
Sorting big data on heterogeneous near-data processing
systems

Erik Vermij
IBM Research

the Netherlands
erik.vermij@nl.ibm.com

Leandro Fiorin
IBM Research

the Netherlands
leandro.fiorin@nl.ibm.com

Christoph Hagleitner
IBM Research – Zurich

Switzerland
hle@zurich.ibm.com

Koen Bertels
Delft University of Technology

the Netherlands
k.l.m.bertels@tudelft.nl

ABSTRACT
Big data workloads assumed recently a relevant importance
in many business and scientific applications. Sorting ele-
ments efficiently in big data workloads is a key operation. In
this work, we analyze the implementation of the mergesort
algorithm on heterogeneous systems composed of CPUs and
near-data processors located on the system memory chan-
nels. For configurations with equal number of active CPU
cores and near-data processors, our experiments show a per-
formance speedup of up to 2.5, as well as up to 2.5× energy-
per-solution reduction.

1. INTRODUCTION
The efficient analysis of big data workloads represents a

key element in many businesses and scientific and engineer-
ing applications [12]. A significant amount of data, often
stored in unprocessed form, need to be extensively searched
and analyzed, creating substantial challenges to all the com-
ponents of the computing system [13].

Sorting elements is often one of the key operation to be
performed on big data workloads: For example, TeraSort is
a sorting application, included in the Apache Hadoop dis-
tribution, which is widely used by many big data vendors to
benchmark and stress test computing clusters [12].

This work analyzes the sorting of big data workloads on
near-data processing architectures [8]. This computing para-
digm, recently rediscovered, allows to alleviate the classical
“memory wall problem”by moving the computation closer to
the memory. For certain types of workload which typically
do not benefit from the availability of a complex hierarchy
of caches, it represents a clear advantage in terms of latency
reduction, available bandwidth to memory, and energy effi-
ciency [19].

Our work focuses on sorting big data on a heterogeneous
system composed of a CPU and near-data processors (NDPs),
in which NDPs are implemented as workload-optimized pro-
cessors on FPGA. Moreover, we present a dynamic workload

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

CF’17, May 15-17, 2017, Siena, Italy
c© 2017 ACM. ISBN 978-1-4503-4487-6/17/05. . . $15.00

DOI: http://dx.doi.org/10.1145/3075564.3078885

0

5

10

15

20

25

30

35

M
eg

a8
it

em
s8

p
er

8s
ec

o
n

d

Data8set8size8(16B8items)

POWER8818core848threads

(a)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 40 80 120 160

N
o

rm
al

iz
ed

xr
eu

se
xd

is
ta

n
ce

Memoryxaccessxnumberx(xx1M)

1Mxitems 262Kxitems 65Kxitems

(b)

Figure 1: (a) Mergesort single-core performance, while vary-
ing the size of the data set. (b) Reuse distance when when
sorting three different lengths of sequences with mergesort.

balancing mechanism that allows to optimize the utilization
of CPU and NDPs and increase the overall sorting perfor-
mance when working on large data sets, by using near-data
processors in a heterogeneous way to execute the phases of
the application with little data locality.

The remainder of this paper is organized as follows: Sec-
tion 2 presents background information and related work.
Section 3 discusses the reference architecture and its sys-
tem simulator used in our experiments. Section 4 discusses
the optimized implementation of the sort algorithm on the
heterogeneous architecture. Section 5 presents an analysis
of the experimental results, while Section 6 concludes the
paper.

2. MOTIVATION AND RELATED WORK
In order to evaluate the performance of modern processors

while sorting big data workloads, we run an implementation
of mergesort on a 2-socket IBM POWER8 machine. Each
socket has 10 cores running at 4.2 GHz, with each core pro-
vided with a 64 KB L1 cache, a 512 KB L2 cache, and a
8 MB semi-shared L3 cache. Without loss of generality, we
focus on single-core performance. Mergesort is a well known
O(nlog(n)) sorting algorithm which conceptually first di-
vides a list of n elements in n sublists on 1 element, and
then repeatedly merges two sublists at the time to produce
new sorted sublists, until only one sorted list remains.

