feature NDPs. The memory management in the operating
system needs to be made aware of this, and it needs to be
able to allocate data within a certain physical range.

This setup scales well to multiple NDPs for applications
that can be parallelized on today’s distributed memory clus-
ters (e.g., map-reduce, MPI, OpenSHMEM). The system
bus, even for heavy inter-NDP traffic, will not represent a
bottleneck, as it is designed to be able to saturate the mem-
ory channels. For some applications, the proposed memory
setup can limit the bandwidth realizable by the CPU. If this
becomes a problem, the default, striped, memory organiza-
tion can be used in combinations with NDPs as long as the
application has parallelism at the level of single cache lines.

3.5 Address translation
Address translation is managed by the NDPM and the

NDPI. The NDPM contains a translation lookaside buffer
(TLB), holding 64 translations. As we are foremost inter-
ested in workloads with large datasets, the small size of the
TLB is not a limitation. Modern versions of the OS mem-
ory management will always try to satisfy an allocation with
‘huge’ pages, in a transparent way, to reduce the TLB pres-
sure. If a TLB miss occurs, the NDPM ask the NDPI for
the correct translation, which uses its memory-management

unit to walk the page tables. This mechanism for handling
misses has a significant latency, even though this is not nec-
essarily the penalty incurred by the NDP, as other cores or
load/store streams that are not affected by the miss can still
continue to execute.

3.6 Accessing global data
Accessing global data results typically in an address trans-

lation miss at the NDPM, and after receiving the correct
translation, the NDPM recognizes it as being non-local. The
access is forwarded to the NDPI, to be issued there. In case
of a write, the NDPI claims the associated cache line and
puts it in its cache, followed by the actual write. In case of
a load, the NDPI gets a shared copy of the cache line, does
the read, and replies the result back to the NDPM.

3.7 NDPM memory model
The memory interface offered to the NDP is as wide as

the interface of the MCs, and we expect the NDP to have its
design optimized for this width. Therefore, the NDPM does
not implement a coalescing-like mechanism. However, the
NDPM does implements a weakly ordered memory model to
be able to hide long-latency events like address-translation
misses, and accessing global data. A strict model would halt
the entire NDPM and thereby the NDP, resulting in an un-
necessary drop in performance. When in-order commitment
or synchronization is required, a barrier command can be
issued.

3.8 NDP programming paradigm
One process can make use of an NDP at a given time, but

the memory behind the NDP is not exclusive to that pro-
cess. From the NDP’s perspective, accessing data located
behind a different MC is much slower than accessing data
stored in its own memory. We therefore embrace the lo-
cal/global data concept as used, for example, in the PGAS
(Partitioned Global Address Space) paradigm to make, for
the user, an explicit distinction between which data is stored
in an NDP’s own memory, and which data is (or can be)
stored somewhere else. This is conceptually not different
from NUMA optimizations done on today’s multi-CPU sys-
tems. During runtime, the user requests NDP access and,
when granted, local allocations are done in its memory and
communication is sent to the respective NDPM. Since the
NDP supports arbitrary functionality, multiple methods of
operation exist, as described below.

3.8.1 Application specific hardware functions
When using predefined or user-defined hardware function-

ality, typically stored in an image store, the user makes ex-
plicit calls to set and start methods. A user-level message
interface, acting as a tunnel between NDP and host applica-
tion, makes possible to send commands/information to the
NDP and retrieve information during runtime, for example
when the NDP is in stand-by all the time, waiting to re-
ceive work items. Automatically generated and executed
hardware functions are envisioned as well [9], and the clean
separation between NDPM and NDP makes this possible in
our architecture.

3.8.2 General-purpose cores
When using general-purpose cores, annotated kernels need

to be compiled for the target instruction set. The compiler

359



0.00G

5.00G

10.00G

15.00G

20.00G

25.00G

30.00G

35.00G

40.00G

45.00G

0

1

2

3

4

4KRCs12P 8KRCs13P 16KRCs14P 32KRCs15P 64KRCs16P 128KRCs17P

B
yt

es
Ru

se
d

Rp
er

Rb
yt

es
Rf

et
ch

ed
Rf

ro
m

RD
R

A
M

Sp
ee

d
u

p

NodesRCGraph500RscaleP

Graph500

4RcoreRCPU

8RcoreRCPU

4RcoreRNDP

8RcoreRNDP

4RcoreRCPURCsec.RaxisP

4RcoreRNDPRCsec.RaxisP

Figure 2: Graph500 performance comparison between CPU
and NDP, and DRAM access efficiency.

will insert the necessary commands in the host instruction
stream, and the described user-level communication inter-
face can be interpreted as a inter-processor interrupt chan-
nel.