Figure 1 shows the results of our preliminary evaluation
for the case of 4 threads per core, in which we operate on

349

16 B items, consisting of an 8 B index (to be sorted), and
an 8 B pointer. As Figure 1a shows, the performance de-
creases with the size of the data set. This behavior can be
explained by analyzing Figure 1b, which shows the reuse dis-
tance when sorting three different lengths of sequences with
mergesort. The reuse distance is calculated as the number
of memory accesses to unique addresses performed in be-
tween two memory accesses to the same address, and it is a
measure of temporal data locality. In case of a large reuse
distance, the availability of local memories does not provide
any advantage, and memory accesses are performed on a
higher-level storage, e.g., DRAM for a typical CPU, result-
ing in lower bandwidths, higher latencies, and lower perfor-
mance. Figure 1b highlights that bigger data set will cause
more phases with a high reuse distance. These phases will
run slower compared to the regions with a small reuse dis-
tance, causing the performance reduction observed in Figure
1a.

In this work, we therefore propose a heterogeneous ap-
proach in which the mergesort phases with good data local-
ity are executed at the CPU, while the phases little data
locality are executed by the near-data processor. This fol-
lows the fundamental properties of a memory hierarchy and
near-data processing. A cache at the CPU offers high band-
widths and low energy costs per access, while main mem-
ory offers mediocre bandwidths and high energy costs per
access. When an access pattern can be satisfied from the
caches, that is the preferred method. When an access pat-
tern can only be satisfied from main memory, it is best to
execute it on a near-data processor, to limit data movement.

2.1 Overview of related work
Sorting unstructured items represents an important task

for big data applications [12]. In general, several platform
designs and optimizations have been proposed to deal with
big data applications. As big data workloads fundamentally
differ from workloads usually run on more traditional data-
warehousing systems, a tailored system-level optimization
is needed [12]. A custom system and board design is pro-
posed in [4]. The system, designed around Flash and DRAM
memories, targets the energy-efficient execution of big data
workloads. Hardware acceleration of big data frameworks
such as Hadoop MapReduce has been proposed, delegating
the Map() and Reduce() procedures to a many-core proces-
sor [13], or a cluster of FPGAs [7]. An overall performance
improvement of up to 6.6× and 4.3× has been reported for
the many-core processor and the FPGA implementation, re-
spectively. Acceleration of MapReduce with GPUs is dis-
cussed in [5], which reports speedups over single CPU core
execution ranging from 3.25 to 28.68.

In this paper, we focus on near-data processing architec-
tures, which has been recently re-discovered thanks to tech-
nology advances on 3D stacking, and due to the availability
of big data workloads with high degrees of parallelism and
programming models for distributed big data applications
[3]. Most of the proposed near-data architectures extend
the logic layer found in 3D-stacked DRAM devices, such as
the Micron’s Hybrid Memory Cube (HMC) [11], by adding
small general purpose cores or dedicated accelerators to it
[16, 15, 2, 1, 9], and exploit the finer data access granularity
and the higher memory bandwidth available.

A near-data architectures for big data graph processing
has been proposed in [1], while the work in [9] discusses an
architecture which targets the execution of big data analytic
frameworks near the memory. In [22], a sorting accelera-
tor is implemented as part of a 3D-stacked memory system.

Figure 2: High-level view of the system organization. Near-
data processors are tightly integrated with the memory con-
trollers.

Depending on the application and architecture implemen-
tation, typical reported performance speedups are from 3×
to 16×, with significant energy reduction over CPU-based
implementations.

Our experiments relies on the work presented in [20], where
an NDP extension to a POWER8-based server environment
is described. Differently to related work, the coprocessor
is tightly integrated with the memory controllers and sup-
ports coherence between CPU and NDPs. Moreover, while
the presented approaches to integrate the NDPs into the
POWER8 system are generic enough, the work in [20] fo-
cuses on a workload-optimized NDPs implemented on FPGA,
able to run specific workloads very efficiently. This paper
also shows, for the first time, how exploiting the charac-
teristics of a heterogeneity system composed of a CPU and
NDPs can improve significantly the performance of sorting
big data sets, while reducing the overall power consump-
tion.

3. NEAR-DATA ARCHITECTURE
A high-level view of the reference system architecture is

shown in Figure 2 [20]. The architecture relies on two-level
memory controllers: Memory-technology agnostic memory
controllers are implemented at the CPU, while controllers
specific for the adopted memory technology are tightly cou-
pled to the main memory. An example of such a setup is
the memory system that can be found on the IBM POWER8
CPU [17], which has eight memory-technology agnostic mem-
ory channels each connecting to a ‘memory buffer’ chip,
holding four DDR3/4 memory controllers. Another exam-
ple can be found on CPUs connected to 3D-stacked stacked
memory devices such as the Hybrid Memory Cube [11], in
which technology-specific memory controllers (called vault
controllers) are implemented in the logic layer of the device.

As shown in Figure 2, near-data processing capabilities are
added in the technology-specific memory controllers. Each
NDP relies on an hardware component, called NDP-Manager
(NDP-M) [20], which provides the NDP with support for in-
terfacing the system, including virtual memory, coherence,
and communication, in way conceptually similar to what
implemented by the CAPI interface in POWER8 CPUs for
interfacing external coprocessors [18]. The NDP-M allows to
interface any type of NDP, such as for instance general pur-
pose processors or workload-optimized cores. In this work,
we focus in particular on using workload-optimized NDPs
implemented on a reconfigurable fabric, such as an FPGA.

Table 1 shows specification for the reference system con-
sidered in this work. The system template we use in the

350

Figure 3: The simulator environment used in our experiments.

Table 1: System specifications.

Simulated CPU
Cores 4.2 Ghz

Access granularity 128 byte
Data caches 128 KB / core

Memory channels 20:10 GB/s Up:Down

Main memory x4
Technology and bandwidth 4 x DDR4-2400 @ 60% : 48

GB/s
Access granularity 32 byte

NDP
Frequency 500 MHz

remainder of this work has one to four memory channels
and one or two CPU cores per memory channel. For prac-
tical simulation reasons, the used cache size shown in Table
1 is smaller than the one of a real CPU. However, we scaled
appropriately simulation results to take into account for this
limitation, by evaluating data set sizes and system propriety
with respect to the ratio between the size of the actual cache
and the size of the one simulated.

To evaluate the performance of applications running on
the NDP architecture, a simulator was implemented. The
tool simulates the interaction between the CPU (and in par-
ticular its memory hierarchy) and the NDPs. Figure 3 shows
a high-level view of the simulator. It is implemented as
a mix of C++ and hardware-description language (HDL)
components, communicating through the Verilog Procedu-
ral Interface (VPI), which allows behavioral Verilog code to
call C functions, and C functions to invoke standard Verilog
system tasks.

Applications run native on the host, and all load and store
instructions, including their data fields, as well as special in-
structions such as synchronization, are provided as input to
the simulator. The caches and main memory modeled by
the simulator hold therefore the actual application values,
and in this way it is possible to verify the correct imple-
mentation of all aspects of the NDP hardware and the ar-
chitecture, like synchronization and barriers. In fact, as the
application running on the host works with the data val-
ues it retrieves from the simulator, an exact implementation
of the simulator is essential to produce meaningful results.
Memory allocations done on the host are mirrored in the
simulator by using the same virtual and physical addresses
and page layout, meaning that the translations supplied by
the NDP software-library to the NDP-M are based on page
table scans on the host.

The NDP-M is implemented in hardware and provides
communication mechanisms between the NDP and software,
and implements a TLB such that the NDP can work with

7 8 9 3 1 2 6

7 8 3 9 1 2

3 7 8 9

C
P

U
N

D
P

n Items to sort

Lo
g(
n

)
le

ve
ls

Switch value -

7 8 9 3 1 2 6 4

In
p

u
t

CPU ->

NDP ->

Figure 4: Implementation of the heterogeneous (CPU +
NDP) mergesort.

virtual pointers. The NDP-software and the OS changes are
implemented in a user-level software library. This library
provides all the functionalities to allocate data structures,
handle the address translation requirements for the NDP-
M, communicate with the NDPs, provide synchronization
between the CPU and the NDPs, etc. Since the memory in
the simulator mirrors the memory on the host, NDP work-
loads can be implemented by using the host’s virtual point-
ers. All actions done by the software side of the simulator
are triggered or synchronized by the hardware clock, which
makes the simulator cycle-accurate.

The simulator supports the availability on the host CPU
of several cores, each with a private cache, a system bus,
and a different number of memory channels and NDPs.