4. RESULTS
To validate the architecture, we developed the NDPM in

VHDL, and a software-based system simulator was devel-
oped around it. At the simulated CPU we can execute arbi-
trary code, and at the NDPM NDP-interfaces we can con-
nect both workload-optimized cores developed in a hardware
description language, as well as general-purpose multi-core
processors simulated in software. The NDP-interface offers
32 GB/s bandwidth at 32 B granularity, and a 30ns latency,
while the CPU can use half of that bandwidth, at 128 B
granularity, with 80ns latency. We evaluated several appli-
cations, but, for space limitation, we discuss here only the
results obtained for the well-known Graph500 benchmark.
In Figure 2, we show the results for running Graph500 on
four or eight CPU cores and four or eight general-purpose
NDP cores, all with a single memory channel. The CPU
cores are four times faster the NDP cores, and the NDP
cores have only 512 B caches. For small problem sizes, the
fast CPU cores can work from their close-by caches, and
perform much better than the NDP cores. When the essen-
tial data structures outgrow the CPU’s cache size, the NDP
starts to benefit from its lower latency and smaller access
granularity to main memory. As the NDPs spend less cy-
cles waiting for data, they achieve up to 1.5x speedup with
respect to the CPU.

Figure 2 shows also the ratio between the amounts of bytes
fetched from DRAM, and the amount of bytes actually used.
When the data structures that are accessed in a scattered
way do not fit in the cache anymore, this ratio worsen dra-
matically for the CPU, given its 128 B access granularity.
The NDP on the contrary shows only a very modest decline,
since the NDP caches are so small we are not exploiting a
lot of locality anyway. The NDPs are able to access to the
DRAM at least twice as efficiently as the CPU.

5. CONCLUSION
In this work, we presented the architecture of a system

that combines NDPs and a modern CPU. The proposed ar-
chitecture introduces the NDP-Interface and NDP-Manager
components for handling essential features like coherency,
communication and address translation, for a seamless inte-

gration with a standard CPU. An implementation of crucial
components is made, and an implementation of the relevant
Graph500 benchmark shows a significant 1.5x speedup with
respect to the CPU implementation.

6. REFERENCES
[1] J. Ahn and et al. PIM-enabled Instructions: A

Low-overhead, Locality-aware Processing-in-memory
Architecture. In Annual International Symposium on
Computer Architecture, (ISCA), pages 336–348, New
York, NY, USA, 2015. ACM.

[2] E. Azarkhish and et al. High Performance AXI-4.0
Based Interconnect for Extensible Smart Memory
Cubes. In Proceedings of the 2015 Design, Automation
& Test in Europe Conference & Exhibition, (DATE),
pages 1317–1322, San Jose, CA, USA, 2015. EDA
Consortium.

[3] R. Balasubramonian and et al. Near-Data Processing:
Insights from a MICRO-46 Workshop. Micro, IEEE,
34(4):36–42, July 2014.

[4] M. Chu and et al. High-level Programming Model
Abstractions for Processing in Memory. In 1st
Workshop on Near-Data Processing in conjunction
with the International Symposium on
Microarchitecture, (WoNDP), 2013.

[5] A. De and et al. Minerva: Accelerating Data Analysis
in Next-Generation SSDs. In IEEE International
Symposium on Field-Programmable Custom
Computing Machines, (FCCM) , Seattle, WA, USA,
pages 9–16, 2013.

[6] A. Farmahini-Farahani and et al. NDA: Near-DRAM
acceleration architecture leveraging commodity
DRAM devices and standard memory modules. In
High Performance Computer Architecture, 2015,
(HPCA), pages 283–295, Feb 2015.

[7] Z. Guz and et al. Real-Time Analytics as the Killer
Application for Processing-In-Memory. 2nd Workshop
on Near-Data Processing (WoNDP), 2014.

[8] R. Nair and et al. Active Memory Cube: A
processing-in-memory architecture for exascale
systems. IBM Journal of Research and Development,
59(2/3):17:1–17:14, March 2015.

[9] E. Panainte, K. Bertels, and S. Vassiliadis. Compiling
for the Molen Programming Paradigm. In
P. Y. K. Cheung and G. Constantinides, editors, Field
Programmable Logic and Application, volume 2778 of
Lecture Notes in Computer Science, pages 900–910.
Springer Berlin Heidelberg, 2003.

[10] S. Pugsley and et al. Comparing Implementations of
Near-Data Computing with In-Memory MapReduce
Workloads. Micro, IEEE, 34(4):44–52, July 2014.

[11] W. Starke and et al. The cache and memory
subsystems of the IBM POWER8 processor. IBM
Journal of Research and Development, 59(1):3:1–3:13,
Jan 2015.

[12] P. Trancoso. Moving to Memoryland: In-memory
Computation for Existing Applications. In ACM
International Conference on Computing Frontiers,
(CF), pages 32:1–32:6, New York, NY, USA, 2015.
ACM.

360