While the framework is general enough to simulate NDPs
implemented either as general-purpose cores or workload-
optimized cores, in this paper we focus on NDPs imple-
mented in FPGA, interfaced to the host with the function-
alities provided by the NDP-M.

4. SORT IMPLEMENTATION
We implemented a multi-threaded version of the merge-

sort algorithm, which operates on 16 B items, consisting of
an 8 B index (to be sorted), and an 8 B pointer. The imple-
mented mergesort is optimized for making use of all the com-
puting resources of our platform, i.e., the multiple threads
available on the CPU and the multiple NDPs.

Mergesort sorts a data set by recursively merging sorted
subsets into a larger sorted subset, as shown in Figure 4. The
algorithm starts merging two single items of an unsorted list
into a sublist (single item list can be considered as already
sorted). Then, it repeatedly merge the produced sublists to
create a new sorted sublist. This continues until only one
list of sorted elements exists.

As shown in Figure 4, the first iterations of the algorithm
offer plenty of small merges that can be easily parallelized

351

Figure 5: Block diagram of the workload-optimized merge
core implemented in the NDP.

over multiple processing elements. However, in the latest
iterations, the amount of straightforward parallelism is re-
duced. Therefore, for the lastest levels we implemented a
parallel version of the merge step which is based on a divide
and conquer method [6]. This method finds two items in the
data sets as close as possible in value to each other, and as
close as possible to the center of the data set. From these
items the data sets can be split in two, and then merged in
parallel. This obviously comes at a cost, and therefore the
method is only used for the latest levels.

We developed a workload-optimized merge core in VHDL,
able to do a single partial merge. Figure 5 shows the block
diagram of the merge core implemented in the NDP. Since
we are targeting future reconfigurable fabric, we assume the
core to operate at a frequency of 500 MHz. The merge core
does a single comparison every clock cycle, and therefore
needs 32 B (16 B load and 16 B store) every cycle, utilizing
16 GB/s of main memory bandwidth. To be able to use
all the available bandwidth, we used four merge cores, and
connected them together by using a crossbar. The VHDL
design also includes a controller which is in charge of receiv-
ing the workload messages from the CPU, distributing the
workload to the four merge cores, and sending the results
back to the CPU.

As explained in Section 3, we modeled the interaction be-
tween the CPU and the NDPs by using the load/store oper-
ations generated by the part of the merge program running
on the CPU. Besides the load/store operations, applications
can issue stall operations to the simulator, to be able to ad-
just the overall performance. In fact, by using this approach,
we can achieve performance error of less than 5% with re-
spect to measurements taken on a real POWER8 system
running at 4.2 GHz. In particular, without loss of gener-
ality, we considered the single-core performance obtained
when running the application with four threads, out of the
available eight, as during our simulation campaign it allowed
to achieve the highest performance on the POWER8. Table
1 summarizes the system specifications.

Our mergesort implementation adopts a heterogeneous
approach: the small partial merges, having lots of data lo-
cality, are done on the CPU, while large partial merges are
done by the NDP. The approach is represented in Figure 4,
showing how the CPU and the NDPs can be work in parallel
for solving the problem. We call switch value the minimum
size of the sublists processed on the NDPs. This value is
dynamically adjusted to balance the load between the CPU
cores and the NDPs. The switch value is initialized at 128
items, and it increases or decreases after a certain time that
the NDP work queues are full or almost empty, respectively.

The maximum value for the switch value is set to 2048,
which corresponds to the sublist size for which the two sub-

lists to be merged fully occupy the available cache. This
maximum switch value corresponds to the size of the caches
used in our simulator. A larger switch value would mean
that a CPU core is working with data that can, by defini-
tion, not be in its cache, and thus has to come from main
memory. Since the NDPs are already designed to make full
use of the available memory bandwidth, the CPU will not
improve performance, but only reduce the performance of
the NDPs, which are much more efficient at sorting directly
from main memory.

The workloads arrive at the NDP by means of the mes-
sage interface discussed in Section 3, where every message
contains the virtual pointers and item counts needed for a
partial merge. A separate thread on the software side man-
ages the sending and receiving of messages to and from the
NDPs.

In case we use multiple NDPs to sort a single data set,
every NDP gets an equal portion of the data to be sorted
independently. Once the NDPs have completed their tasks,
the CPU performs the last merges to create the final result.

5. ANALYSIS AND RESULTS
5.1 Speedup analysis

In this subsection, we analyze the theoretical speedup
achievable by using a heterogeneous system including CPUs
and NDPs. As example, we focus in particular on a system
using a single CPU core and a single NDP. In the analy-
sis, it is possible to distinguish between two cases. In the
first case, the CPU is the bottleneck in the calculation, and
the NDP is partially underutilized as waiting for the CPU
results to complete. In this situation, the smallest and high-
est speedups are achieved when using the largest and the
smallest switch value, respectively. As the switch value is
adjusted dynamically, the resulting speedup will be in be-
tween these two limit values and it can be described by the
following formula:

log2(n)

log2(Max switch)
≤ Speedup ≤ log2(n)

log2(Min switch)
(1)

in which n is the data set size. For a data set size of one
mega items and the parameters in Table 1, the estimated
speedup is therefore between 1.8 and 2.5, while for a data set
of four mega items, the speedup is between 2 and 2.75. The
potential speedup increases because with larger workloads
more merge levels are implemented on the NDP, which is
therefore more utilized.

As the switch value has a maximum defined by the cache
size, the work distribution becomes again unbalanced for
very large data sets. In these cases, the NDP becomes the
bottleneck in the implementation, and the overall perfor-
mance will be bounded by the NDP performance, and in
particular by its memory bandwidth. Without NDP, and
for very large data sets, the performance would be limited
by the CPUs memory channel bandwidth. In this situation,
the speedup when using NDP can be described as:

lim
n→∞

Speedup = BWNDP /BWMemory channel (2)

When using the values shown in Table 1, the speedup is
approximately equal to 1.5.

5.2 Results
In our experiments, we evaluate the performance of het-

erogeneous systems with different combinations of CPU cores

352

0

20

40

60

80

100

120

M
eg

a
it

em
s

p
er

 s
ec

o
n

d

Data set size (16B items)

1 core 2 core

1 core + NDP 2 core + NDP

(a)

1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

R
el

at
iv

e
p

er
fo

rm
an

ce

Data set size (16B items)

1 core + NDP 2 cores + NDP

(b)

Figure 6: (a) Absolute mergesort performance for four differ-
ent systems configurations. (b) Relative performance with
respect to configuration with no NDPs.

0

50

100

150

200

250

2M 4M 8M 16M

M
eg

a
it

em
s

p
er

 s
ec

o
n

d

Data set size (16B items)

1 core 1 NDP 2 core 2 NDP 4 core 4 NDP

(a)

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

1/0 1/1 2/2 4/4

Ti
m

e

NumberPofPmemoryPchannelsP/PNDPs

CPUP+PNDP NDPPonly CPUPonly

(b)

Figure 7: (a) Performance for systems containing more
memory channels and NDPs. (b) Time distribution of the
heterogeneous usage of both the CPU and the NDP.

and NDPs. Figure 6a compares the absolute performance of
four different systems configurations: one CPU core with no
NDP, two CPU cores with no NDP, one CPU core with one
NDP, and two CPU cores with one NDP. Figure 6b shows
the relative performance with respect to the configurations
with no NDPs.

When adding an NDP to the configuration with one CPU
core, the performance increases and stays steady towards
larger data sets, where the saw-tooth pattern is due to the
discrete nature of the workload balancing mechanism. This
reflects in an increasingly higher speedup, as shown in Figure
6b, up to a factor 2.5 for the largest data set, as estimated
in Section 5.1. The measured speedup is, in fact, within 5%
difference from the average speedup calculated considering
the smallest and highest speedup values estimated in equa-
tion 1. For the configuration having two CPU cores and a
single NDP, the trends are different. As in this configuration
the NDP becomes the computation bottleneck, the perfor-
mance drops for larger data sets, while the speedup flattens.
For the largest data set, the switch value is at its maximum
value for 42% of the time, clearly indicating an imbalanced
workload distribution, resulting in a declining performance,
and the speedup reaching its upper bound.

In Figure 7a, we show the performance results when using
more NDPs, by keeping one NDP per core. As discussed,
the partial results created by the NDPs, each one working on

0

0.2

0.4

0.6

0.8

1

0 1 2 4

U
ti

liz
at

io
n

Mp
er

Mc
o

re
/m

em
o

ry
Mc

h
an

n
el

NumberMofMNDPs

Memory MemoryMchannel Cache

(a)

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

2M 4M 8M 16M

R
el

at
iv

ec
n

u
m

b
er

co
fc

o
p

er
at

io
n

s

Datacsetcsizec(16Bcitems)

Memorycchannelcoperations

Memorycload

Memorycstore

(b)

Figure 8: (a) The component utilization for various number
of memory channels / NDPs, when sorting 16 mega items.
(b) Relative number of operations generated by the single
CPU core and single NDP configuration, with respect to a
single CPU core configuration.

its own memory channel, are merged together by the CPU
to create the final result. As a result of the parallelization
process, the scaling is not perfect. We can observe a scaling
factor of 1.75 when moving from one to two NDPs, and a
scaling factor of 3.1 when moving from one to four NDPs.
Since the performance is stable for the various data set sizes,
it makes no differences whether we look at strong or weak
scaling.

In Figure 7b, we show the portion of time in which both
components (CPU + NDP) are working, and the time in
which only one of them is active. It is clear that, when
using more NDPs, a larger portion of time is spend in the
final merge steps done by the CPU, which directly results in
the above mentioned not perfect scaling.

In Figure 8a, we show the components’ bandwidth uti-
lization when using various numbers of NDPs. As it is pos-
sible to notice, when using NDPs, we can observe a lower
memory channel utilization and a higher memory utiliza-
tion. Figure 8b shows the relative number of read/write
DRAM requests and the relative number of memory chan-
nel transactions generated by the single CPU core and single
NDP configuration, with respect to a single CPU configura-
tion. An important observation that can be made is that,
by using the heterogeneous approach, the amount of data
going through the memory channels is 10× lower, clearly
indicating that the proposed approach reduces significantly
the amount of data moved within the overall system, and,
potentially, the amount of energy associated with it. The
30% increase in the number of memory stores, with respect
to the single CPU system, is due to the extra write-back pass
that it is introduced when switching from the CPU to NDP
processing. The reduction in the number of loads is instead
due to the fact that the NDP does not have a hardware
managed cache, and can issue a 32 B store directly to the
memory system, without first having to load the data from
memory, as it is the case for a cacheline-based architecture
as the CPU.

Figure 9 shows the size of the workload queue at the NDPs
as well as the switch value, over time, using two CPU cores
and a single memory NDP, sorting a data set of four mega
items. Every time the queue size reaches its maximum (set
for this experiments to 32), the switch value is doubled, until
the maximum of 2048 is reached. If the queue is almost
empty, the switch value is divided in half. The occupation

353

0

512

1024

1536

2048

0

8

16

24

32

0.0 0.2 0.4 0.6 0.8 1.0

Relativectime

NDPcworkloadcqueuecsize Switchcvaluec(sec.caxis)

Figure 9: NDP work queue size and switch value over time,
when sorting four mega items using two CPU cores and a
single NDP.

of the queue is evaluated every 32 workload submissions to
the NDP, to let the previous switch take effect and avoid
increasing or decreasing the switch value too fast.

5.3 Power analysis
We synthesized our NDP hardware for a (medium sized)

Xilinx UltraScale XCKU060 device, resulting in a design
utilizing 3500 LUTs, 3250 registers, and 30 BRAMs. To
estimate power consumption, we used the Xilinx Power Es-
timator [21] and set the switching activity to 100%, result-
ing in 0.9 W of dynamic power and 0.6 W of static power.
The NDP-M, handling the integration of the NDP with the
system, is estimated to use 4 W, giving the entire memory
side (memory-side chip + DRAMs) a 20% increase in power
[14]. This results in a power budget of our entire proposal,
using four memory channels, of 22 W. A bare, eight core,
four memory channels, POWER8 system uses 400 W, where
the CPU contributes for about 200 W [14] [10]. In such a
system, our proposal would adds 6% power at system level.
Depending on the data set size and configuration, the per-
formance increase of up to 1.8 or 2.6 times over a similar
system without NDPs would therefore results in a factor of
up to 1.7 and 2.5 of energy-to-solution saving, respectively.

6. CONCLUSION
Sorting big data represents an important problem in many

application fields. New architectures and solutions have
been recently investigated, to support efficiently this opera-
tion on large data set. In this work, we explored a heteroge-
neous approach to implement mergesort on an architecture
composed on CPUs and near-data processors. We showed
how with a careful scheduling of the tasks on our archi-
tecture it is possible to achieve up to 2.5 of performance
speedup, and up to 2.5× energy reduction with respect to
an only-CPU based system.

7. REFERENCES
[1] J. Ahn, S. Hong, S. Yoo, et al. A Scalable

Processing-in-memory Accelerator for Parallel Graph
Processing. In Proceedings of ISCA ’15, June 2015.

[2] E. Azarkhish, D. Rossi, I. Loi, et al. High performance
AXI-4.0 based interconnect for extensible smart
memory cubes. In Proceedings of DATE ’15, Mar.
2015.

[3] R. Balasubramonian, J. Chang, T. Manning, et al.
Near-Data Processing: Insights from a MICRO-46
Workshop. IEEE Micro, 34(4), July 2014.

[4] A. M. Caulfield, L. M. Grupp, and S. Swanson.
Gordon: An Improved Architecture for Data-Intensive
Applications. IEEE Micro, 30(1), Jan. 2010.

[5] L. Chen, X. Huo, and G. Agrawal. Accelerating
MapReduce on a Coupled CPU-GPU Architecture. In
Proceedings of SC ’12, Oct. 2012.

[6] T. H. Cormen, C. E. Leiserson, R. L. Rivest, et al.
Introduction to Algorithms, Third Edition. The MIT
Press, 3rd edition, 2009.

[7] D. Diamantopoulos and C. Kachris. High-level
synthesizable dataflow MapReduce accelerator for
FPGA-coupled data centers. In Proceedings of
SAMOS ’15, July 2015.

[8] B. Falsafi, M. Stan, K. Skadron, et al. Near-Memory
Data Services. IEEE Micro, 36(1), 2016.

[9] M. Gao, G. Ayers, and C. Kozyrakis. Practical
Near-Data Processing for In-Memory Analytics
Frameworks. In Proceedings of PACT ’15, Oct. 2015.

[10] H. Giefers, R. Polig, and C. Hagleitner. Accelerating
arithmetic kernels with coherent attached FPGA
coprocessors. In Proceedings of DATE ’15, Mar. 2015.

[11] HMC Consortium.
”http://www.hybridmemorycube.org/”, 2017.

[12] H. P. Hofstee, G. C. Chen, F. H. Gebara, et al.
Understanding system design for Big Data workloads.
IBM Journal of Research and Development, 57(3/4),
May 2013.

[13] T. Honjo and K. Oikawa. Hardware acceleration of
Hadoop MapReduce. In Proceedings of IEEE BigData
’16, Oct. 2013.

[14] IBM. System Energy Estimator.
”http://www-912.ibm.com/see/EnergyEstimator”,
2017.

[15] R. Nair, S. F. Antao, C. Bertolli, et al. Active Memory
Cube: A processing-in-memory architecture for
exascale systems. IBM J. of Research and
Development, 59(2/3), Mar. 2015.

[16] S. H. Pugsley, J. Jestes, R. Balasubramonian, et al.
Comparing Implementations of Near-Data Computing
with In-Memory MapReduce Workloads. IEEE Micro,
34(4), July 2014.

[17] W. J. Starke, J. Stuecheli, D. M. Daly, et al. The
cache and memory subsystems of the IBM POWER8
processor. IBM J. of Research and Development,
59(1), Jan. 2015.

[18] J. Stuecheli, B. Blaner, C. R. Johns, et al. CAPI: A
Coherent Accelerator Processor Interface. IBM
Journal of Research and Development, 59(1), Jan.
2015.

[19] P. Trancoso. Moving to Memoryland: In-memory
Computation for Existing Applications. In Proceedings
of CF ’15, May 2015.

[20] E. Vermij, C. Hagleitner, L. Fiorin, et al. An
Architecture for Near-data Processing Systems. In
Proceedings of CF ’16, May 2016.

[21] Xilinx. Xilinx Power Estimator (XPE). ”http://www.
xilinx.com/products/technology/power/xpe.html”,
2016.

[22] S. F. Yitbarek, T. Yang, R. Das, et al. Exploring
specialized near-memory processing for data intensive
operations. In Proceedings of DATE ’16, Mar. 2016.

354

